#define ZFS_DEV "/dev/zfs"
/* general zvol path */
-#define ZVOL_DIR "/dev/zvol"
-/* expansion */
-#define ZVOL_PSEUDO_DEV "/devices/pseudo/zfs@0:"
-/* for dump and swap */
-#define ZVOL_FULL_DEV_DIR ZVOL_DIR "/dsk/"
-#define ZVOL_FULL_RDEV_DIR ZVOL_DIR "/rdsk/"
+#define ZVOL_DIR "/dev"
+
+#define ZVOL_MAJOR 230
+#define ZVOL_MINOR_BITS 4
+#define ZVOL_MINOR_MASK ((1U << ZVOL_MINOR_BITS) - 1)
+#define ZVOL_MINORS (1 << 4)
#define ZVOL_PROP_NAME "name"
#define ZVOL_DEFAULT_BLOCKSIZE 8192
ZFS_IOC_DATASET_LIST_NEXT,
ZFS_IOC_SNAPSHOT_LIST_NEXT,
ZFS_IOC_SET_PROP,
+ ZFS_IOC_CREATE_MINOR,
+ ZFS_IOC_REMOVE_MINOR,
ZFS_IOC_CREATE,
ZFS_IOC_DESTROY,
ZFS_IOC_ROLLBACK,
* which is the same as MAXNAMELEN used in the kernel.
* If ZFS_MAXNAMELEN value is changed, make sure to cleanup all
* places using MAXNAMELEN.
+ *
+ * When HAVE_KOBJ_NAME_LEN is defined the maximum safe kobject name
+ * length is 20 bytes. This 20 bytes is broken down as follows to
+ * provide a maximum safe <pool>/<dataset>[@snapshot] length of only
+ * 18 bytes. To ensure bytes are left for <dataset>[@snapshot] the
+ * <pool> portition is futher limited to 9 bytes. For 2.6.27 and
+ * newer kernels this limit is set to MAXNAMELEN.
+ *
+ * <pool>/<dataset> + <partition> + <newline>
+ * (18) + (1) + (1)
*/
-
+#ifdef HAVE_KOBJ_NAME_LEN
+ if (strlen(path) > 18) {
+#else
if (strlen(path) >= MAXNAMELEN) {
+#endif /* HAVE_KOBJ_NAME_LEN */
if (why)
*why = NAME_ERR_TOOLONG;
return (-1);
* which is the same as MAXNAMELEN used in the kernel.
* If ZPOOL_MAXNAMELEN value is changed, make sure to cleanup all
* places using MAXNAMELEN.
+ *
+ * When HAVE_KOBJ_NAME_LEN is defined the maximum safe kobject name
+ * length is 20 bytes. This 20 bytes is broken down as follows to
+ * provide a maximum safe <pool>/<dataset>[@snapshot] length of only
+ * 18 bytes. To ensure bytes are left for <dataset>[@snapshot] the
+ * <pool> portition is futher limited to 8 bytes. For 2.6.27 and
+ * newer kernels this limit is set to MAXNAMELEN.
+ *
+ * <pool>/<dataset> + <partition> + <newline>
+ * (18) + (1) + (1)
*/
+#ifdef HAVE_KOBJ_NAME_LEN
+ if (strlen(pool) > 8) {
+#else
if (strlen(pool) >= MAXNAMELEN) {
+#endif /* HAVE_KOBJ_NAME_LEN */
if (why)
*why = NAME_ERR_TOOLONG;
return (-1);
${MODULE}-objs += unique.o
${MODULE}-objs += vdev.o
${MODULE}-objs += vdev_cache.o
+${MODULE}-objs += vdev_disk.o
${MODULE}-objs += vdev_file.o
${MODULE}-objs += vdev_label.o
${MODULE}-objs += vdev_mirror.o
else
dmu_buf_will_dirty(db, tx);
- bcopy(buf, (char *)db->db_data + bufoff, tocpy);
+ (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
if (tocpy == db->db_size)
dmu_buf_fill_done(db, tx);
}
#ifdef _KERNEL
+
+/*
+ * Copy up to size bytes between arg_buf and req based on the data direction
+ * described by the req. If an entire req's data cannot be transfered the
+ * req's is updated such that it's current index and bv offsets correctly
+ * reference any residual data which could not be copied. The return value
+ * is the number of bytes successfully copied to arg_buf.
+ */
+static int
+dmu_req_copy(void *arg_buf, int size, int *offset, struct request *req)
+{
+ struct bio_vec *bv;
+ struct req_iterator iter;
+ char *bv_buf;
+ int tocpy;
+
+ *offset = 0;
+ rq_for_each_segment(bv, req, iter) {
+
+ /* Fully consumed the passed arg_buf */
+ ASSERT3S(*offset, <=, size);
+ if (size == *offset)
+ break;
+
+ /* Skip fully consumed bv's */
+ if (bv->bv_len == 0)
+ continue;
+
+ tocpy = MIN(bv->bv_len, size - *offset);
+ ASSERT3S(tocpy, >=, 0);
+
+ bv_buf = page_address(bv->bv_page) + bv->bv_offset;
+ ASSERT3P(bv_buf, !=, NULL);
+
+ if (rq_data_dir(req) == WRITE)
+ memcpy(arg_buf + *offset, bv_buf, tocpy);
+ else
+ memcpy(bv_buf, arg_buf + *offset, tocpy);
+
+ *offset += tocpy;
+ bv->bv_offset += tocpy;
+ bv->bv_len -= tocpy;
+ }
+
+ return 0;
+}
+
int
-dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
+dmu_read_req(objset_t *os, uint64_t object, struct request *req)
{
+ uint64_t size = blk_rq_bytes(req);
+ uint64_t offset = blk_rq_pos(req) << 9;
dmu_buf_t **dbp;
int numbufs, i, err;
- xuio_t *xuio = NULL;
/*
* NB: we could do this block-at-a-time, but it's nice
* to be reading in parallel.
*/
- err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
- &numbufs, &dbp);
+ err = dmu_buf_hold_array(os, object, offset, size, TRUE, FTAG,
+ &numbufs, &dbp);
if (err)
return (err);
- if (uio->uio_extflg == UIO_XUIO)
- xuio = (xuio_t *)uio;
-
for (i = 0; i < numbufs; i++) {
- int tocpy;
- int bufoff;
+ int tocpy, didcpy, bufoff;
dmu_buf_t *db = dbp[i];
- ASSERT(size > 0);
+ bufoff = offset - db->db_offset;
+ ASSERT3S(bufoff, >=, 0);
- bufoff = uio->uio_loffset - db->db_offset;
tocpy = (int)MIN(db->db_size - bufoff, size);
+ if (tocpy == 0)
+ break;
- if (xuio) {
- dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
- arc_buf_t *dbuf_abuf = dbi->db_buf;
- arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
- err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
- if (!err) {
- uio->uio_resid -= tocpy;
- uio->uio_loffset += tocpy;
- }
+ err = dmu_req_copy(db->db_data + bufoff, tocpy, &didcpy, req);
+
+ if (didcpy < tocpy)
+ err = EIO;
- if (abuf == dbuf_abuf)
- XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
- else
- XUIOSTAT_BUMP(xuiostat_rbuf_copied);
- } else {
- err = uiomove((char *)db->db_data + bufoff, tocpy,
- UIO_READ, uio);
- }
if (err)
break;
size -= tocpy;
+ offset += didcpy;
+ err = 0;
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
return (err);
}
-static int
-dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
+int
+dmu_write_req(objset_t *os, uint64_t object, struct request *req, dmu_tx_t *tx)
{
+ uint64_t size = blk_rq_bytes(req);
+ uint64_t offset = blk_rq_pos(req) << 9;
dmu_buf_t **dbp;
int numbufs;
int err = 0;
int i;
- err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
- FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
+ if (size == 0)
+ return (0);
+
+ err = dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
+ &numbufs, &dbp);
if (err)
return (err);
for (i = 0; i < numbufs; i++) {
- int tocpy;
- int bufoff;
+ int tocpy, didcpy, bufoff;
dmu_buf_t *db = dbp[i];
- ASSERT(size > 0);
+ bufoff = offset - db->db_offset;
+ ASSERT3S(bufoff, >=, 0);
- bufoff = uio->uio_loffset - db->db_offset;
tocpy = (int)MIN(db->db_size - bufoff, size);
+ if (tocpy == 0)
+ break;
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
else
dmu_buf_will_dirty(db, tx);
- /*
- * XXX uiomove could block forever (eg. nfs-backed
- * pages). There needs to be a uiolockdown() function
- * to lock the pages in memory, so that uiomove won't
- * block.
- */
- err = uiomove((char *)db->db_data + bufoff, tocpy,
- UIO_WRITE, uio);
+ err = dmu_req_copy(db->db_data + bufoff, tocpy, &didcpy, req);
if (tocpy == db->db_size)
dmu_buf_fill_done(db, tx);
+ if (didcpy < tocpy)
+ err = EIO;
+
if (err)
break;
size -= tocpy;
+ offset += didcpy;
+ err = 0;
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
return (err);
}
+#endif
+#ifdef HAVE_ZPL
int
dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
dmu_tx_t *tx)
--- /dev/null
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
+ * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
+ * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
+ * LLNL-CODE-403049.
+ */
+
+#ifndef _SYS_BLKDEV_H
+#define _SYS_BLKDEV_H
+
+#ifdef _KERNEL
+
+#include <linux/blkdev.h>
+#include <linux/elevator.h>
+
+#ifndef HAVE_FMODE_T
+typedef unsigned __bitwise__ fmode_t;
+#endif /* HAVE_FMODE_T */
+
+#ifndef HAVE_BLK_FETCH_REQUEST
+static inline struct request *
+blk_fetch_request(struct request_queue *q)
+{
+ struct request *req;
+
+ req = elv_next_request(q);
+ if (req)
+ blkdev_dequeue_request(req);
+
+ return req;
+}
+#endif /* HAVE_BLK_FETCH_REQUEST */
+
+#ifndef HAVE_BLK_REQUEUE_REQUEST
+static inline void
+blk_requeue_request(request_queue_t *q, struct request *req)
+{
+ elv_requeue_request(q, req);
+}
+#endif /* HAVE_BLK_REQUEUE_REQUEST */
+
+#ifndef HAVE_BLK_END_REQUEST
+static inline bool
+__blk_end_request(struct request *req, int error, unsigned int nr_bytes)
+{
+ LIST_HEAD(list);
+
+ /*
+ * Request has already been dequeued but 2.6.18 version of
+ * end_request() unconditionally dequeues the request so we
+ * add it to a local list to prevent hitting the BUG_ON.
+ */
+ list_add(&req->queuelist, &list);
+
+ /*
+ * The old API required the driver to end each segment and not
+ * the entire request. In our case we always need to end the
+ * entire request partial requests are not supported.
+ */
+ req->hard_cur_sectors = nr_bytes >> 9;
+ end_request(req, ((error == 0) ? 1 : error));
+
+ return 0;
+}
+
+static inline bool
+blk_end_request(struct request *req, int error, unsigned int nr_bytes)
+{
+ struct request_queue *q = req->q;
+ bool rc;
+
+ spin_lock_irq(q->queue_lock);
+ rc = __blk_end_request(req, error, nr_bytes);
+ spin_unlock_irq(q->queue_lock);
+
+ return rc;
+}
+#else
+# ifdef HAVE_BLK_END_REQUEST_GPL_ONLY
+/*
+ * Define required to avoid conflicting 2.6.29 non-static prototype for a
+ * GPL-only version of the helper. As of 2.6.31 the helper is available
+ * to non-GPL modules and is not explicitly exported GPL-only.
+ */
+# define __blk_end_request __blk_end_request_x
+# define blk_end_request blk_end_request_x
+
+static inline bool
+__blk_end_request_x(struct request *req, int error, unsigned int nr_bytes)
+{
+ /*
+ * The old API required the driver to end each segment and not
+ * the entire request. In our case we always need to end the
+ * entire request partial requests are not supported.
+ */
+ req->hard_cur_sectors = nr_bytes >> 9;
+ end_request(req, ((error == 0) ? 1 : error));
+
+ return 0;
+}
+static inline bool
+blk_end_request_x(struct request *req, int error, unsigned int nr_bytes)
+{
+ struct request_queue *q = req->q;
+ bool rc;
+
+ spin_lock_irq(q->queue_lock);
+ rc = __blk_end_request_x(req, error, nr_bytes);
+ spin_unlock_irq(q->queue_lock);
+
+ return rc;
+}
+# endif /* HAVE_BLK_END_REQUEST_GPL_ONLY */
+#endif /* HAVE_BLK_END_REQUEST */
+
+#ifndef HAVE_BLK_RQ_POS
+static inline sector_t
+blk_rq_pos(struct request *req)
+{
+ return req->sector;
+}
+#endif /* HAVE_BLK_RQ_POS */
+
+#ifndef HAVE_BLK_RQ_SECTORS
+static inline unsigned int
+blk_rq_sectors(struct request *req)
+{
+ return req->nr_sectors;
+}
+#endif /* HAVE_BLK_RQ_SECTORS */
+
+#if !defined(HAVE_BLK_RQ_BYTES) || defined(HAVE_BLK_RQ_BYTES_GPL_ONLY)
+/*
+ * Define required to avoid conflicting 2.6.29 non-static prototype for a
+ * GPL-only version of the helper. As of 2.6.31 the helper is available
+ * to non-GPL modules in the form of a static inline in the header.
+ */
+#define blk_rq_bytes __blk_rq_bytes
+static inline unsigned int
+__blk_rq_bytes(struct request *req)
+{
+ return blk_rq_sectors(req) << 9;
+}
+#endif /* !HAVE_BLK_RQ_BYTES || HAVE_BLK_RQ_BYTES_GPL_ONLY */
+
+#ifndef HAVE_GET_DISK_RO
+static inline int
+get_disk_ro(struct gendisk *disk)
+{
+ int policy = 0;
+
+ if (disk->part[0])
+ policy = disk->part[0]->policy;
+
+ return policy;
+}
+#endif /* HAVE_GET_DISK_RO */
+
+#ifndef HAVE_RQ_IS_SYNC
+static inline bool
+rq_is_sync(struct request *req)
+{
+ return (req->flags & REQ_RW_SYNC);
+}
+#endif /* HAVE_RQ_IS_SYNC */
+
+#ifndef HAVE_RQ_FOR_EACH_SEGMENT
+struct req_iterator {
+ int i;
+ struct bio *bio;
+};
+
+# define for_each_bio(_bio) \
+ for (; _bio; _bio = _bio->bi_next)
+
+# define __rq_for_each_bio(_bio, rq) \
+ if ((rq->bio)) \
+ for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
+
+# define rq_for_each_segment(bvl, _rq, _iter) \
+ __rq_for_each_bio(_iter.bio, _rq) \
+ bio_for_each_segment(bvl, _iter.bio, _iter.i)
+#endif /* HAVE_RQ_FOR_EACH_SEGMENT */
+
+#ifndef DISK_NAME_LEN
+#define DISK_NAME_LEN 32
+#endif /* DISK_NAME_LEN */
+
+#endif /* KERNEL */
+
+#endif /* _SYS_BLKDEV_H */
#include <sys/cred.h>
#include <sys/time.h>
#include <sys/uio.h>
+#ifdef _KERNEL
+#include <sys/blkdev.h>
+#endif
#ifdef __cplusplus
extern "C" {
#endif
-struct uio;
-struct xuio;
struct page;
struct vnode;
struct spa;
const void *buf, dmu_tx_t *tx);
void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
dmu_tx_t *tx);
-int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
-int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
- dmu_tx_t *tx);
-int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
- dmu_tx_t *tx);
+#ifdef _KERNEL
+int dmu_read_req(objset_t *os, uint64_t object, struct request *req);
+int dmu_write_req(objset_t *os, uint64_t object, struct request *req, dmu_tx_t *tx);
+#endif
+#ifdef HAVE_ZPL
int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
uint64_t size, struct page *pp, dmu_tx_t *tx);
+#endif
struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
void dmu_return_arcbuf(struct arc_buf *buf);
void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
kmutex_t spa_proc_lock; /* protects spa_proc* */
kcondvar_t spa_proc_cv; /* spa_proc_state transitions */
spa_proc_state_t spa_proc_state; /* see definition */
- struct proc *spa_proc; /* "zpool-poolname" process */
+ proc_t *spa_proc; /* "zpool-poolname" process */
uint64_t spa_did; /* if procp != p0, did of t1 */
boolean_t spa_autoreplace; /* autoreplace set in open */
int spa_vdev_locks; /* locks grabbed */
--- /dev/null
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
+ * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
+ * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
+ * LLNL-CODE-403049.
+ */
+
+#ifndef _SYS_VDEV_DISK_H
+#define _SYS_VDEV_DISK_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#ifdef _KERNEL
+#include <sys/vdev.h>
+#include <sys/ddi.h>
+#include <sys/sunldi.h>
+#include <sys/sunddi.h>
+
+typedef struct vdev_disk {
+ ddi_devid_t vd_devid;
+ char *vd_minor;
+ struct block_device *vd_bdev;
+} vdev_disk_t;
+
+extern int vdev_disk_physio(struct block_device *, caddr_t,
+ size_t, uint64_t, int);
+extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
+
+/* 2.6.24 API change */
+#ifdef HAVE_2ARGS_BIO_END_IO_T
+# define BIO_END_IO_PROTO(fn, x, y, z) static void fn(struct bio *x, int z)
+# define BIO_END_IO_RETURN(rc) return
+#else
+# define BIO_END_IO_PROTO(fn, x, y, z) static int fn(struct bio *x, \
+ unsigned int y, int z)
+# define BIO_END_IO_RETURN(rc) return rc
+#endif /* HAVE_2ARGS_BIO_END_IO_T */
+
+/* 2.6.29 API change */
+#ifdef HAVE_BIO_RW_SYNCIO
+# define DIO_RW_SYNCIO BIO_RW_SYNCIO
+#else
+# define DIO_RW_SYNCIO BIO_RW_SYNC
+#endif /* HAVE_BIO_RW_SYNCIO */
+
+/* 2.6.28 API change */
+#ifdef HAVE_OPEN_BDEV_EXCLUSIVE
+# define vdev_bdev_open(path, md, hld) open_bdev_exclusive(path, md, hld)
+# define vdev_bdev_close(bdev, md) close_bdev_exclusive(bdev, md)
+#else
+# define vdev_bdev_open(path, md, hld) open_bdev_excl(path, md, hld)
+# define vdev_bdev_close(bdev, md) close_bdev_excl(bdev)
+#endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
+
+/* 2.6.22 API change */
+#ifdef HAVE_1ARG_INVALIDATE_BDEV
+# define vdev_bdev_invalidate(bdev) invalidate_bdev(bdev)
+#else
+# define vdev_bdev_invalidate(bdev) invalidate_bdev(bdev, 1)
+#endif /* HAVE_1ARG_INVALIDATE_BDEV */
+
+/* 2.6.30 API change */
+#ifdef HAVE_BDEV_LOGICAL_BLOCK_SIZE
+# define vdev_bdev_block_size(bdev) bdev_logical_block_size(bdev)
+#else
+# define vdev_bdev_block_size(bdev) bdev_hardsect_size(bdev)
+#endif
+
+#endif /* _KERNEL */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _SYS_VDEV_DISK_H */
#include <sys/zfs_vfsops.h>
#endif
#include <sys/avl.h>
+#include <sys/list.h>
#ifdef __cplusplus
extern "C" {
} zfs_fuid_info_t;
#ifdef _KERNEL
+#ifdef HAVE_ZPL
struct znode;
extern uid_t zfs_fuid_map_id(zfsvfs_t *, uint64_t, cred_t *, zfs_fuid_type_t);
extern void zfs_fuid_node_add(zfs_fuid_info_t **, const char *, uint32_t,
char **retdomain, boolean_t addok);
extern const char *zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx);
extern void zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx);
+#endif /* HAVE_ZPL */
#endif
char *zfs_fuid_idx_domain(avl_tree_t *, uint32_t);
extern int zfs_secpolicy_rename_perms(const char *from,
const char *to, cred_t *cr);
extern int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr);
-extern int zfs_busy(void);
extern int zfs_unmount_snap(const char *, void *);
enum zfsdev_state_type {
extern void zfs_upgrade(zfsvfs_t *zfsvfs, dmu_tx_t *tx);
extern int zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx);
+#if defined(HAVE_UIO_RW)
extern caddr_t zfs_map_page(page_t *, enum seg_rw);
extern void zfs_unmap_page(page_t *, caddr_t);
+#endif /* HAVE_UIO_RW */
extern zil_get_data_t zfs_get_data;
extern zil_replay_func_t *zfs_replay_vector[TX_MAX_TYPE];
#include <sys/zfs_context.h>
-#ifdef __cplusplus
-extern "C" {
-#endif
-
#define ZVOL_OBJ 1ULL
#define ZVOL_ZAP_OBJ 2ULL
#ifdef _KERNEL
+
+#include <sys/blkdev.h>
+
extern int zvol_check_volsize(uint64_t volsize, uint64_t blocksize);
extern int zvol_check_volblocksize(uint64_t volblocksize);
extern int zvol_get_stats(objset_t *os, nvlist_t *nv);
extern void zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx);
extern int zvol_create_minor(const char *);
+extern int zvol_create_minors(const char *);
extern int zvol_remove_minor(const char *);
extern void zvol_remove_minors(const char *);
-extern int zvol_set_volsize(const char *, major_t, uint64_t);
+extern int zvol_set_volsize(const char *, uint64_t);
+extern int zvol_set_volblocksize(const char *, uint64_t);
-extern int zvol_open(dev_t *devp, int flag, int otyp, cred_t *cr);
-extern int zvol_dump(dev_t dev, caddr_t addr, daddr_t offset, int nblocks);
-extern int zvol_close(dev_t dev, int flag, int otyp, cred_t *cr);
-extern int zvol_strategy(buf_t *bp);
-extern int zvol_read(dev_t dev, uio_t *uiop, cred_t *cr);
-extern int zvol_write(dev_t dev, uio_t *uiop, cred_t *cr);
-extern int zvol_aread(dev_t dev, struct aio_req *aio, cred_t *cr);
-extern int zvol_awrite(dev_t dev, struct aio_req *aio, cred_t *cr);
-extern int zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr,
- int *rvalp);
-extern int zvol_busy(void);
-extern void zvol_init(void);
+extern int zvol_init(void);
extern void zvol_fini(void);
-extern int zvol_get_volume_params(minor_t minor, uint64_t *blksize,
- uint64_t *max_xfer_len, void **minor_hdl, void **objset_hdl, void **zil_hdl,
- void **rl_hdl, void **bonus_hdl);
-extern uint64_t zvol_get_volume_size(void *minor_hdl);
-extern int zvol_get_volume_wce(void *minor_hdl);
-extern void zvol_log_write_minor(void *minor_hdl, dmu_tx_t *tx, offset_t off,
- ssize_t resid, boolean_t sync);
-
-#endif
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _SYS_ZVOL_H */
+#endif /* _KERNEL */
+#endif /* _SYS_ZVOL_H */
* Use is subject to license terms.
*/
+#ifdef HAVE_ZPL
+
#include <sys/refcount.h>
#include <sys/rrwlock.h>
return (held);
}
+#endif /* HAVE_ZPL */
return (0);
}
-int
-spa_busy(void)
-{
- return (spa_active_count);
-}
-
void
spa_boot_init(void)
{
boolean_t
vdev_uses_zvols(vdev_t *vd)
{
+/*
+ * Stacking zpools on top of zvols is unsupported until we implement a method
+ * for determining if an arbitrary block device is a zvol without using the
+ * path. Solaris would check the 'zvol' path component but this does not
+ * exist in the Linux port, so we really should do something like stat the
+ * file and check the major number. This is complicated by the fact that
+ * we need to do this portably in user or kernel space.
+ */
+#if 0
int c;
if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
for (c = 0; c < vd->vdev_children; c++)
if (vdev_uses_zvols(vd->vdev_child[c]))
return (B_TRUE);
+#endif
return (B_FALSE);
}
--- /dev/null
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
+ * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
+ * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
+ * LLNL-CODE-403049.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/spa.h>
+#include <sys/vdev_disk.h>
+#include <sys/vdev_impl.h>
+#include <sys/fs/zfs.h>
+#include <sys/zio.h>
+#include <sys/sunldi.h>
+
+/*
+ * Virtual device vector for disks.
+ */
+typedef struct dio_request {
+ struct completion dr_comp; /* Completion for sync IO */
+ atomic_t dr_ref; /* References */
+ zio_t *dr_zio; /* Parent ZIO */
+ int dr_rw; /* Read/Write */
+ int dr_error; /* Bio error */
+ int dr_bio_count; /* Count of bio's */
+ struct bio *dr_bio[0]; /* Attached bio's */
+} dio_request_t;
+
+
+#ifdef HAVE_OPEN_BDEV_EXCLUSIVE
+static fmode_t
+vdev_bdev_mode(int smode)
+{
+ fmode_t mode = 0;
+
+ ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
+
+ if (smode & FREAD)
+ mode |= FMODE_READ;
+
+ if (smode & FWRITE)
+ mode |= FMODE_WRITE;
+
+ return mode;
+}
+#else
+static int
+vdev_bdev_mode(int smode)
+{
+ int mode = 0;
+
+ ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
+
+ if ((smode & FREAD) && !(smode & FWRITE))
+ mode = MS_RDONLY;
+
+ return mode;
+}
+#endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
+
+static uint64_t
+bdev_capacity(struct block_device *bdev)
+{
+ struct hd_struct *part = bdev->bd_part;
+
+ /* The partition capacity referenced by the block device */
+ if (part)
+ return part->nr_sects;
+
+ /* Otherwise assume the full device capacity */
+ return get_capacity(bdev->bd_disk);
+}
+
+static int
+vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *ashift)
+{
+ struct block_device *bdev;
+ vdev_disk_t *vd;
+ int mode, block_size;
+
+ /* Must have a pathname and it must be absolute. */
+ if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
+ v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
+ return EINVAL;
+ }
+
+ vd = kmem_zalloc(sizeof(vdev_disk_t), KM_SLEEP);
+ if (vd == NULL)
+ return ENOMEM;
+
+ /*
+ * Devices are always opened by the path provided at configuration
+ * time. This means that if the provided path is a udev by-id path
+ * then drives may be recabled without an issue. If the provided
+ * path is a udev by-path path then the physical location information
+ * will be preserved. This can be critical for more complicated
+ * configurations where drives are located in specific physical
+ * locations to maximize the systems tolerence to component failure.
+ * Alternately you can provide your own udev rule to flexibly map
+ * the drives as you see fit. It is not advised that you use the
+ * /dev/[hd]d devices which may be reorder due to probing order.
+ * Devices in the wrong locations will be detected by the higher
+ * level vdev validation.
+ */
+ mode = spa_mode(v->vdev_spa);
+ bdev = vdev_bdev_open(v->vdev_path, vdev_bdev_mode(mode), vd);
+ if (IS_ERR(bdev)) {
+ kmem_free(vd, sizeof(vdev_disk_t));
+ return -PTR_ERR(bdev);
+ }
+
+ v->vdev_tsd = vd;
+ vd->vd_bdev = bdev;
+ block_size = vdev_bdev_block_size(bdev);
+
+ /* Check if this is a whole device. When bdev->bd_contains ==
+ * bdev we have a whole device and not simply a partition. */
+ v->vdev_wholedisk = !!(bdev->bd_contains == bdev);
+
+ /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
+ v->vdev_nowritecache = B_FALSE;
+
+ /* Physical volume size in bytes */
+ *psize = bdev_capacity(bdev) * block_size;
+
+ /* Based on the minimum sector size set the block size */
+ *ashift = highbit(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
+
+ return 0;
+}
+
+static void
+vdev_disk_close(vdev_t *v)
+{
+ vdev_disk_t *vd = v->vdev_tsd;
+
+ if (vd == NULL)
+ return;
+
+ if (vd->vd_bdev != NULL)
+ vdev_bdev_close(vd->vd_bdev,
+ vdev_bdev_mode(spa_mode(v->vdev_spa)));
+
+ kmem_free(vd, sizeof(vdev_disk_t));
+ v->vdev_tsd = NULL;
+}
+
+static dio_request_t *
+vdev_disk_dio_alloc(int bio_count)
+{
+ dio_request_t *dr;
+ int i;
+
+ dr = kmem_zalloc(sizeof(dio_request_t) +
+ sizeof(struct bio *) * bio_count, KM_SLEEP);
+ if (dr) {
+ init_completion(&dr->dr_comp);
+ atomic_set(&dr->dr_ref, 0);
+ dr->dr_bio_count = bio_count;
+ dr->dr_error = 0;
+
+ for (i = 0; i < dr->dr_bio_count; i++)
+ dr->dr_bio[i] = NULL;
+ }
+
+ return dr;
+}
+
+static void
+vdev_disk_dio_free(dio_request_t *dr)
+{
+ int i;
+
+ for (i = 0; i < dr->dr_bio_count; i++)
+ if (dr->dr_bio[i])
+ bio_put(dr->dr_bio[i]);
+
+ kmem_free(dr, sizeof(dio_request_t) +
+ sizeof(struct bio *) * dr->dr_bio_count);
+}
+
+static void
+vdev_disk_dio_get(dio_request_t *dr)
+{
+ atomic_inc(&dr->dr_ref);
+}
+
+static int
+vdev_disk_dio_put(dio_request_t *dr)
+{
+ int rc = atomic_dec_return(&dr->dr_ref);
+
+ /*
+ * Free the dio_request when the last reference is dropped and
+ * ensure zio_interpret is called only once with the correct zio
+ */
+ if (rc == 0) {
+ zio_t *zio = dr->dr_zio;
+ int error = dr->dr_error;
+
+ vdev_disk_dio_free(dr);
+
+ if (zio) {
+ zio->io_error = error;
+ zio_interrupt(zio);
+ }
+ }
+
+ return rc;
+}
+
+BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, size, error)
+{
+ dio_request_t *dr = bio->bi_private;
+ int rc;
+
+ /* Fatal error but print some useful debugging before asserting */
+ if (dr == NULL)
+ PANIC("dr == NULL, bio->bi_private == NULL\n"
+ "bi_next: %p, bi_flags: %lx, bi_rw: %lu, bi_vcnt: %d\n"
+ "bi_idx: %d, bi_size: %d, bi_end_io: %p, bi_cnt: %d\n",
+ bio->bi_next, bio->bi_flags, bio->bi_rw, bio->bi_vcnt,
+ bio->bi_idx, bio->bi_size, bio->bi_end_io,
+ atomic_read(&bio->bi_cnt));
+
+#ifndef HAVE_2ARGS_BIO_END_IO_T
+ if (bio->bi_size)
+ return 1;
+#endif /* HAVE_2ARGS_BIO_END_IO_T */
+
+ if (error == 0 && !test_bit(BIO_UPTODATE, &bio->bi_flags))
+ error = EIO;
+
+ if (dr->dr_error == 0)
+ dr->dr_error = error;
+
+ /* Drop reference aquired by __vdev_disk_physio */
+ rc = vdev_disk_dio_put(dr);
+
+ /* Wake up synchronous waiter this is the last outstanding bio */
+ if ((rc == 1) && (dr->dr_rw & (1 << DIO_RW_SYNCIO)))
+ complete(&dr->dr_comp);
+
+ BIO_END_IO_RETURN(0);
+}
+
+static inline unsigned long
+bio_nr_pages(void *bio_ptr, unsigned int bio_size)
+{
+ return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
+ PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
+}
+
+static unsigned int
+bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
+{
+ unsigned int offset, size, i;
+ struct page *page;
+
+ offset = offset_in_page(bio_ptr);
+ for (i = 0; i < bio->bi_max_vecs; i++) {
+ size = PAGE_SIZE - offset;
+
+ if (bio_size <= 0)
+ break;
+
+ if (size > bio_size)
+ size = bio_size;
+
+ if (kmem_virt(bio_ptr))
+ page = vmalloc_to_page(bio_ptr);
+ else
+ page = virt_to_page(bio_ptr);
+
+ if (bio_add_page(bio, page, size, offset) != size)
+ break;
+
+ bio_ptr += size;
+ bio_size -= size;
+ offset = 0;
+ }
+
+ return bio_size;
+}
+
+static int
+__vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
+ size_t kbuf_size, uint64_t kbuf_offset, int flags)
+{
+ dio_request_t *dr;
+ caddr_t bio_ptr;
+ uint64_t bio_offset;
+ int bio_size, bio_count = 16;
+ int i = 0, error = 0, block_size;
+
+retry:
+ dr = vdev_disk_dio_alloc(bio_count);
+ if (dr == NULL)
+ return ENOMEM;
+
+ dr->dr_zio = zio;
+ dr->dr_rw = flags;
+ block_size = vdev_bdev_block_size(bdev);
+
+#ifdef BIO_RW_FAILFAST
+ if (flags & (1 << BIO_RW_FAILFAST))
+ dr->dr_rw |= 1 << BIO_RW_FAILFAST;
+#endif /* BIO_RW_FAILFAST */
+
+ /*
+ * When the IO size exceeds the maximum bio size for the request
+ * queue we are forced to break the IO in multiple bio's and wait
+ * for them all to complete. Ideally, all pool users will set
+ * their volume block size to match the maximum request size and
+ * the common case will be one bio per vdev IO request.
+ */
+ bio_ptr = kbuf_ptr;
+ bio_offset = kbuf_offset;
+ bio_size = kbuf_size;
+ for (i = 0; i <= dr->dr_bio_count; i++) {
+
+ /* Finished constructing bio's for given buffer */
+ if (bio_size <= 0)
+ break;
+
+ /*
+ * By default only 'bio_count' bio's per dio are allowed.
+ * However, if we find ourselves in a situation where more
+ * are needed we allocate a larger dio and warn the user.
+ */
+ if (dr->dr_bio_count == i) {
+ vdev_disk_dio_free(dr);
+ bio_count *= 2;
+ printk("WARNING: Resized bio's/dio to %d\n",bio_count);
+ goto retry;
+ }
+
+ dr->dr_bio[i] = bio_alloc(GFP_NOIO,
+ bio_nr_pages(bio_ptr, bio_size));
+ if (dr->dr_bio[i] == NULL) {
+ vdev_disk_dio_free(dr);
+ return ENOMEM;
+ }
+
+ /* Matching put called by vdev_disk_physio_completion */
+ vdev_disk_dio_get(dr);
+
+ dr->dr_bio[i]->bi_bdev = bdev;
+ dr->dr_bio[i]->bi_sector = bio_offset / block_size;
+ dr->dr_bio[i]->bi_rw = dr->dr_rw;
+ dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
+ dr->dr_bio[i]->bi_private = dr;
+
+ /* Remaining size is returned to become the new size */
+ bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
+
+ /* Advance in buffer and construct another bio if needed */
+ bio_ptr += dr->dr_bio[i]->bi_size;
+ bio_offset += dr->dr_bio[i]->bi_size;
+ }
+
+ /* Extra reference to protect dio_request during submit_bio */
+ vdev_disk_dio_get(dr);
+
+ /* Submit all bio's associated with this dio */
+ for (i = 0; i < dr->dr_bio_count; i++)
+ if (dr->dr_bio[i])
+ submit_bio(dr->dr_rw, dr->dr_bio[i]);
+
+ /*
+ * On synchronous blocking requests we wait for all bio the completion
+ * callbacks to run. We will be woken when the last callback runs
+ * for this dio. We are responsible for putting the last dio_request
+ * reference will in turn put back the last bio references. The
+ * only synchronous consumer is vdev_disk_read_rootlabel() all other
+ * IO originating from vdev_disk_io_start() is asynchronous.
+ */
+ if (dr->dr_rw & (1 << DIO_RW_SYNCIO)) {
+ wait_for_completion(&dr->dr_comp);
+ error = dr->dr_error;
+ ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
+ }
+
+ (void)vdev_disk_dio_put(dr);
+
+ return error;
+}
+
+int
+vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
+ size_t size, uint64_t offset, int flags)
+{
+ return __vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags);
+}
+
+/* 2.6.24 API change */
+#ifdef HAVE_BIO_EMPTY_BARRIER
+BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, size, rc)
+{
+ zio_t *zio = bio->bi_private;
+
+ zio->io_error = -rc;
+ if (rc && (rc == -EOPNOTSUPP))
+ zio->io_vd->vdev_nowritecache = B_TRUE;
+
+ bio_put(bio);
+ zio_interrupt(zio);
+
+ BIO_END_IO_RETURN(0);
+}
+
+static int
+vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
+{
+ struct request_queue *q;
+ struct bio *bio;
+
+ q = bdev_get_queue(bdev);
+ if (!q)
+ return ENXIO;
+
+ bio = bio_alloc(GFP_KERNEL, 0);
+ if (!bio)
+ return ENOMEM;
+
+ bio->bi_end_io = vdev_disk_io_flush_completion;
+ bio->bi_private = zio;
+ bio->bi_bdev = bdev;
+ submit_bio(WRITE_BARRIER, bio);
+
+ return 0;
+}
+#else
+static int
+vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
+{
+ return ENOTSUP;
+}
+#endif /* HAVE_BIO_EMPTY_BARRIER */
+
+static int
+vdev_disk_io_start(zio_t *zio)
+{
+ vdev_t *v = zio->io_vd;
+ vdev_disk_t *vd = v->vdev_tsd;
+ int flags, error;
+
+ switch (zio->io_type) {
+ case ZIO_TYPE_IOCTL:
+
+ if (!vdev_readable(v)) {
+ zio->io_error = ENXIO;
+ return ZIO_PIPELINE_CONTINUE;
+ }
+
+ switch (zio->io_cmd) {
+ case DKIOCFLUSHWRITECACHE:
+
+ if (zfs_nocacheflush)
+ break;
+
+ if (v->vdev_nowritecache) {
+ zio->io_error = ENOTSUP;
+ break;
+ }
+
+ error = vdev_disk_io_flush(vd->vd_bdev, zio);
+ if (error == 0)
+ return ZIO_PIPELINE_STOP;
+
+ zio->io_error = error;
+ if (error == ENOTSUP)
+ v->vdev_nowritecache = B_TRUE;
+
+ break;
+
+ default:
+ zio->io_error = ENOTSUP;
+ }
+
+ return ZIO_PIPELINE_CONTINUE;
+
+ case ZIO_TYPE_WRITE:
+ flags = WRITE;
+ break;
+
+ case ZIO_TYPE_READ:
+ flags = READ;
+ break;
+
+ default:
+ zio->io_error = ENOTSUP;
+ return ZIO_PIPELINE_CONTINUE;
+ }
+
+#ifdef BIO_RW_FAILFAST
+ if (zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))
+ flags |= (1 << BIO_RW_FAILFAST);
+#endif /* BIO_RW_FAILFAST */
+
+ error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
+ zio->io_size, zio->io_offset, flags);
+ if (error) {
+ zio->io_error = error;
+ return ZIO_PIPELINE_CONTINUE;
+ }
+
+ return ZIO_PIPELINE_STOP;
+}
+
+static void
+vdev_disk_io_done(zio_t *zio)
+{
+ /*
+ * If the device returned EIO, we revalidate the media. If it is
+ * determined the media has changed this triggers the asynchronous
+ * removal of the device from the configuration.
+ */
+ if (zio->io_error == EIO) {
+ vdev_t *v = zio->io_vd;
+ vdev_disk_t *vd = v->vdev_tsd;
+
+ if (check_disk_change(vd->vd_bdev)) {
+ vdev_bdev_invalidate(vd->vd_bdev);
+ v->vdev_remove_wanted = B_TRUE;
+ spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
+ }
+ }
+}
+
+static void
+vdev_disk_hold(vdev_t *vd)
+{
+ ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
+
+ /* We must have a pathname, and it must be absolute. */
+ if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
+ return;
+
+ /*
+ * Only prefetch path and devid info if the device has
+ * never been opened.
+ */
+ if (vd->vdev_tsd != NULL)
+ return;
+
+ /* XXX: Implement me as a vnode lookup for the device */
+ vd->vdev_name_vp = NULL;
+ vd->vdev_devid_vp = NULL;
+}
+
+static void
+vdev_disk_rele(vdev_t *vd)
+{
+ ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
+
+ /* XXX: Implement me as a vnode rele for the device */
+}
+
+vdev_ops_t vdev_disk_ops = {
+ vdev_disk_open,
+ vdev_disk_close,
+ vdev_default_asize,
+ vdev_disk_io_start,
+ vdev_disk_io_done,
+ NULL,
+ vdev_disk_hold,
+ vdev_disk_rele,
+ VDEV_TYPE_DISK, /* name of this vdev type */
+ B_TRUE /* leaf vdev */
+};
+
+/*
+ * Given the root disk device devid or pathname, read the label from
+ * the device, and construct a configuration nvlist.
+ */
+int
+vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
+{
+ struct block_device *bdev;
+ vdev_label_t *label;
+ uint64_t s, size;
+ int i;
+
+ bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), NULL);
+ if (IS_ERR(bdev))
+ return -PTR_ERR(bdev);
+
+ s = bdev_capacity(bdev) * vdev_bdev_block_size(bdev);
+ if (s == 0) {
+ vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
+ return EIO;
+ }
+
+ size = P2ALIGN_TYPED(s, sizeof(vdev_label_t), uint64_t);
+ label = vmem_alloc(sizeof(vdev_label_t), KM_SLEEP);
+
+ for (i = 0; i < VDEV_LABELS; i++) {
+ uint64_t offset, state, txg = 0;
+
+ /* read vdev label */
+ offset = vdev_label_offset(size, i, 0);
+ if (vdev_disk_physio(bdev, (caddr_t)label,
+ VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
+ continue;
+
+ if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
+ sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
+ *config = NULL;
+ continue;
+ }
+
+ if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
+ &state) != 0 || state >= POOL_STATE_DESTROYED) {
+ nvlist_free(*config);
+ *config = NULL;
+ continue;
+ }
+
+ if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
+ &txg) != 0 || txg == 0) {
+ nvlist_free(*config);
+ *config = NULL;
+ continue;
+ }
+
+ break;
+ }
+
+ vmem_free(label, sizeof(vdev_label_t));
+ vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
+
+ return 0;
+}
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
+#ifdef HAVE_ZPL
+
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
return (error);
}
+
+#endif /* HAVE_ZPL */
* so that it cannot be freed until all snapshots have been unmounted.
*/
+#ifdef HAVE_ZPL
+
#include <fs/fs_subr.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_ioctl.h>
return (error);
}
+#endif /* HAVE_ZPL */
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
+#ifdef HAVE_ZPL
+
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
else
return (secpolicy_vnode_remove(cr));
}
+#endif /* HAVE_ZPL */
}
#ifdef _KERNEL
+#ifdef HAVE_ZPL
/*
* Load the fuid table(s) into memory.
*/
FUID_SIZE_ESTIMATE(zfsvfs));
}
}
+#endif /* HAVE_ZPL */
#endif
error = err;
}
+ if (error == 0)
+ zvol_create_minors(zc->zc_name);
+
nvlist_free(config);
if (props)
err = dsl_dataset_set_reservation(dsname, source, intval);
break;
case ZFS_PROP_VOLSIZE:
- err = zvol_set_volsize(dsname, ddi_driver_major(zfs_dip),
- intval);
+ err = zvol_set_volsize(dsname, intval);
break;
case ZFS_PROP_VERSION:
{
return (error);
}
+/*
+ * inputs:
+ * zc_name name of volume
+ *
+ * outputs: none
+ */
+static int
+zfs_ioc_create_minor(zfs_cmd_t *zc)
+{
+ return (zvol_create_minor(zc->zc_name));
+}
+
+/*
+ * inputs:
+ * zc_name name of volume
+ *
+ * outputs: none
+ */
+static int
+zfs_ioc_remove_minor(zfs_cmd_t *zc)
+{
+ return (zvol_remove_minor(zc->zc_name));
+}
+
/*
* inputs:
* zc_name name of filesystem
POOL_CHECK_SUSPENDED },
{ zfs_ioc_set_prop, zfs_secpolicy_none, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
+ { zfs_ioc_create_minor, zfs_secpolicy_config, DATASET_NAME, B_FALSE,
+ POOL_CHECK_NONE },
+ { zfs_ioc_remove_minor, zfs_secpolicy_config, DATASET_NAME, B_FALSE,
+ POOL_CHECK_NONE },
{ zfs_ioc_create, zfs_secpolicy_create, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_destroy, zfs_secpolicy_destroy, DATASET_NAME, B_TRUE,
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
+#ifdef HAVE_ZPL
+
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
itx->itx_sync = (zp->z_sync_cnt != 0);
zil_itx_assign(zilog, itx, tx);
}
+
+#endif /* HAVE_ZPL */
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
+#ifdef HAVE_ZPL
+
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
zfs_replay_create_acl, /* TX_MKDIR_ACL_ATTR */
zfs_replay_write2, /* TX_WRITE2 */
};
+#endif /* HAVE_ZPL */
#include <sys/sa.h>
#include "zfs_comutil.h"
+#ifdef HAVE_ZPL
int zfsfstype;
vfsops_t *zfs_vfsops = NULL;
static major_t zfs_major;
return (0);
}
+#endif /* HAVE_ZPL */
void
zfs_init(void)
{
+#ifdef HAVE_ZPL
/*
* Initialize .zfs directory structures
*/
zfs_znode_init();
dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
+#endif /* HAVE_ZPL */
}
void
zfs_fini(void)
{
+#ifdef HAVE_ZPL
zfsctl_fini();
zfs_znode_fini();
+#endif /* HAVE_ZPL */
}
-int
-zfs_busy(void)
-{
- return (zfs_active_fs_count != 0);
-}
-
+#ifdef HAVE_ZPL
int
zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
{
return (0);
}
+#endif /* HAVE_ZPL */
/*
* Read a property stored within the master node.
return (error);
}
+#ifdef HAVE_ZPL
static vfsdef_t vfw = {
VFSDEF_VERSION,
MNTTYPE_ZFS,
struct modlfs zfs_modlfs = {
&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
};
+#endif /* HAVE_ZPL */
/* Portions Copyright 2007 Jeremy Teo */
/* Portions Copyright 2010 Robert Milkowski */
+#ifdef HAVE_ZPL
+
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
return (ENOTTY);
}
+#if defined(_KERNEL) && defined(HAVE_UIO_RW)
/*
* Utility functions to map and unmap a single physical page. These
* are used to manage the mappable copies of ZFS file data, and therefore
ppmapout(addr);
}
}
+#endif /* _KERNEL && HAVE_UIO_RW */
/*
* When a file is memory mapped, we must keep the IO data synchronized
VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
NULL, NULL
};
+#endif /* HAVE_ZPL */
* (such as VFS logic) that will not compile easily in userland.
*/
#ifdef _KERNEL
+#ifdef HAVE_ZPL
/*
* Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
* be freed before it can be safely accessed.
dmu_tx_commit(tx);
return (0);
}
+#endif /* HAVE_ZPL */
void
zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
{
- zfsvfs_t zfsvfs;
uint64_t moid, obj, sa_obj, version;
uint64_t sense = ZFS_CASE_SENSITIVE;
uint64_t norm = 0;
nvpair_t *elem;
int error;
+#ifdef HAVE_ZPL
+ zfsvfs_t zfsvfs;
int i;
znode_t *rootzp = NULL;
vnode_t *vp;
vattr_t vattr;
znode_t *zp;
zfs_acl_ids_t acl_ids;
+#else
+ timestruc_t now;
+ dmu_buf_t *db;
+ znode_phys_t *pzp;
+#endif /* HAVE_ZPL */
/*
* First attempt to create master node.
error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
ASSERT(error == 0);
+#ifdef HAVE_ZPL
/*
* Create root znode. Create minimal znode/vnode/zfsvfs
* to allow zfs_mknode to work.
ZTOV(rootzp)->v_count = 0;
sa_handle_destroy(rootzp->z_sa_hdl);
kmem_cache_free(znode_cache, rootzp);
+ error = zfs_create_share_dir(&zfsvfs, tx);
+ for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
+ mutex_destroy(&zfsvfs.z_hold_mtx[i]);
+#else
/*
- * Create shares directory
+ * Create root znode with code free of VFS dependencies
*/
+ obj = zap_create_norm(os, norm, DMU_OT_DIRECTORY_CONTENTS,
+ DMU_OT_ZNODE, sizeof (znode_phys_t), tx);
- error = zfs_create_share_dir(&zfsvfs, tx);
+ VERIFY(0 == dmu_bonus_hold(os, obj, FTAG, &db));
+ dmu_buf_will_dirty(db, tx);
+ /*
+ * Initialize the znode physical data to zero.
+ */
+ ASSERT(db->db_size >= sizeof (znode_phys_t));
+ bzero(db->db_data, db->db_size);
+ pzp = db->db_data;
+
+ if (USE_FUIDS(version, os))
+ pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
+
+ pzp->zp_size = 2; /* "." and ".." */
+ pzp->zp_links = 2;
+ pzp->zp_parent = obj;
+ pzp->zp_gen = dmu_tx_get_txg(tx);
+ pzp->zp_mode = S_IFDIR | 0755;
+ pzp->zp_flags = ZFS_ACL_TRIVIAL;
+
+ gethrestime(&now);
+
+ ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
+ ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
+ ZFS_TIME_ENCODE(&now, pzp->zp_atime);
+ ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
+
+ error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &obj, tx);
ASSERT(error == 0);
- for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
- mutex_destroy(&zfsvfs.z_hold_mtx[i]);
+ dmu_buf_rele(db, FTAG);
+#endif /* HAVE_ZPL */
}
#endif /* _KERNEL */
--- /dev/null
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
+ * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
+ * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
+ * LLNL-CODE-403049.
+ *
+ * ZFS volume emulation driver.
+ *
+ * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
+ * Volumes are accessed through the symbolic links named:
+ *
+ * /dev/<pool_name>/<dataset_name>
+ *
+ * Volumes are persistent through reboot and module load. No user command
+ * needs to be run before opening and using a device.
+ */
+
+#include <sys/dmu_traverse.h>
+#include <sys/dsl_dataset.h>
+#include <sys/dsl_prop.h>
+#include <sys/zap.h>
+#include <sys/zil_impl.h>
+#include <sys/zio.h>
+#include <sys/zfs_rlock.h>
+#include <sys/zfs_znode.h>
+#include <sys/zvol.h>
+
+unsigned int zvol_major = ZVOL_MAJOR;
+unsigned int zvol_threads = 0;
+
+static taskq_t *zvol_taskq;
+static kmutex_t zvol_state_lock;
+static list_t zvol_state_list;
+static char *zvol_tag = "zvol_tag";
+
+/*
+ * The in-core state of each volume.
+ */
+typedef struct zvol_state {
+ char zv_name[DISK_NAME_LEN]; /* name */
+ uint64_t zv_volsize; /* advertised space */
+ uint64_t zv_volblocksize;/* volume block size */
+ objset_t *zv_objset; /* objset handle */
+ uint32_t zv_flags; /* ZVOL_* flags */
+ uint32_t zv_open_count; /* open counts */
+ uint32_t zv_changed; /* disk changed */
+ zilog_t *zv_zilog; /* ZIL handle */
+ znode_t zv_znode; /* for range locking */
+ dmu_buf_t *zv_dbuf; /* bonus handle */
+ dev_t zv_dev; /* device id */
+ struct gendisk *zv_disk; /* generic disk */
+ struct request_queue *zv_queue; /* request queue */
+ spinlock_t zv_lock; /* request queue lock */
+ list_node_t zv_next; /* next zvol_state_t linkage */
+} zvol_state_t;
+
+#define ZVOL_RDONLY 0x1
+
+/*
+ * Find the next available range of ZVOL_MINORS minor numbers. The
+ * zvol_state_list is kept in ascending minor order so we simply need
+ * to scan the list for the first gap in the sequence. This allows us
+ * to recycle minor number as devices are created and removed.
+ */
+static int
+zvol_find_minor(unsigned *minor)
+{
+ zvol_state_t *zv;
+
+ *minor = 0;
+ ASSERT(MUTEX_HELD(&zvol_state_lock));
+ for (zv = list_head(&zvol_state_list); zv != NULL;
+ zv = list_next(&zvol_state_list, zv), *minor += ZVOL_MINORS) {
+ if (MINOR(zv->zv_dev) != MINOR(*minor))
+ break;
+ }
+
+ /* All minors are in use */
+ if (*minor >= (1 << MINORBITS))
+ return ENXIO;
+
+ return 0;
+}
+
+/*
+ * Find a zvol_state_t given the full major+minor dev_t.
+ */
+static zvol_state_t *
+zvol_find_by_dev(dev_t dev)
+{
+ zvol_state_t *zv;
+
+ ASSERT(MUTEX_HELD(&zvol_state_lock));
+ for (zv = list_head(&zvol_state_list); zv != NULL;
+ zv = list_next(&zvol_state_list, zv)) {
+ if (zv->zv_dev == dev)
+ return zv;
+ }
+
+ return NULL;
+}
+
+/*
+ * Find a zvol_state_t given the name provided at zvol_alloc() time.
+ */
+static zvol_state_t *
+zvol_find_by_name(const char *name)
+{
+ zvol_state_t *zv;
+
+ ASSERT(MUTEX_HELD(&zvol_state_lock));
+ for (zv = list_head(&zvol_state_list); zv != NULL;
+ zv = list_next(&zvol_state_list, zv)) {
+ if (!strncmp(zv->zv_name, name, DISK_NAME_LEN))
+ return zv;
+ }
+
+ return NULL;
+}
+
+/*
+ * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
+ */
+void
+zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
+{
+ zfs_creat_t *zct = arg;
+ nvlist_t *nvprops = zct->zct_props;
+ int error;
+ uint64_t volblocksize, volsize;
+
+ VERIFY(nvlist_lookup_uint64(nvprops,
+ zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
+ if (nvlist_lookup_uint64(nvprops,
+ zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
+ volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
+
+ /*
+ * These properties must be removed from the list so the generic
+ * property setting step won't apply to them.
+ */
+ VERIFY(nvlist_remove_all(nvprops,
+ zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
+ (void) nvlist_remove_all(nvprops,
+ zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
+
+ error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
+ DMU_OT_NONE, 0, tx);
+ ASSERT(error == 0);
+
+ error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
+ DMU_OT_NONE, 0, tx);
+ ASSERT(error == 0);
+
+ error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
+ ASSERT(error == 0);
+}
+
+/*
+ * ZFS_IOC_OBJSET_STATS entry point.
+ */
+int
+zvol_get_stats(objset_t *os, nvlist_t *nv)
+{
+ int error;
+ dmu_object_info_t *doi;
+ uint64_t val;
+
+ error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
+ if (error)
+ return (error);
+
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
+ doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
+ error = dmu_object_info(os, ZVOL_OBJ, doi);
+
+ if (error == 0) {
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
+ doi->doi_data_block_size);
+ }
+
+ kmem_free(doi, sizeof(dmu_object_info_t));
+
+ return (error);
+}
+
+/*
+ * Sanity check volume size.
+ */
+int
+zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
+{
+ if (volsize == 0)
+ return (EINVAL);
+
+ if (volsize % blocksize != 0)
+ return (EINVAL);
+
+#ifdef _ILP32
+ if (volsize - 1 > MAXOFFSET_T)
+ return (EOVERFLOW);
+#endif
+ return (0);
+}
+
+/*
+ * Ensure the zap is flushed then inform the VFS of the capacity change.
+ */
+static int
+zvol_update_volsize(zvol_state_t *zv, uint64_t volsize)
+{
+ struct block_device *bdev;
+ dmu_tx_t *tx;
+ int error;
+
+ ASSERT(MUTEX_HELD(&zvol_state_lock));
+
+ tx = dmu_tx_create(zv->zv_objset);
+ dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
+ error = dmu_tx_assign(tx, TXG_WAIT);
+ if (error) {
+ dmu_tx_abort(tx);
+ return (error);
+ }
+
+ error = zap_update(zv->zv_objset, ZVOL_ZAP_OBJ, "size", 8, 1,
+ &volsize, tx);
+ dmu_tx_commit(tx);
+
+ if (error)
+ return (error);
+
+ error = dmu_free_long_range(zv->zv_objset,
+ ZVOL_OBJ, volsize, DMU_OBJECT_END);
+ if (error)
+ return (error);
+
+ zv->zv_volsize = volsize;
+ zv->zv_changed = 1;
+
+ bdev = bdget_disk(zv->zv_disk, 0);
+ if (!bdev)
+ return EIO;
+
+ error = check_disk_change(bdev);
+ ASSERT3U(error, !=, 0);
+ bdput(bdev);
+
+ return (0);
+}
+
+/*
+ * Set ZFS_PROP_VOLSIZE set entry point.
+ */
+int
+zvol_set_volsize(const char *name, uint64_t volsize)
+{
+ zvol_state_t *zv;
+ dmu_object_info_t *doi;
+ objset_t *os = NULL;
+ uint64_t readonly;
+ int error;
+
+ mutex_enter(&zvol_state_lock);
+
+ zv = zvol_find_by_name(name);
+ if (zv == NULL) {
+ error = ENXIO;
+ goto out;
+ }
+
+ doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
+
+ error = dmu_objset_hold(name, FTAG, &os);
+ if (error)
+ goto out_doi;
+
+ if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) != 0 ||
+ (error = zvol_check_volsize(volsize,doi->doi_data_block_size)) != 0)
+ goto out_doi;
+
+ VERIFY(dsl_prop_get_integer(name, "readonly", &readonly, NULL) == 0);
+ if (readonly) {
+ error = EROFS;
+ goto out_doi;
+ }
+
+ if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
+ error = EROFS;
+ goto out_doi;
+ }
+
+ error = zvol_update_volsize(zv, volsize);
+out_doi:
+ kmem_free(doi, sizeof(dmu_object_info_t));
+out:
+ if (os)
+ dmu_objset_rele(os, FTAG);
+
+ mutex_exit(&zvol_state_lock);
+
+ return (error);
+}
+
+/*
+ * Sanity check volume block size.
+ */
+int
+zvol_check_volblocksize(uint64_t volblocksize)
+{
+ if (volblocksize < SPA_MINBLOCKSIZE ||
+ volblocksize > SPA_MAXBLOCKSIZE ||
+ !ISP2(volblocksize))
+ return (EDOM);
+
+ return (0);
+}
+
+/*
+ * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
+ */
+int
+zvol_set_volblocksize(const char *name, uint64_t volblocksize)
+{
+ zvol_state_t *zv;
+ dmu_tx_t *tx;
+ int error;
+
+ mutex_enter(&zvol_state_lock);
+
+ zv = zvol_find_by_name(name);
+ if (zv == NULL) {
+ error = ENXIO;
+ goto out;
+ }
+
+ if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
+ error = EROFS;
+ goto out;
+ }
+
+ tx = dmu_tx_create(zv->zv_objset);
+ dmu_tx_hold_bonus(tx, ZVOL_OBJ);
+ error = dmu_tx_assign(tx, TXG_WAIT);
+ if (error) {
+ dmu_tx_abort(tx);
+ } else {
+ error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
+ volblocksize, 0, tx);
+ if (error == ENOTSUP)
+ error = EBUSY;
+ dmu_tx_commit(tx);
+ if (error == 0)
+ zv->zv_volblocksize = volblocksize;
+ }
+out:
+ mutex_exit(&zvol_state_lock);
+
+ return (error);
+}
+
+/*
+ * Replay a TX_WRITE ZIL transaction that didn't get committed
+ * after a system failure
+ */
+static int
+zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
+{
+ objset_t *os = zv->zv_objset;
+ char *data = (char *)(lr + 1); /* data follows lr_write_t */
+ uint64_t off = lr->lr_offset;
+ uint64_t len = lr->lr_length;
+ dmu_tx_t *tx;
+ int error;
+
+ if (byteswap)
+ byteswap_uint64_array(lr, sizeof (*lr));
+
+ tx = dmu_tx_create(os);
+ dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
+ error = dmu_tx_assign(tx, TXG_WAIT);
+ if (error) {
+ dmu_tx_abort(tx);
+ } else {
+ dmu_write(os, ZVOL_OBJ, off, len, data, tx);
+ dmu_tx_commit(tx);
+ }
+
+ return (error);
+}
+
+static int
+zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
+{
+ return (ENOTSUP);
+}
+
+/*
+ * Callback vectors for replaying records.
+ * Only TX_WRITE is needed for zvol.
+ */
+zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
+ (zil_replay_func_t *)zvol_replay_err, /* no such transaction type */
+ (zil_replay_func_t *)zvol_replay_err, /* TX_CREATE */
+ (zil_replay_func_t *)zvol_replay_err, /* TX_MKDIR */
+ (zil_replay_func_t *)zvol_replay_err, /* TX_MKXATTR */
+ (zil_replay_func_t *)zvol_replay_err, /* TX_SYMLINK */
+ (zil_replay_func_t *)zvol_replay_err, /* TX_REMOVE */
+ (zil_replay_func_t *)zvol_replay_err, /* TX_RMDIR */
+ (zil_replay_func_t *)zvol_replay_err, /* TX_LINK */
+ (zil_replay_func_t *)zvol_replay_err, /* TX_RENAME */
+ (zil_replay_func_t *)zvol_replay_write, /* TX_WRITE */
+ (zil_replay_func_t *)zvol_replay_err, /* TX_TRUNCATE */
+ (zil_replay_func_t *)zvol_replay_err, /* TX_SETATTR */
+ (zil_replay_func_t *)zvol_replay_err, /* TX_ACL */
+};
+
+/*
+ * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
+ *
+ * We store data in the log buffers if it's small enough.
+ * Otherwise we will later flush the data out via dmu_sync().
+ */
+ssize_t zvol_immediate_write_sz = 32768;
+
+static void
+zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx,
+ uint64_t offset, uint64_t size, int sync)
+{
+ uint32_t blocksize = zv->zv_volblocksize;
+ zilog_t *zilog = zv->zv_zilog;
+ boolean_t slogging;
+
+ if (zil_replaying(zilog, tx))
+ return;
+
+ slogging = spa_has_slogs(zilog->zl_spa);
+
+ while (size) {
+ itx_t *itx;
+ lr_write_t *lr;
+ ssize_t len;
+ itx_wr_state_t write_state;
+
+ /*
+ * Unlike zfs_log_write() we can be called with
+ * up to DMU_MAX_ACCESS/2 (5MB) writes.
+ */
+ if (blocksize > zvol_immediate_write_sz && !slogging &&
+ size >= blocksize && offset % blocksize == 0) {
+ write_state = WR_INDIRECT; /* uses dmu_sync */
+ len = blocksize;
+ } else if (sync) {
+ write_state = WR_COPIED;
+ len = MIN(ZIL_MAX_LOG_DATA, size);
+ } else {
+ write_state = WR_NEED_COPY;
+ len = MIN(ZIL_MAX_LOG_DATA, size);
+ }
+
+ itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
+ (write_state == WR_COPIED ? len : 0));
+ lr = (lr_write_t *)&itx->itx_lr;
+ if (write_state == WR_COPIED && dmu_read(zv->zv_objset,
+ ZVOL_OBJ, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
+ zil_itx_destroy(itx);
+ itx = zil_itx_create(TX_WRITE, sizeof (*lr));
+ lr = (lr_write_t *)&itx->itx_lr;
+ write_state = WR_NEED_COPY;
+ }
+
+ itx->itx_wr_state = write_state;
+ if (write_state == WR_NEED_COPY)
+ itx->itx_sod += len;
+ lr->lr_foid = ZVOL_OBJ;
+ lr->lr_offset = offset;
+ lr->lr_length = len;
+ lr->lr_blkoff = 0;
+ BP_ZERO(&lr->lr_blkptr);
+
+ itx->itx_private = zv;
+ itx->itx_sync = sync;
+
+ (void) zil_itx_assign(zilog, itx, tx);
+
+ offset += len;
+ size -= len;
+ }
+}
+
+/*
+ * Common write path running under the zvol taskq context. This function
+ * is responsible for copying the request structure data in to the DMU and
+ * signaling the request queue with the result of the copy.
+ */
+static void
+zvol_write(void *arg)
+{
+ struct request *req = (struct request *)arg;
+ struct request_queue *q = req->q;
+ zvol_state_t *zv = q->queuedata;
+ uint64_t offset = blk_rq_pos(req) << 9;
+ uint64_t size = blk_rq_bytes(req);
+ int error = 0;
+ dmu_tx_t *tx;
+ rl_t *rl;
+
+ rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_WRITER);
+
+ tx = dmu_tx_create(zv->zv_objset);
+ dmu_tx_hold_write(tx, ZVOL_OBJ, offset, size);
+
+ /* This will only fail for ENOSPC */
+ error = dmu_tx_assign(tx, TXG_WAIT);
+ if (error) {
+ dmu_tx_abort(tx);
+ zfs_range_unlock(rl);
+ blk_end_request(req, -error, size);
+ return;
+ }
+
+ error = dmu_write_req(zv->zv_objset, ZVOL_OBJ, req, tx);
+ if (error == 0)
+ zvol_log_write(zv, tx, offset, size, rq_is_sync(req));
+
+ dmu_tx_commit(tx);
+ zfs_range_unlock(rl);
+
+ if (rq_is_sync(req))
+ zil_commit(zv->zv_zilog, ZVOL_OBJ);
+
+ blk_end_request(req, -error, size);
+}
+
+/*
+ * Common read path running under the zvol taskq context. This function
+ * is responsible for copying the requested data out of the DMU and in to
+ * a linux request structure. It then must signal the request queue with
+ * an error code describing the result of the copy.
+ */
+static void
+zvol_read(void *arg)
+{
+ struct request *req = (struct request *)arg;
+ struct request_queue *q = req->q;
+ zvol_state_t *zv = q->queuedata;
+ uint64_t offset = blk_rq_pos(req) << 9;
+ uint64_t size = blk_rq_bytes(req);
+ int error;
+ rl_t *rl;
+
+ rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
+
+ error = dmu_read_req(zv->zv_objset, ZVOL_OBJ, req);
+
+ zfs_range_unlock(rl);
+
+ /* convert checksum errors into IO errors */
+ if (error == ECKSUM)
+ error = EIO;
+
+ blk_end_request(req, -error, size);
+}
+
+/*
+ * Request will be added back to the request queue and retried if
+ * it cannot be immediately dispatched to the taskq for handling
+ */
+static inline void
+zvol_dispatch(task_func_t func, struct request *req)
+{
+ if (!taskq_dispatch(zvol_taskq, func, (void *)req, TQ_NOSLEEP))
+ blk_requeue_request(req->q, req);
+}
+
+/*
+ * Common request path. Rather than registering a custom make_request()
+ * function we use the generic Linux version. This is done because it allows
+ * us to easily merge read requests which would otherwise we performed
+ * synchronously by the DMU. This is less critical in write case where the
+ * DMU will perform the correct merging within a transaction group. Using
+ * the generic make_request() also let's use leverage the fact that the
+ * elevator with ensure correct ordering in regards to barrior IOs. On
+ * the downside it means that in the write case we end up doing request
+ * merging twice once in the elevator and once in the DMU.
+ *
+ * The request handler is called under a spin lock so all the real work
+ * is handed off to be done in the context of the zvol taskq. This function
+ * simply performs basic request sanity checking and hands off the request.
+ */
+static void
+zvol_request(struct request_queue *q)
+{
+ zvol_state_t *zv = q->queuedata;
+ struct request *req;
+ unsigned int size;
+
+ while ((req = blk_fetch_request(q)) != NULL) {
+ size = blk_rq_bytes(req);
+
+ if (blk_rq_pos(req) + blk_rq_sectors(req) >
+ get_capacity(zv->zv_disk)) {
+ printk(KERN_INFO
+ "%s: bad access: block=%llu, count=%lu\n",
+ req->rq_disk->disk_name,
+ (long long unsigned)blk_rq_pos(req),
+ (long unsigned)blk_rq_sectors(req));
+ __blk_end_request(req, -EIO, size);
+ continue;
+ }
+
+ if (!blk_fs_request(req)) {
+ printk(KERN_INFO "%s: non-fs cmd\n",
+ req->rq_disk->disk_name);
+ __blk_end_request(req, -EIO, size);
+ continue;
+ }
+
+ switch (rq_data_dir(req)) {
+ case READ:
+ zvol_dispatch(zvol_read, req);
+ break;
+ case WRITE:
+ if (unlikely(get_disk_ro(zv->zv_disk)) ||
+ unlikely(zv->zv_flags & ZVOL_RDONLY)) {
+ __blk_end_request(req, -EROFS, size);
+ break;
+ }
+
+ zvol_dispatch(zvol_write, req);
+ break;
+ default:
+ printk(KERN_INFO "%s: unknown cmd: %d\n",
+ req->rq_disk->disk_name, (int)rq_data_dir(req));
+ __blk_end_request(req, -EIO, size);
+ break;
+ }
+ }
+}
+
+static void
+zvol_get_done(zgd_t *zgd, int error)
+{
+ if (zgd->zgd_db)
+ dmu_buf_rele(zgd->zgd_db, zgd);
+
+ zfs_range_unlock(zgd->zgd_rl);
+
+ if (error == 0 && zgd->zgd_bp)
+ zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
+
+ kmem_free(zgd, sizeof (zgd_t));
+}
+
+/*
+ * Get data to generate a TX_WRITE intent log record.
+ */
+static int
+zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
+{
+ zvol_state_t *zv = arg;
+ objset_t *os = zv->zv_objset;
+ uint64_t offset = lr->lr_offset;
+ uint64_t size = lr->lr_length;
+ dmu_buf_t *db;
+ zgd_t *zgd;
+ int error;
+
+ ASSERT(zio != NULL);
+ ASSERT(size != 0);
+
+ zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
+ zgd->zgd_zilog = zv->zv_zilog;
+ zgd->zgd_rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
+
+ /*
+ * Write records come in two flavors: immediate and indirect.
+ * For small writes it's cheaper to store the data with the
+ * log record (immediate); for large writes it's cheaper to
+ * sync the data and get a pointer to it (indirect) so that
+ * we don't have to write the data twice.
+ */
+ if (buf != NULL) { /* immediate write */
+ error = dmu_read(os, ZVOL_OBJ, offset, size, buf,
+ DMU_READ_NO_PREFETCH);
+ } else {
+ size = zv->zv_volblocksize;
+ offset = P2ALIGN_TYPED(offset, size, uint64_t);
+ error = dmu_buf_hold(os, ZVOL_OBJ, offset, zgd, &db,
+ DMU_READ_NO_PREFETCH);
+ if (error == 0) {
+ zgd->zgd_db = db;
+ zgd->zgd_bp = &lr->lr_blkptr;
+
+ ASSERT(db != NULL);
+ ASSERT(db->db_offset == offset);
+ ASSERT(db->db_size == size);
+
+ error = dmu_sync(zio, lr->lr_common.lrc_txg,
+ zvol_get_done, zgd);
+
+ if (error == 0)
+ return (0);
+ }
+ }
+
+ zvol_get_done(zgd, error);
+
+ return (error);
+}
+
+/*
+ * The zvol_state_t's are inserted in increasing MINOR(dev_t) order.
+ */
+static void
+zvol_insert(zvol_state_t *zv_insert)
+{
+ zvol_state_t *zv = NULL;
+
+ ASSERT(MUTEX_HELD(&zvol_state_lock));
+ ASSERT3U(MINOR(zv_insert->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
+ for (zv = list_head(&zvol_state_list); zv != NULL;
+ zv = list_next(&zvol_state_list, zv)) {
+ if (MINOR(zv->zv_dev) > MINOR(zv_insert->zv_dev))
+ break;
+ }
+
+ list_insert_before(&zvol_state_list, zv, zv_insert);
+}
+
+/*
+ * Simply remove the zvol from to list of zvols.
+ */
+static void
+zvol_remove(zvol_state_t *zv_remove)
+{
+ ASSERT(MUTEX_HELD(&zvol_state_lock));
+ list_remove(&zvol_state_list, zv_remove);
+}
+
+static int
+zvol_first_open(zvol_state_t *zv)
+{
+ objset_t *os;
+ uint64_t volsize;
+ int error;
+ uint64_t ro;
+
+ /* lie and say we're read-only */
+ error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, 1, zvol_tag, &os);
+ if (error)
+ return (-error);
+
+ error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
+ if (error) {
+ dmu_objset_disown(os, zvol_tag);
+ return (-error);
+ }
+
+ zv->zv_objset = os;
+ error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf);
+ if (error) {
+ dmu_objset_disown(os, zvol_tag);
+ return (-error);
+ }
+
+ set_capacity(zv->zv_disk, volsize >> 9);
+ zv->zv_volsize = volsize;
+ zv->zv_zilog = zil_open(os, zvol_get_data);
+
+ VERIFY(dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL) == 0);
+ if (ro || dmu_objset_is_snapshot(os)) {
+ set_disk_ro(zv->zv_disk, 1);
+ zv->zv_flags |= ZVOL_RDONLY;
+ } else {
+ set_disk_ro(zv->zv_disk, 0);
+ zv->zv_flags &= ~ZVOL_RDONLY;
+ }
+
+ return (-error);
+}
+
+static void
+zvol_last_close(zvol_state_t *zv)
+{
+ zil_close(zv->zv_zilog);
+ zv->zv_zilog = NULL;
+ dmu_buf_rele(zv->zv_dbuf, zvol_tag);
+ zv->zv_dbuf = NULL;
+ dmu_objset_disown(zv->zv_objset, zvol_tag);
+ zv->zv_objset = NULL;
+}
+
+static int
+zvol_open(struct block_device *bdev, fmode_t flag)
+{
+ zvol_state_t *zv = bdev->bd_disk->private_data;
+ int error = 0, drop_mutex = 0;
+
+ /*
+ * If the caller is already holding the mutex do not take it
+ * again, this will happen as part of zvol_create_minor().
+ * Once add_disk() is called the device is live and the kernel
+ * will attempt to open it to read the partition information.
+ */
+ if (!mutex_owned(&zvol_state_lock)) {
+ mutex_enter(&zvol_state_lock);
+ drop_mutex = 1;
+ }
+
+ ASSERT3P(zv, !=, NULL);
+
+ if (zv->zv_open_count == 0) {
+ error = zvol_first_open(zv);
+ if (error)
+ goto out_mutex;
+ }
+
+ if ((flag & FMODE_WRITE) &&
+ (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY))) {
+ error = -EROFS;
+ goto out_open_count;
+ }
+
+ zv->zv_open_count++;
+
+out_open_count:
+ if (zv->zv_open_count == 0)
+ zvol_last_close(zv);
+
+out_mutex:
+ if (drop_mutex)
+ mutex_exit(&zvol_state_lock);
+
+ check_disk_change(bdev);
+
+ return (error);
+}
+
+static int
+zvol_release(struct gendisk *disk, fmode_t mode)
+{
+ zvol_state_t *zv = disk->private_data;
+ int drop_mutex = 0;
+
+ if (!mutex_owned(&zvol_state_lock)) {
+ mutex_enter(&zvol_state_lock);
+ drop_mutex = 1;
+ }
+
+ ASSERT3P(zv, !=, NULL);
+ ASSERT3U(zv->zv_open_count, >, 0);
+ zv->zv_open_count--;
+ if (zv->zv_open_count == 0)
+ zvol_last_close(zv);
+
+ if (drop_mutex)
+ mutex_exit(&zvol_state_lock);
+
+ return (0);
+}
+
+static int
+zvol_ioctl(struct block_device *bdev, fmode_t mode,
+ unsigned int cmd, unsigned long arg)
+{
+ zvol_state_t *zv = bdev->bd_disk->private_data;
+ int error = 0;
+
+ if (zv == NULL)
+ return (-ENXIO);
+
+ switch (cmd) {
+ case BLKFLSBUF:
+ zil_commit(zv->zv_zilog, ZVOL_OBJ);
+ break;
+
+ default:
+ error = -ENOTTY;
+ break;
+
+ }
+
+ return (error);
+}
+
+#ifdef CONFIG_COMPAT
+static int
+zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
+ unsigned cmd, unsigned long arg)
+{
+ return zvol_ioctl(bdev, mode, cmd, arg);
+}
+#else
+#define zvol_compat_ioctl NULL
+#endif
+
+static int zvol_media_changed(struct gendisk *disk)
+{
+ zvol_state_t *zv = disk->private_data;
+
+ return zv->zv_changed;
+}
+
+static int zvol_revalidate_disk(struct gendisk *disk)
+{
+ zvol_state_t *zv = disk->private_data;
+
+ zv->zv_changed = 0;
+ set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
+
+ return 0;
+}
+
+/*
+ * Provide a simple virtual geometry for legacy compatibility. For devices
+ * smaller than 1 MiB a small head and sector count is used to allow very
+ * tiny devices. For devices over 1 Mib a standard head and sector count
+ * is used to keep the cylinders count reasonable.
+ */
+static int
+zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
+{
+ zvol_state_t *zv = bdev->bd_disk->private_data;
+ sector_t sectors = get_capacity(zv->zv_disk);
+
+ if (sectors > 2048) {
+ geo->heads = 16;
+ geo->sectors = 63;
+ } else {
+ geo->heads = 2;
+ geo->sectors = 4;
+ }
+
+ geo->start = 0;
+ geo->cylinders = sectors / (geo->heads * geo->sectors);
+
+ return 0;
+}
+
+static struct kobject *
+zvol_probe(dev_t dev, int *part, void *arg)
+{
+ zvol_state_t *zv;
+ struct kobject *kobj;
+
+ mutex_enter(&zvol_state_lock);
+ zv = zvol_find_by_dev(dev);
+ kobj = zv ? get_disk(zv->zv_disk) : ERR_PTR(-ENOENT);
+ mutex_exit(&zvol_state_lock);
+
+ return kobj;
+}
+
+#ifdef HAVE_BDEV_BLOCK_DEVICE_OPERATIONS
+static struct block_device_operations zvol_ops = {
+ .open = zvol_open,
+ .release = zvol_release,
+ .ioctl = zvol_ioctl,
+ .compat_ioctl = zvol_compat_ioctl,
+ .media_changed = zvol_media_changed,
+ .revalidate_disk = zvol_revalidate_disk,
+ .getgeo = zvol_getgeo,
+ .owner = THIS_MODULE,
+};
+
+#else /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
+
+static int
+zvol_open_by_inode(struct inode *inode, struct file *file)
+{
+ return zvol_open(inode->i_bdev, file->f_mode);
+}
+
+static int
+zvol_release_by_inode(struct inode *inode, struct file *file)
+{
+ return zvol_release(inode->i_bdev->bd_disk, file->f_mode);
+}
+
+static int
+zvol_ioctl_by_inode(struct inode *inode, struct file *file,
+ unsigned int cmd, unsigned long arg)
+{
+ return zvol_ioctl(inode->i_bdev, file->f_mode, cmd, arg);
+}
+
+# ifdef CONFIG_COMPAT
+static long
+zvol_compat_ioctl_by_inode(struct file *file,
+ unsigned int cmd, unsigned long arg)
+{
+ return zvol_compat_ioctl(file->f_dentry->d_inode->i_bdev,
+ file->f_mode, cmd, arg);
+}
+# else
+# define zvol_compat_ioctl_by_inode NULL
+# endif
+
+static struct block_device_operations zvol_ops = {
+ .open = zvol_open_by_inode,
+ .release = zvol_release_by_inode,
+ .ioctl = zvol_ioctl_by_inode,
+ .compat_ioctl = zvol_compat_ioctl_by_inode,
+ .media_changed = zvol_media_changed,
+ .revalidate_disk = zvol_revalidate_disk,
+ .getgeo = zvol_getgeo,
+ .owner = THIS_MODULE,
+};
+#endif /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
+
+/*
+ * Allocate memory for a new zvol_state_t and setup the required
+ * request queue and generic disk structures for the block device.
+ */
+static zvol_state_t *
+zvol_alloc(dev_t dev, const char *name)
+{
+ zvol_state_t *zv;
+
+ zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
+ if (zv == NULL)
+ goto out;
+
+ zv->zv_queue = blk_init_queue(zvol_request, &zv->zv_lock);
+ if (zv->zv_queue == NULL)
+ goto out_kmem;
+
+ zv->zv_disk = alloc_disk(ZVOL_MINORS);
+ if (zv->zv_disk == NULL)
+ goto out_queue;
+
+ zv->zv_queue->queuedata = zv;
+ zv->zv_dev = dev;
+ zv->zv_open_count = 0;
+ strlcpy(zv->zv_name, name, DISK_NAME_LEN);
+
+ mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL);
+ avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare,
+ sizeof (rl_t), offsetof(rl_t, r_node));
+ spin_lock_init(&zv->zv_lock);
+ list_link_init(&zv->zv_next);
+
+ zv->zv_disk->major = zvol_major;
+ zv->zv_disk->first_minor = (dev & MINORMASK);
+ zv->zv_disk->fops = &zvol_ops;
+ zv->zv_disk->private_data = zv;
+ zv->zv_disk->queue = zv->zv_queue;
+ snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s", name);
+
+ return zv;
+
+out_queue:
+ blk_cleanup_queue(zv->zv_queue);
+out_kmem:
+ kmem_free(zv, sizeof (zvol_state_t));
+out:
+ return NULL;
+}
+
+/*
+ * Cleanup then free a zvol_state_t which was created by zvol_alloc().
+ */
+static void
+zvol_free(zvol_state_t *zv)
+{
+ avl_destroy(&zv->zv_znode.z_range_avl);
+ mutex_destroy(&zv->zv_znode.z_range_lock);
+
+ del_gendisk(zv->zv_disk);
+ blk_cleanup_queue(zv->zv_queue);
+ put_disk(zv->zv_disk);
+
+ kmem_free(zv, sizeof (zvol_state_t));
+}
+
+static int
+__zvol_create_minor(const char *name)
+{
+ zvol_state_t *zv;
+ objset_t *os;
+ dmu_object_info_t *doi;
+ uint64_t volsize;
+ unsigned minor = 0;
+ int error = 0;
+
+ ASSERT(MUTEX_HELD(&zvol_state_lock));
+
+ zv = zvol_find_by_name(name);
+ if (zv) {
+ error = EEXIST;
+ goto out;
+ }
+
+ doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
+
+ error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os);
+ if (error)
+ goto out_doi;
+
+ error = dmu_object_info(os, ZVOL_OBJ, doi);
+ if (error)
+ goto out_dmu_objset_disown;
+
+ error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
+ if (error)
+ goto out_dmu_objset_disown;
+
+ error = zvol_find_minor(&minor);
+ if (error)
+ goto out_dmu_objset_disown;
+
+ zv = zvol_alloc(MKDEV(zvol_major, minor), name);
+ if (zv == NULL) {
+ error = EAGAIN;
+ goto out_dmu_objset_disown;
+ }
+
+ if (dmu_objset_is_snapshot(os))
+ zv->zv_flags |= ZVOL_RDONLY;
+
+ zv->zv_volblocksize = doi->doi_data_block_size;
+ zv->zv_volsize = volsize;
+ zv->zv_objset = os;
+
+ set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
+
+ if (zil_replay_disable)
+ zil_destroy(dmu_objset_zil(os), B_FALSE);
+ else
+ zil_replay(os, zv, zvol_replay_vector);
+
+out_dmu_objset_disown:
+ dmu_objset_disown(os, zvol_tag);
+ zv->zv_objset = NULL;
+out_doi:
+ kmem_free(doi, sizeof(dmu_object_info_t));
+out:
+
+ if (error == 0) {
+ zvol_insert(zv);
+ add_disk(zv->zv_disk);
+ }
+
+ return (error);
+}
+
+/*
+ * Create a block device minor node and setup the linkage between it
+ * and the specified volume. Once this function returns the block
+ * device is live and ready for use.
+ */
+int
+zvol_create_minor(const char *name)
+{
+ int error;
+
+ mutex_enter(&zvol_state_lock);
+ error = __zvol_create_minor(name);
+ mutex_exit(&zvol_state_lock);
+
+ return (error);
+}
+
+static int
+__zvol_remove_minor(const char *name)
+{
+ zvol_state_t *zv;
+
+ ASSERT(MUTEX_HELD(&zvol_state_lock));
+
+ zv = zvol_find_by_name(name);
+ if (zv == NULL)
+ return (ENXIO);
+
+ if (zv->zv_open_count > 0)
+ return (EBUSY);
+
+ zvol_remove(zv);
+ zvol_free(zv);
+
+ return (0);
+}
+
+/*
+ * Remove a block device minor node for the specified volume.
+ */
+int
+zvol_remove_minor(const char *name)
+{
+ int error;
+
+ mutex_enter(&zvol_state_lock);
+ error = __zvol_remove_minor(name);
+ mutex_exit(&zvol_state_lock);
+
+ return (error);
+}
+
+static int
+zvol_create_minors_cb(spa_t *spa, uint64_t dsobj,
+ const char *dsname, void *arg)
+{
+ if (strchr(dsname, '/') == NULL)
+ return 0;
+
+ return __zvol_create_minor(dsname);
+}
+
+/*
+ * Create minors for specified pool, if pool is NULL create minors
+ * for all available pools.
+ */
+int
+zvol_create_minors(const char *pool)
+{
+ spa_t *spa = NULL;
+ int error = 0;
+
+ mutex_enter(&zvol_state_lock);
+ if (pool) {
+ error = dmu_objset_find_spa(NULL, pool, zvol_create_minors_cb,
+ NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
+ } else {
+ mutex_enter(&spa_namespace_lock);
+ while ((spa = spa_next(spa)) != NULL) {
+ error = dmu_objset_find_spa(NULL,
+ spa_name(spa), zvol_create_minors_cb, NULL,
+ DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
+ if (error)
+ break;
+ }
+ mutex_exit(&spa_namespace_lock);
+ }
+ mutex_exit(&zvol_state_lock);
+
+ return error;
+}
+
+/*
+ * Remove minors for specified pool, if pool is NULL remove all minors.
+ */
+void
+zvol_remove_minors(const char *pool)
+{
+ zvol_state_t *zv, *zv_next;
+ char *str;
+
+ str = kmem_zalloc(DISK_NAME_LEN, KM_SLEEP);
+ if (pool) {
+ (void) strncpy(str, pool, strlen(pool));
+ (void) strcat(str, "/");
+ }
+
+ mutex_enter(&zvol_state_lock);
+ for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
+ zv_next = list_next(&zvol_state_list, zv);
+
+ if (pool == NULL || !strncmp(str, zv->zv_name, strlen(str))) {
+ zvol_remove(zv);
+ zvol_free(zv);
+ }
+ }
+ mutex_exit(&zvol_state_lock);
+ kmem_free(str, DISK_NAME_LEN);
+}
+
+int
+zvol_init(void)
+{
+ int error;
+
+ if (!zvol_threads)
+ zvol_threads = num_online_cpus();
+
+ zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_threads, maxclsyspri,
+ zvol_threads, INT_MAX, TASKQ_PREPOPULATE);
+ if (zvol_taskq == NULL) {
+ printk(KERN_INFO "ZFS: taskq_create() failed\n");
+ return (-ENOMEM);
+ }
+
+ error = register_blkdev(zvol_major, ZVOL_DRIVER);
+ if (error) {
+ printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
+ taskq_destroy(zvol_taskq);
+ return (error);
+ }
+
+ blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
+ THIS_MODULE, zvol_probe, NULL, NULL);
+
+ mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
+ list_create(&zvol_state_list, sizeof (zvol_state_t),
+ offsetof(zvol_state_t, zv_next));
+
+ (void) zvol_create_minors(NULL);
+
+ return (0);
+}
+
+void
+zvol_fini(void)
+{
+ zvol_remove_minors(NULL);
+ blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
+ unregister_blkdev(zvol_major, ZVOL_DRIVER);
+ taskq_destroy(zvol_taskq);
+ mutex_destroy(&zvol_state_lock);
+ list_destroy(&zvol_state_list);
+}
+
+module_param(zvol_major, uint, 0);
+MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
+
+module_param(zvol_threads, uint, 0);
+MODULE_PARM_DESC(zvol_threads, "Number of threads for zvol device");