return *this;
}
+ /// \brief Left-shift assignment function.
+ ///
+ /// Shifts *this left by shiftAmt and assigns the result to *this.
+ ///
+ /// \returns *this after shifting left by ShiftAmt
+ APInt &operator<<=(const APInt &ShiftAmt);
+
/// @}
/// \name Binary Operators
/// @{
/// \brief Left-shift function.
///
/// Left-shift this APInt by shiftAmt.
- APInt shl(const APInt &shiftAmt) const;
+ APInt shl(const APInt &ShiftAmt) const {
+ APInt R(*this);
+ R <<= ShiftAmt;
+ return R;
+ }
/// \brief Rotate left by rotateAmt.
APInt rotl(const APInt &rotateAmt) const;
APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
SDValue Shift;
if (c2 > c1) {
- Mask = Mask.shl(c2 - c1);
+ Mask <<= c2 - c1;
SDLoc DL(N);
Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
DAG.getConstant(c2 - c1, DL, N1.getValueType()));
DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
APInt Shift(Sz, 1);
- Shift = Shift.shl(J);
+ Shift <<= J;
Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
}
Tmp = Tmp.zext(SrcBitSize);
Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
Tmp = Tmp.zext(DstBitSize);
- Tmp = Tmp.shl(ShiftAmt);
+ Tmp <<= ShiftAmt;
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
Elt.IntVal |= Tmp;
}
// Otherwise, we have to shift the mantissa bits up to the right location
APInt Tmp(width, mantissa);
- Tmp = Tmp.shl((unsigned)exp - 52);
+ Tmp <<= (unsigned)exp - 52;
return isNeg ? -Tmp : Tmp;
}
/// Left-shift this APInt by shiftAmt.
/// @brief Left-shift function.
-APInt APInt::shl(const APInt &shiftAmt) const {
+APInt &APInt::operator<<=(const APInt &shiftAmt) {
// It's undefined behavior in C to shift by BitWidth or greater.
- return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
+ *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
+ return *this;
}
void APInt::shlSlowCase(unsigned ShiftAmt) {
OpUsefulBits = 1;
if (MSB >= Imm) {
- OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
+ OpUsefulBits <<= MSB - Imm + 1;
--OpUsefulBits;
// The interesting part will be in the lower part of the result
getUsefulBits(Op, OpUsefulBits, Depth + 1);
// The interesting part was starting at Imm in the argument
- OpUsefulBits = OpUsefulBits.shl(Imm);
+ OpUsefulBits <<= Imm;
} else {
- OpUsefulBits = OpUsefulBits.shl(MSB + 1);
+ OpUsefulBits <<= MSB + 1;
--OpUsefulBits;
// The interesting part will be shifted in the result
- OpUsefulBits = OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm);
+ OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm;
getUsefulBits(Op, OpUsefulBits, Depth + 1);
// The interesting part was at zero in the argument
OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm);
if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
// Shift Left
uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
- Mask = Mask.shl(ShiftAmt);
+ Mask <<= ShiftAmt;
getUsefulBits(Op, Mask, Depth + 1);
Mask.lshrInPlace(ShiftAmt);
} else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
Mask.lshrInPlace(ShiftAmt);
getUsefulBits(Op, Mask, Depth + 1);
- Mask = Mask.shl(ShiftAmt);
+ Mask <<= ShiftAmt;
} else
return;
uint64_t Width = MSB - Imm + 1;
uint64_t LSB = Imm;
- OpUsefulBits = OpUsefulBits.shl(Width);
+ OpUsefulBits <<= Width;
--OpUsefulBits;
if (Op.getOperand(1) == Orig) {
// Copy the low bits from the result to bits starting from LSB.
Mask = ResultUsefulBits & OpUsefulBits;
- Mask = Mask.shl(LSB);
+ Mask <<= LSB;
}
if (Op.getOperand(0) == Orig)
uint64_t Width = MSB + 1;
uint64_t LSB = UsefulBits.getBitWidth() - Imm;
- OpUsefulBits = OpUsefulBits.shl(Width);
+ OpUsefulBits <<= Width;
--OpUsefulBits;
- OpUsefulBits = OpUsefulBits.shl(LSB);
+ OpUsefulBits <<= LSB;
if (Op.getOperand(1) == Orig) {
// Copy the bits from the result to the zero bits.
N0.getOperand(1).getOpcode() == ISD::Constant) {
SDValue N00 = N0.getOperand(0);
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
- const APInt &ShAmt = N1C->getAPIntValue();
- Mask = Mask.shl(ShAmt);
+ Mask <<= N1C->getAPIntValue();
bool MaskOK = false;
// We can handle cases concerning bit-widening nodes containing setcc_c if
// we carefully interrogate the mask to make sure we are semantics
for (unsigned i = 0; i != NumSubElts; ++i) {
unsigned SubEltIdx = (NumSubElts - 1) - i;
auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
- Count = Count.shl(BitWidth);
+ Count <<= BitWidth;
Count |= SubElt->getValue().zextOrTrunc(64);
}
}
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
- LaneElts = LaneElts.shl(InnerVWidthPerLane * (2 * Lane + OpNum));
+ LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
UndefElts |= LaneElts;
}
}