assert(I && "No instruction?");
assert(OpNo < I->getNumOperands() && "Operand index too large");
- // If the operand is not a constant integer, nothing to do.
- ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
- if (!OpC) return false;
+ // The operand must be a constant integer or splat integer.
+ Value *Op = I->getOperand(OpNo);
+ const APInt *C;
+ if (!match(Op, m_APInt(C)))
+ return false;
// If there are no bits set that aren't demanded, nothing to do.
- Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
- if ((~Demanded & OpC->getValue()) == 0)
+ Demanded = Demanded.zextOrTrunc(C->getBitWidth());
+ if ((~Demanded & *C) == 0)
return false;
// This instruction is producing bits that are not demanded. Shrink the RHS.
- Demanded &= OpC->getValue();
- I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
+ Demanded &= *C;
+ I->setOperand(OpNo, ConstantInt::get(Op->getType(), Demanded));
return true;
}
KnownOne.getBitWidth() == BitWidth &&
"Value *V, DemandedMask, KnownZero and KnownOne "
"must have same BitWidth");
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- // We know all of the bits for a constant!
- KnownOne = CI->getValue() & DemandedMask;
+ const APInt *C;
+ if (match(V, m_APInt(C))) {
+ // We know all of the bits for a scalar constant or a splat vector constant!
+ KnownOne = *C & DemandedMask;
KnownZero = ~KnownOne & DemandedMask;
return nullptr;
}
ret i32 %A
}
-; FIXME: Demanded bit analysis allows us to eliminate the add.
+; Demanded bit analysis allows us to eliminate the add.
define <2 x i32> @and_demanded_bits_splat_vec(<2 x i32> %x) {
; CHECK-LABEL: @and_demanded_bits_splat_vec(
-; CHECK-NEXT: [[Y:%.*]] = add <2 x i32> %x, <i32 8, i32 8>
-; CHECK-NEXT: [[Z:%.*]] = and <2 x i32> [[Y]], <i32 7, i32 7>
+; CHECK-NEXT: [[Z:%.*]] = and <2 x i32> %x, <i32 7, i32 7>
; CHECK-NEXT: ret <2 x i32> [[Z]]
;
%y = add <2 x i32> %x, <i32 8, i32 8>
define <2 x i64> @test4(<2 x i64> %A) {
; CHECK-LABEL: @test4(
-; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i64> %A, <i64 4294967295, i64 4294967295>
+; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i64> %A, <i64 63, i64 63>
; CHECK-NEXT: [[XOR:%.*]] = and <2 x i64> [[TMP1]], <i64 23, i64 42>
; CHECK-NEXT: ret <2 x i64> [[XOR]]
;