}
break;
}
+ case Instruction::AShr: {
+ // If this is a truncate of an arithmetic shr, we can truncate it to a
+ // smaller ashr iff we know that all the bits from the sign bit of the
+ // original type and the sign bit of the truncate type are similar.
+ // TODO: It is enough to check that the bits we would be shifting in are
+ // similar to sign bit of the truncate type.
+ const APInt *Amt;
+ if (match(I->getOperand(1), m_APInt(Amt))) {
+ uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ if (Amt->getLimitedValue(BitWidth) < BitWidth &&
+ OrigBitWidth - BitWidth <
+ IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
+ return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
+ }
+ break;
+ }
case Instruction::Trunc:
// trunc(trunc(x)) -> trunc(x)
return true;
ret i32 %D
}
+define i32 @trunc_ashr(i32 %X) {
+; CHECK-LABEL: @trunc_ashr(
+; CHECK-NEXT: [[B:%.*]] = or i32 [[X:%.*]], -2147483648
+; CHECK-NEXT: [[C:%.*]] = ashr i32 [[B]], 8
+; CHECK-NEXT: ret i32 [[C]]
+;
+ %A = zext i32 %X to i36
+ %B = or i36 %A, -2147483648 ; 0xF80000000
+ %C = ashr i36 %B, 8
+ %T = trunc i36 %C to i32
+ ret i32 %T
+}
+
+define <2 x i32> @trunc_ashr_vec(<2 x i32> %X) {
+; CHECK-LABEL: @trunc_ashr_vec(
+; CHECK-NEXT: [[B:%.*]] = or <2 x i32> [[X:%.*]], <i32 -2147483648, i32 -2147483648>
+; CHECK-NEXT: [[C:%.*]] = ashr <2 x i32> [[B]], <i32 8, i32 8>
+; CHECK-NEXT: ret <2 x i32> [[C]]
+;
+ %A = zext <2 x i32> %X to <2 x i36>
+ %B = or <2 x i36> %A, <i36 -2147483648, i36 -2147483648> ; 0xF80000000
+ %C = ashr <2 x i36> %B, <i36 8, i36 8>
+ %T = trunc <2 x i36> %C to <2 x i32>
+ ret <2 x i32> %T
+}
+
define i92 @test7(i64 %A) {
; CHECK-LABEL: @test7(
; CHECK-NEXT: [[TMP1:%.*]] = lshr i64 %A, 32