unsigned Cost = static_cast<T *>(this)->getMemoryOpCost(
Opcode, VecTy, Alignment, AddressSpace);
+ // Legalize the vector type, and get the legalized and unlegalized type
+ // sizes.
+ MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
+ unsigned VecTySize =
+ static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy);
+ unsigned VecTyLTSize = VecTyLT.getStoreSize();
+
+ // Return the ceiling of dividing A by B.
+ auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
+
+ // Scale the cost of the memory operation by the fraction of legalized
+ // instructions that will actually be used. We shouldn't account for the
+ // cost of dead instructions since they will be removed.
+ //
+ // E.g., An interleaved load of factor 8:
+ // %vec = load <16 x i64>, <16 x i64>* %ptr
+ // %v0 = shufflevector %vec, undef, <0, 8>
+ //
+ // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
+ // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
+ // type). The other loads are unused.
+ //
+ // We only scale the cost of loads since interleaved store groups aren't
+ // allowed to have gaps.
+ if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
+
+ // The number of loads of a legal type it will take to represent a load
+ // of the unlegalized vector type.
+ unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);
+
+ // The number of elements of the unlegalized type that correspond to a
+ // single legal instruction.
+ unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);
+
+ // Determine which legal instructions will be used.
+ BitVector UsedInsts(NumLegalInsts, false);
+ for (unsigned Index : Indices)
+ for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
+ UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
+
+ // Scale the cost of the load by the fraction of legal instructions that
+ // will be used.
+ Cost *= UsedInsts.count() / NumLegalInsts;
+ }
+
// Then plus the cost of interleave operation.
if (Opcode == Instruction::Load) {
// The interleave cost is similar to extract sub vectors' elements
; 8xi8 and 16xi8 are valid i8 vector types, so the cost of the interleaved
; access group is 2.
+; CHECK: LV: Checking a loop in "test_byte_interleaved_cost"
; CHECK: LV: Found an estimated cost of 2 for VF 8 For instruction: %tmp = load i8, i8* %arrayidx0, align 4
; CHECK: LV: Found an estimated cost of 2 for VF 16 For instruction: %tmp = load i8, i8* %arrayidx0, align 4
for.end: ; preds = %for.body
ret void
}
+
+%ig.factor.8 = type { double*, double, double, double, double, double, double, double }
+define double @wide_interleaved_group(%ig.factor.8* %s, double %a, double %b, i32 %n) {
+entry:
+ br label %for.body
+
+; Check the default cost of a strided load with a factor that is greater than
+; the maximum allowed. In this test, the interleave factor would be 8, which is
+; not supported.
+
+; CHECK: LV: Checking a loop in "wide_interleaved_group"
+; CHECK: LV: Found an estimated cost of 6 for VF 2 For instruction: %1 = load double, double* %0, align 8
+; CHECK: LV: Found an estimated cost of 0 for VF 2 For instruction: %5 = load double, double* %4, align 8
+; CHECK: LV: Found an estimated cost of 10 for VF 2 For instruction: store double %9, double* %10, align 8
+
+for.body:
+ %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ]
+ %r = phi double [ 0.000000e+00, %entry ], [ %12, %for.body ]
+ %0 = getelementptr inbounds %ig.factor.8, %ig.factor.8* %s, i64 %i, i32 2
+ %1 = load double, double* %0, align 8
+ %2 = fcmp fast olt double %1, %a
+ %3 = select i1 %2, double 0.000000e+00, double %1
+ %4 = getelementptr inbounds %ig.factor.8, %ig.factor.8* %s, i64 %i, i32 6
+ %5 = load double, double* %4, align 8
+ %6 = fcmp fast olt double %5, %a
+ %7 = select i1 %6, double 0.000000e+00, double %5
+ %8 = fmul fast double %7, %b
+ %9 = fadd fast double %8, %3
+ %10 = getelementptr inbounds %ig.factor.8, %ig.factor.8* %s, i64 %i, i32 3
+ store double %9, double* %10, align 8
+ %11 = fmul fast double %9, %9
+ %12 = fadd fast double %11, %r
+ %i.next = add nuw nsw i64 %i, 1
+ %13 = trunc i64 %i.next to i32
+ %cond = icmp eq i32 %13, %n
+ br i1 %cond, label %for.exit, label %for.body
+
+for.exit:
+ %r.lcssa = phi double [ %12, %for.body ]
+ ret double %r.lcssa
+}