#include "CodeGenFunction.h"
#include "CGCall.h"
+#include "CGRecordLayout.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/CodeGen/CGFunctionInfo.h"
CharUnits LValueAlign;
TypeEvaluationKind EvaluationKind;
bool UseLibcall;
+ LValue LVal;
+ CGBitFieldInfo BFI;
public:
- AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) : CGF(CGF) {
- assert(lvalue.isSimple());
-
- AtomicTy = lvalue.getType();
- ValueTy = AtomicTy->castAs<AtomicType>()->getValueType();
- EvaluationKind = CGF.getEvaluationKind(ValueTy);
-
+ AtomicInfo(CodeGenFunction &CGF, LValue &lvalue)
+ : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0),
+ EvaluationKind(TEK_Scalar), UseLibcall(true) {
+ assert(!lvalue.isGlobalReg());
ASTContext &C = CGF.getContext();
-
- uint64_t ValueAlignInBits;
- uint64_t AtomicAlignInBits;
- TypeInfo ValueTI = C.getTypeInfo(ValueTy);
- ValueSizeInBits = ValueTI.Width;
- ValueAlignInBits = ValueTI.Align;
-
- TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
- AtomicSizeInBits = AtomicTI.Width;
- AtomicAlignInBits = AtomicTI.Align;
-
- assert(ValueSizeInBits <= AtomicSizeInBits);
- assert(ValueAlignInBits <= AtomicAlignInBits);
-
- AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
- ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
- if (lvalue.getAlignment().isZero())
- lvalue.setAlignment(AtomicAlign);
-
+ if (lvalue.isSimple()) {
+ AtomicTy = lvalue.getType();
+ if (auto *ATy = AtomicTy->getAs<AtomicType>())
+ ValueTy = ATy->getValueType();
+ else
+ ValueTy = AtomicTy;
+ EvaluationKind = CGF.getEvaluationKind(ValueTy);
+
+ uint64_t ValueAlignInBits;
+ uint64_t AtomicAlignInBits;
+ TypeInfo ValueTI = C.getTypeInfo(ValueTy);
+ ValueSizeInBits = ValueTI.Width;
+ ValueAlignInBits = ValueTI.Align;
+
+ TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
+ AtomicSizeInBits = AtomicTI.Width;
+ AtomicAlignInBits = AtomicTI.Align;
+
+ assert(ValueSizeInBits <= AtomicSizeInBits);
+ assert(ValueAlignInBits <= AtomicAlignInBits);
+
+ AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
+ ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
+ if (lvalue.getAlignment().isZero())
+ lvalue.setAlignment(AtomicAlign);
+
+ LVal = lvalue;
+ } else if (lvalue.isBitField()) {
+ auto &OrigBFI = lvalue.getBitFieldInfo();
+ auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment());
+ AtomicSizeInBits = C.toBits(
+ C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1)
+ .RoundUpToAlignment(lvalue.getAlignment()));
+ auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldAddr());
+ auto OffsetInChars =
+ (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) *
+ lvalue.getAlignment();
+ VoidPtrAddr = CGF.Builder.CreateConstGEP1_64(
+ VoidPtrAddr, OffsetInChars.getQuantity());
+ auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ VoidPtrAddr,
+ CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(),
+ "atomic_bitfield_base");
+ BFI = OrigBFI;
+ BFI.Offset = Offset;
+ BFI.StorageSize = AtomicSizeInBits;
+ LVal = LValue::MakeBitfield(Addr, BFI, lvalue.getType(),
+ lvalue.getAlignment());
+ } else if (lvalue.isVectorElt()) {
+ AtomicSizeInBits = C.getTypeSize(lvalue.getType());
+ LVal = lvalue;
+ } else {
+ assert(lvalue.isExtVectorElt());
+ AtomicSizeInBits = C.getTypeSize(lvalue.getType());
+ LVal = lvalue;
+ }
UseLibcall = !C.getTargetInfo().hasBuiltinAtomic(
AtomicSizeInBits, C.toBits(lvalue.getAlignment()));
}
uint64_t getValueSizeInBits() const { return ValueSizeInBits; }
TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
bool shouldUseLibcall() const { return UseLibcall; }
+ const LValue &getAtomicLValue() const { return LVal; }
/// Is the atomic size larger than the underlying value type?
///
return (ValueSizeInBits != AtomicSizeInBits);
}
- bool emitMemSetZeroIfNecessary(LValue dest) const;
+ bool emitMemSetZeroIfNecessary() const;
llvm::Value *getAtomicSizeValue() const {
CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
SourceLocation Loc) const;
/// Copy an atomic r-value into atomic-layout memory.
- void emitCopyIntoMemory(RValue rvalue, LValue lvalue) const;
+ void emitCopyIntoMemory(RValue rvalue) const;
/// Project an l-value down to the value field.
- LValue projectValue(LValue lvalue) const {
- llvm::Value *addr = lvalue.getAddress();
+ LValue projectValue() const {
+ assert(LVal.isSimple());
+ llvm::Value *addr = LVal.getAddress();
if (hasPadding())
addr = CGF.Builder.CreateStructGEP(addr, 0);
- return LValue::MakeAddr(addr, getValueType(), lvalue.getAlignment(),
- CGF.getContext(), lvalue.getTBAAInfo());
+ return LValue::MakeAddr(addr, getValueType(), LVal.getAlignment(),
+ CGF.getContext(), LVal.getTBAAInfo());
}
/// Materialize an atomic r-value in atomic-layout memory.
llvm_unreachable("bad evaluation kind");
}
-bool AtomicInfo::emitMemSetZeroIfNecessary(LValue dest) const {
- llvm::Value *addr = dest.getAddress();
+bool AtomicInfo::emitMemSetZeroIfNecessary() const {
+ assert(LVal.isSimple());
+ llvm::Value *addr = LVal.getAddress();
if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
return false;
CGF.Builder.CreateMemSet(addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
AtomicSizeInBits / 8,
- dest.getAlignment().getQuantity());
+ LVal.getAlignment().getQuantity());
return true;
}
RValue AtomicInfo::convertTempToRValue(llvm::Value *addr,
AggValueSlot resultSlot,
SourceLocation loc) const {
- if (EvaluationKind == TEK_Aggregate)
- return resultSlot.asRValue();
-
- // Drill into the padding structure if we have one.
- if (hasPadding())
- addr = CGF.Builder.CreateStructGEP(addr, 0);
-
- // Otherwise, just convert the temporary to an r-value using the
- // normal conversion routine.
- return CGF.convertTempToRValue(addr, getValueType(), loc);
+ if (LVal.isSimple()) {
+ if (EvaluationKind == TEK_Aggregate)
+ return resultSlot.asRValue();
+
+ // Drill into the padding structure if we have one.
+ if (hasPadding())
+ addr = CGF.Builder.CreateStructGEP(addr, 0);
+
+ // Otherwise, just convert the temporary to an r-value using the
+ // normal conversion routine.
+ return CGF.convertTempToRValue(addr, getValueType(), loc);
+ } else if (LVal.isBitField())
+ return CGF.EmitLoadOfBitfieldLValue(LValue::MakeBitfield(
+ addr, LVal.getBitFieldInfo(), LVal.getType(), LVal.getAlignment()));
+ else if (LVal.isVectorElt())
+ return CGF.EmitLoadOfLValue(LValue::MakeVectorElt(addr, LVal.getVectorIdx(),
+ LVal.getType(),
+ LVal.getAlignment()),
+ loc);
+ assert(LVal.isExtVectorElt());
+ return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt(
+ addr, LVal.getExtVectorElts(), LVal.getType(), LVal.getAlignment()));
}
RValue AtomicInfo::convertIntToValue(llvm::Value *IntVal,
AggValueSlot ResultSlot,
SourceLocation Loc) const {
+ assert(LVal.isSimple());
// Try not to in some easy cases.
assert(IntVal->getType()->isIntegerTy() && "Expected integer value");
if (getEvaluationKind() == TEK_Scalar && !hasPadding()) {
RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
AggValueSlot resultSlot) {
AtomicInfo atomics(*this, src);
+ LValue LVal = atomics.getAtomicLValue();
+ llvm::Value *SrcAddr = nullptr;
+ llvm::AllocaInst *NonSimpleTempAlloca = nullptr;
+ if (LVal.isSimple())
+ SrcAddr = LVal.getAddress();
+ else {
+ if (LVal.isBitField())
+ SrcAddr = LVal.getBitFieldAddr();
+ else if (LVal.isVectorElt())
+ SrcAddr = LVal.getVectorAddr();
+ else {
+ assert(LVal.isExtVectorElt());
+ SrcAddr = LVal.getExtVectorAddr();
+ }
+ NonSimpleTempAlloca = CreateTempAlloca(
+ SrcAddr->getType()->getPointerElementType(), "atomic-load-temp");
+ NonSimpleTempAlloca->setAlignment(getContext().toBits(src.getAlignment()));
+ }
// Check whether we should use a library call.
if (atomics.shouldUseLibcall()) {
llvm::Value *tempAddr;
- if (!resultSlot.isIgnored()) {
- assert(atomics.getEvaluationKind() == TEK_Aggregate);
- tempAddr = resultSlot.getAddr();
- } else {
- tempAddr = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp");
- }
+ if (LVal.isSimple()) {
+ if (!resultSlot.isIgnored()) {
+ assert(atomics.getEvaluationKind() == TEK_Aggregate);
+ tempAddr = resultSlot.getAddr();
+ } else
+ tempAddr = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp");
+ } else
+ tempAddr = NonSimpleTempAlloca;
// void __atomic_load(size_t size, void *mem, void *return, int order);
CallArgList args;
args.add(RValue::get(atomics.getAtomicSizeValue()),
getContext().getSizeType());
- args.add(RValue::get(EmitCastToVoidPtr(src.getAddress())),
- getContext().VoidPtrTy);
- args.add(RValue::get(EmitCastToVoidPtr(tempAddr)),
- getContext().VoidPtrTy);
+ args.add(RValue::get(EmitCastToVoidPtr(SrcAddr)), getContext().VoidPtrTy);
+ args.add(RValue::get(EmitCastToVoidPtr(tempAddr)), getContext().VoidPtrTy);
args.add(RValue::get(llvm::ConstantInt::get(
IntTy, AtomicExpr::AO_ABI_memory_order_seq_cst)),
getContext().IntTy);
}
// Okay, we're doing this natively.
- llvm::Value *addr = atomics.emitCastToAtomicIntPointer(src.getAddress());
+ llvm::Value *addr = atomics.emitCastToAtomicIntPointer(SrcAddr);
llvm::LoadInst *load = Builder.CreateLoad(addr, "atomic-load");
load->setAtomic(llvm::SequentiallyConsistent);
return RValue::getAggregate(nullptr, false);
// Okay, turn that back into the original value type.
- return atomics.convertIntToValue(load, resultSlot, loc);
+ if (src.isSimple())
+ return atomics.convertIntToValue(load, resultSlot, loc);
+
+ auto *IntAddr = atomics.emitCastToAtomicIntPointer(NonSimpleTempAlloca);
+ Builder.CreateAlignedStore(load, IntAddr, src.getAlignment().getQuantity());
+ return atomics.convertTempToRValue(NonSimpleTempAlloca, resultSlot, loc);
}
/// Copy an r-value into memory as part of storing to an atomic type.
/// This needs to create a bit-pattern suitable for atomic operations.
-void AtomicInfo::emitCopyIntoMemory(RValue rvalue, LValue dest) const {
+void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const {
+ assert(LVal.isSimple());
// If we have an r-value, the rvalue should be of the atomic type,
// which means that the caller is responsible for having zeroed
// any padding. Just do an aggregate copy of that type.
if (rvalue.isAggregate()) {
- CGF.EmitAggregateCopy(dest.getAddress(),
+ CGF.EmitAggregateCopy(LVal.getAddress(),
rvalue.getAggregateAddr(),
getAtomicType(),
(rvalue.isVolatileQualified()
- || dest.isVolatileQualified()),
- dest.getAlignment());
+ || LVal.isVolatileQualified()),
+ LVal.getAlignment());
return;
}
// Okay, otherwise we're copying stuff.
// Zero out the buffer if necessary.
- emitMemSetZeroIfNecessary(dest);
+ emitMemSetZeroIfNecessary();
// Drill past the padding if present.
- dest = projectValue(dest);
+ LValue TempLVal = projectValue();
// Okay, store the rvalue in.
if (rvalue.isScalar()) {
- CGF.EmitStoreOfScalar(rvalue.getScalarVal(), dest, /*init*/ true);
+ CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true);
} else {
- CGF.EmitStoreOfComplex(rvalue.getComplexVal(), dest, /*init*/ true);
+ CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true);
}
}
// Otherwise, make a temporary and materialize into it.
llvm::Value *temp = CGF.CreateMemTemp(getAtomicType(), "atomic-store-temp");
- LValue tempLV = CGF.MakeAddrLValue(temp, getAtomicType(), getAtomicAlignment());
- emitCopyIntoMemory(rvalue, tempLV);
+ LValue tempLV =
+ CGF.MakeAddrLValue(temp, getAtomicType(), getAtomicAlignment());
+ AtomicInfo Atomics(CGF, tempLV);
+ Atomics.emitCopyIntoMemory(rvalue);
return temp;
}
// If this is an initialization, just put the value there normally.
if (isInit) {
- atomics.emitCopyIntoMemory(rvalue, dest);
+ atomics.emitCopyIntoMemory(rvalue);
return;
}
switch (atomics.getEvaluationKind()) {
case TEK_Scalar: {
llvm::Value *value = EmitScalarExpr(init);
- atomics.emitCopyIntoMemory(RValue::get(value), dest);
+ atomics.emitCopyIntoMemory(RValue::get(value));
return;
}
case TEK_Complex: {
ComplexPairTy value = EmitComplexExpr(init);
- atomics.emitCopyIntoMemory(RValue::getComplex(value), dest);
+ atomics.emitCopyIntoMemory(RValue::getComplex(value));
return;
}
// of atomic type.
bool Zeroed = false;
if (!init->getType()->isAtomicType()) {
- Zeroed = atomics.emitMemSetZeroIfNecessary(dest);
- dest = atomics.projectValue(dest);
+ Zeroed = atomics.emitMemSetZeroIfNecessary();
+ dest = atomics.projectValue();
}
// Evaluate the expression directly into the destination.
llvm_unreachable("CodeGen for 'omp ordered' is not supported yet.");
}
-void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &) {
- llvm_unreachable("CodeGen for 'omp atomic' is not supported yet.");
+static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
+ QualType SrcType, QualType DestType) {
+ assert(CGF.hasScalarEvaluationKind(DestType) &&
+ "DestType must have scalar evaluation kind.");
+ assert(!Val.isAggregate() && "Must be a scalar or complex.");
+ return Val.isScalar()
+ ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType)
+ : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
+ DestType);
+}
+
+static CodeGenFunction::ComplexPairTy
+convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
+ QualType DestType) {
+ assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
+ "DestType must have complex evaluation kind.");
+ CodeGenFunction::ComplexPairTy ComplexVal;
+ if (Val.isScalar()) {
+ // Convert the input element to the element type of the complex.
+ auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
+ auto ScalarVal =
+ CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestElementType);
+ ComplexVal = CodeGenFunction::ComplexPairTy(
+ ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
+ } else {
+ assert(Val.isComplex() && "Must be a scalar or complex.");
+ auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
+ auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
+ ComplexVal.first = CGF.EmitScalarConversion(
+ Val.getComplexVal().first, SrcElementType, DestElementType);
+ ComplexVal.second = CGF.EmitScalarConversion(
+ Val.getComplexVal().second, SrcElementType, DestElementType);
+ }
+ return ComplexVal;
+}
+
+static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
+ const Expr *X, const Expr *V,
+ SourceLocation Loc) {
+ // v = x;
+ assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
+ assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
+ LValue XLValue = CGF.EmitLValue(X);
+ LValue VLValue = CGF.EmitLValue(V);
+ RValue Res = XLValue.isGlobalReg() ? CGF.EmitLoadOfLValue(XLValue, Loc)
+ : CGF.EmitAtomicLoad(XLValue, Loc);
+ // OpenMP, 2.12.6, atomic Construct
+ // Any atomic construct with a seq_cst clause forces the atomically
+ // performed operation to include an implicit flush operation without a
+ // list.
+ if (IsSeqCst)
+ CGF.CGM.getOpenMPRuntime().EmitOMPFlush(CGF, llvm::None, Loc);
+ switch (CGF.getEvaluationKind(V->getType())) {
+ case TEK_Scalar:
+ CGF.EmitStoreOfScalar(
+ convertToScalarValue(CGF, Res, X->getType(), V->getType()), VLValue);
+ break;
+ case TEK_Complex:
+ CGF.EmitStoreOfComplex(
+ convertToComplexValue(CGF, Res, X->getType(), V->getType()), VLValue,
+ /*isInit=*/false);
+ break;
+ case TEK_Aggregate:
+ llvm_unreachable("Must be a scalar or complex.");
+ }
+}
+
+static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
+ bool IsSeqCst, const Expr *X, const Expr *V,
+ const Expr *, SourceLocation Loc) {
+ switch (Kind) {
+ case OMPC_read:
+ EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
+ break;
+ case OMPC_write:
+ case OMPC_update:
+ case OMPC_capture:
+ llvm_unreachable("CodeGen for 'omp atomic clause' is not supported yet.");
+ case OMPC_if:
+ case OMPC_final:
+ case OMPC_num_threads:
+ case OMPC_private:
+ case OMPC_firstprivate:
+ case OMPC_lastprivate:
+ case OMPC_reduction:
+ case OMPC_safelen:
+ case OMPC_collapse:
+ case OMPC_default:
+ case OMPC_seq_cst:
+ case OMPC_shared:
+ case OMPC_linear:
+ case OMPC_aligned:
+ case OMPC_copyin:
+ case OMPC_copyprivate:
+ case OMPC_flush:
+ case OMPC_proc_bind:
+ case OMPC_schedule:
+ case OMPC_ordered:
+ case OMPC_nowait:
+ case OMPC_untied:
+ case OMPC_threadprivate:
+ case OMPC_mergeable:
+ case OMPC_unknown:
+ llvm_unreachable("Clause is not allowed in 'omp atomic'.");
+ }
+}
+
+void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
+ bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst);
+ OpenMPClauseKind Kind = OMPC_unknown;
+ for (auto *C : S.clauses()) {
+ // Find first clause (skip seq_cst clause, if it is first).
+ if (C->getClauseKind() != OMPC_seq_cst) {
+ Kind = C->getClauseKind();
+ break;
+ }
+ }
+ EmitOMPAtomicExpr(*this, Kind, IsSeqCst, S.getX(), S.getV(), S.getExpr(),
+ S.getLocStart());
}
void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) {
--- /dev/null
+// RUN: %clang_cc1 -verify -triple x86_64-apple-darwin10 -fopenmp=libiomp5 -x c -emit-llvm %s -o - | FileCheck %s
+// RUN: %clang_cc1 -fopenmp=libiomp5 -x c -triple x86_64-apple-darwin10 -emit-pch -o %t %s
+// RUN: %clang_cc1 -fopenmp=libiomp5 -x c -triple x86_64-apple-darwin10 -include-pch %t -verify %s -emit-llvm -o - | FileCheck %s
+// expected-no-diagnostics
+
+#ifndef HEADER
+#define HEADER
+
+_Bool bv, bx;
+char cv, cx;
+unsigned char ucv, ucx;
+short sv, sx;
+unsigned short usv, usx;
+int iv, ix;
+unsigned int uiv, uix;
+long lv, lx;
+unsigned long ulv, ulx;
+long long llv, llx;
+unsigned long long ullv, ullx;
+float fv, fx;
+double dv, dx;
+long double ldv, ldx;
+_Complex int civ, cix;
+_Complex float cfv, cfx;
+_Complex double cdv, cdx;
+
+typedef int int4 __attribute__((__vector_size__(16)));
+int4 int4x;
+
+struct BitFields {
+ int : 32;
+ int a : 31;
+} bfx;
+
+struct BitFields_packed {
+ int : 32;
+ int a : 31;
+} __attribute__ ((__packed__)) bfx_packed;
+
+struct BitFields2 {
+ int : 31;
+ int a : 1;
+} bfx2;
+
+struct BitFields2_packed {
+ int : 31;
+ int a : 1;
+} __attribute__ ((__packed__)) bfx2_packed;
+
+struct BitFields3 {
+ int : 11;
+ int a : 14;
+} bfx3;
+
+struct BitFields3_packed {
+ int : 11;
+ int a : 14;
+} __attribute__ ((__packed__)) bfx3_packed;
+
+struct BitFields4 {
+ short : 16;
+ int a: 1;
+ long b : 7;
+} bfx4;
+
+struct BitFields4_packed {
+ short : 16;
+ int a: 1;
+ long b : 7;
+} __attribute__ ((__packed__)) bfx4_packed;
+
+typedef float float2 __attribute__((ext_vector_type(2)));
+float2 float2x;
+
+register int rix __asm__("0");
+
+int main() {
+// CHECK: load atomic i8*
+// CHECK: store i8
+#pragma omp atomic read
+ bv = bx;
+// CHECK: load atomic i8*
+// CHECK: store i8
+#pragma omp atomic read
+ cv = cx;
+// CHECK: load atomic i8*
+// CHECK: store i8
+#pragma omp atomic read
+ ucv = ucx;
+// CHECK: load atomic i16*
+// CHECK: store i16
+#pragma omp atomic read
+ sv = sx;
+// CHECK: load atomic i16*
+// CHECK: store i16
+#pragma omp atomic read
+ usv = usx;
+// CHECK: load atomic i32*
+// CHECK: store i32
+#pragma omp atomic read
+ iv = ix;
+// CHECK: load atomic i32*
+// CHECK: store i32
+#pragma omp atomic read
+ uiv = uix;
+// CHECK: load atomic i64*
+// CHECK: store i64
+#pragma omp atomic read
+ lv = lx;
+// CHECK: load atomic i64*
+// CHECK: store i64
+#pragma omp atomic read
+ ulv = ulx;
+// CHECK: load atomic i64*
+// CHECK: store i64
+#pragma omp atomic read
+ llv = llx;
+// CHECK: load atomic i64*
+// CHECK: store i64
+#pragma omp atomic read
+ ullv = ullx;
+// CHECK: load atomic i32* bitcast (float*
+// CHECK: bitcast i32 {{.*}} to float
+// CHECK: store float
+#pragma omp atomic read
+ fv = fx;
+// CHECK: load atomic i64* bitcast (double*
+// CHECK: bitcast i64 {{.*}} to double
+// CHECK: store double
+#pragma omp atomic read
+ dv = dx;
+// CHECK: [[LD:%.+]] = load atomic i128* bitcast (x86_fp80*
+// CHECK: [[BITCAST:%.+]] = bitcast x86_fp80* [[LDTEMP:%.*]] to i128*
+// CHECK: store i128 [[LD]], i128* [[BITCAST]]
+// CHECK: [[LD:%.+]] = load x86_fp80* [[LDTEMP]]
+// CHECK: store x86_fp80 [[LD]]
+#pragma omp atomic read
+ ldv = ldx;
+// CHECK: call{{.*}} void @__atomic_load(i64 8,
+// CHECK: store i32
+// CHECK: store i32
+#pragma omp atomic read
+ civ = cix;
+// CHECK: call{{.*}} void @__atomic_load(i64 8,
+// CHECK: store float
+// CHECK: store float
+#pragma omp atomic read
+ cfv = cfx;
+// CHECK: call{{.*}} void @__atomic_load(i64 16,
+// CHECK: call{{.*}} @__kmpc_flush(
+// CHECK: store double
+// CHECK: store double
+#pragma omp atomic seq_cst read
+ cdv = cdx;
+// CHECK: load atomic i64*
+// CHECK: store i8
+#pragma omp atomic read
+ bv = ulx;
+// CHECK: load atomic i8*
+// CHECK: store i8
+#pragma omp atomic read
+ cv = bx;
+// CHECK: load atomic i8*
+// CHECK: call{{.*}} @__kmpc_flush(
+// CHECK: store i8
+#pragma omp atomic read, seq_cst
+ ucv = cx;
+// CHECK: load atomic i64*
+// CHECK: store i16
+#pragma omp atomic read
+ sv = ulx;
+// CHECK: load atomic i64*
+// CHECK: store i16
+#pragma omp atomic read
+ usv = lx;
+// CHECK: load atomic i32*
+// CHECK: call{{.*}} @__kmpc_flush(
+// CHECK: store i32
+#pragma omp atomic seq_cst, read
+ iv = uix;
+// CHECK: load atomic i32*
+// CHECK: store i32
+#pragma omp atomic read
+ uiv = ix;
+// CHECK: call{{.*}} void @__atomic_load(i64 8,
+// CHECK: store i64
+#pragma omp atomic read
+ lv = cix;
+// CHECK: load atomic i32*
+// CHECK: store i64
+#pragma omp atomic read
+ ulv = fx;
+// CHECK: load atomic i64*
+// CHECK: store i64
+#pragma omp atomic read
+ llv = dx;
+// CHECK: load atomic i128*
+// CHECK: store i64
+#pragma omp atomic read
+ ullv = ldx;
+// CHECK: call{{.*}} void @__atomic_load(i64 8,
+// CHECK: store float
+#pragma omp atomic read
+ fv = cix;
+// CHECK: load atomic i16*
+// CHECK: store double
+#pragma omp atomic read
+ dv = sx;
+// CHECK: load atomic i8*
+// CHECK: store x86_fp80
+#pragma omp atomic read
+ ldv = bx;
+// CHECK: load atomic i8*
+// CHECK: store i32
+// CHECK: store i32
+#pragma omp atomic read
+ civ = bx;
+// CHECK: load atomic i16*
+// CHECK: store float
+// CHECK: store float
+#pragma omp atomic read
+ cfv = usx;
+// CHECK: load atomic i64*
+// CHECK: store double
+// CHECK: store double
+#pragma omp atomic read
+ cdv = llx;
+// CHECK: [[I128VAL:%.+]] = load atomic i128* bitcast (<4 x i32>* @{{.+}} to i128*) seq_cst
+// CHECK: [[I128PTR:%.+]] = bitcast <4 x i32>* [[LDTEMP:%.+]] to i128*
+// CHECK: store i128 [[I128VAL]], i128* [[I128PTR]]
+// CHECK: [[LD:%.+]] = load <4 x i32>* [[LDTEMP]]
+// CHECK: extractelement <4 x i32> [[LD]]
+// CHECK: store i8
+#pragma omp atomic read
+ bv = int4x[0];
+// CHECK: [[LD:%.+]] = load atomic i32* bitcast (i8* getelementptr (i8* bitcast (%{{.+}}* @{{.+}} to i8*), i64 4) to i32*) seq_cst
+// CHECK: store i32 [[LD]], i32* [[LDTEMP:%.+]]
+// CHECK: [[LD:%.+]] = load i32* [[LDTEMP]]
+// CHECK: [[SHL:%.+]] = shl i32 [[LD]], 1
+// CHECK: ashr i32 [[SHL]], 1
+// CHECK: store x86_fp80
+#pragma omp atomic read
+ ldv = bfx.a;
+// CHECK: [[LDTEMP_VOID_PTR:%.+]] = bitcast i32* [[LDTEMP:%.+]] to i8*
+// CHECK: call void @__atomic_load(i64 4, i8* getelementptr (i8* bitcast (%struct.BitFields_packed* @bfx_packed to i8*), i64 4), i8* [[LDTEMP_VOID_PTR]], i32 5)
+// CHECK: [[LD:%.+]] = load i32* [[LDTEMP]]
+// CHECK: [[SHL:%.+]] = shl i32 [[LD]], 1
+// CHECK: ashr i32 [[SHL]], 1
+// CHECK: store x86_fp80
+#pragma omp atomic read
+ ldv = bfx_packed.a;
+// CHECK: [[LD:%.+]] = load atomic i32* getelementptr inbounds (%struct.BitFields2* @bfx2, i32 0, i32 0) seq_cst
+// CHECK: store i32 [[LD]], i32* [[LDTEMP:%.+]]
+// CHECK: [[LD:%.+]] = load i32* [[LDTEMP]]
+// CHECK: ashr i32 [[LD]], 31
+// CHECK: store x86_fp80
+#pragma omp atomic read
+ ldv = bfx2.a;
+// CHECK: [[LD:%.+]] = load atomic i8* getelementptr (i8* bitcast (%struct.BitFields2_packed* @bfx2_packed to i8*), i64 3) seq_cst
+// CHECK: store i8 [[LD]], i8* [[LDTEMP:%.+]]
+// CHECK: [[LD:%.+]] = load i8* [[LDTEMP]]
+// CHECK: ashr i8 [[LD]], 7
+// CHECK: store x86_fp80
+#pragma omp atomic read
+ ldv = bfx2_packed.a;
+// CHECK: [[LD:%.+]] = load atomic i32* getelementptr inbounds (%struct.BitFields3* @bfx3, i32 0, i32 0) seq_cst
+// CHECK: store i32 [[LD]], i32* [[LDTEMP:%.+]]
+// CHECK: [[LD:%.+]] = load i32* [[LDTEMP]]
+// CHECK: [[SHL:%.+]] = shl i32 [[LD]], 7
+// CHECK: ashr i32 [[SHL]], 18
+// CHECK: store x86_fp80
+#pragma omp atomic read
+ ldv = bfx3.a;
+// CHECK: [[LDTEMP_VOID_PTR:%.+]] = bitcast i24* [[LDTEMP:%.+]] to i8*
+// CHECK: call void @__atomic_load(i64 3, i8* getelementptr (i8* bitcast (%struct.BitFields3_packed* @bfx3_packed to i8*), i64 1), i8* [[LDTEMP_VOID_PTR]], i32 5)
+// CHECK: [[LD:%.+]] = load i24* [[LDTEMP]]
+// CHECK: [[SHL:%.+]] = shl i24 [[LD]], 7
+// CHECK: [[ASHR:%.+]] = ashr i24 [[SHL]], 10
+// CHECK: sext i24 [[ASHR]] to i32
+// CHECK: store x86_fp80
+#pragma omp atomic read
+ ldv = bfx3_packed.a;
+// CHECK: [[LD:%.+]] = load atomic i64* bitcast (%struct.BitFields4* @bfx4 to i64*) seq_cst
+// CHECK: store i64 [[LD]], i64* [[LDTEMP:%.+]]
+// CHECK: [[LD:%.+]] = load i64* [[LDTEMP]]
+// CHECK: [[SHL:%.+]] = shl i64 [[LD]], 47
+// CHECK: [[ASHR:%.+]] = ashr i64 [[SHL]], 63
+// CHECK: trunc i64 [[ASHR]] to i32
+// CHECK: store x86_fp80
+#pragma omp atomic read
+ ldv = bfx4.a;
+// CHECK: [[LD:%.+]] = load atomic i8* getelementptr inbounds (%struct.BitFields4_packed* @bfx4_packed, i32 0, i32 0, i64 2) seq_cst
+// CHECK: store i8 [[LD]], i8* [[LDTEMP:%.+]]
+// CHECK: [[LD:%.+]] = load i8* [[LDTEMP]]
+// CHECK: [[SHL:%.+]] = shl i8 [[LD]], 7
+// CHECK: [[ASHR:%.+]] = ashr i8 [[SHL]], 7
+// CHECK: sext i8 [[ASHR]] to i32
+// CHECK: store x86_fp80
+#pragma omp atomic read
+ ldv = bfx4_packed.a;
+// CHECK: [[LD:%.+]] = load atomic i64* bitcast (%struct.BitFields4* @bfx4 to i64*) seq_cst
+// CHECK: store i64 [[LD]], i64* [[LDTEMP:%.+]]
+// CHECK: [[LD:%.+]] = load i64* [[LDTEMP]]
+// CHECK: [[SHL:%.+]] = shl i64 [[LD]], 40
+// CHECK: [[ASHR:%.+]] = ashr i64 [[SHL]], 57
+// CHECK: store x86_fp80
+#pragma omp atomic read
+ ldv = bfx4.b;
+// CHECK: [[LD:%.+]] = load atomic i8* getelementptr inbounds (%struct.BitFields4_packed* @bfx4_packed, i32 0, i32 0, i64 2) seq_cst
+// CHECK: store i8 [[LD]], i8* [[LDTEMP:%.+]]
+// CHECK: [[LD:%.+]] = load i8* [[LDTEMP]]
+// CHECK: [[ASHR:%.+]] = ashr i8 [[LD]], 1
+// CHECK: sext i8 [[ASHR]] to i64
+// CHECK: store x86_fp80
+#pragma omp atomic read
+ ldv = bfx4_packed.b;
+// CHECK: [[LD:%.+]] = load atomic i32* bitcast (<2 x float>* @{{.+}} to i32*) seq_cst
+// CHECK: [[BITCAST:%.+]] = bitcast <2 x float>* [[LDTEMP:%.+]] to i32*
+// CHECK: store i32 [[LD]], i32* [[BITCAST]]
+// CHECK: [[LD:%.+]] = load <2 x float>* [[LDTEMP]]
+// CHECK: extractelement <2 x float> [[LD]]
+// CHECK: store i64
+#pragma omp atomic read
+ ulv = float2x.x;
+// CHECK: call{{.*}} i{{[0-9]+}} @llvm.read_register
+// CHECK: call{{.*}} @__kmpc_flush(
+// CHECK: store double
+#pragma omp atomic read seq_cst
+ dv = rix;
+ return 0;
+}
+
+#endif