SimpleConstraintManager::~SimpleConstraintManager() {}
bool SimpleConstraintManager::canReasonAbout(SVal X) const {
- if (nonloc::SymExprVal *SymVal = dyn_cast<nonloc::SymExprVal>(&X)) {
- const SymExpr *SE = SymVal->getSymbolicExpression();
-
- if (isa<SymbolData>(SE))
- return true;
+ nonloc::SymbolVal *SymVal = dyn_cast<nonloc::SymbolVal>(&X);
+ if (SymVal && SymVal->isExpression()) {
+ const SymExpr *SE = SymVal->getSymbol();
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
switch (SIE->getOpcode()) {
case nonloc::SymbolValKind: {
nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
SymbolRef sym = SV.getSymbol();
- return assumeAuxForSymbol(state, sym, Assumption);
- }
-
- case nonloc::SymExprValKind: {
- nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
-
- SymbolRef sym = V.getSymbolicExpression();
assert(sym);
- // We can only simplify expressions whose RHS is an integer.
- const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym);
- if (!SE)
+ // Handle SymbolData.
+ if (!SV.isExpression()) {
return assumeAuxForSymbol(state, sym, Assumption);
- BinaryOperator::Opcode op = SE->getOpcode();
- // Implicitly compare non-comparison expressions to 0.
- if (!BinaryOperator::isComparisonOp(op)) {
- QualType T = SymMgr.getType(SE);
- const llvm::APSInt &zero = BasicVals.getValue(0, T);
- op = (Assumption ? BO_NE : BO_EQ);
- return assumeSymRel(state, SE, op, zero);
- }
+ // Handle symbolic expression.
+ } else {
+ // We can only simplify expressions whose RHS is an integer.
+ const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym);
+ if (!SE)
+ return assumeAuxForSymbol(state, sym, Assumption);
+
+ BinaryOperator::Opcode op = SE->getOpcode();
+ // Implicitly compare non-comparison expressions to 0.
+ if (!BinaryOperator::isComparisonOp(op)) {
+ QualType T = SymMgr.getType(SE);
+ const llvm::APSInt &zero = BasicVals.getValue(0, T);
+ op = (Assumption ? BO_NE : BO_EQ);
+ return assumeSymRel(state, SE, op, zero);
+ }
+ // From here on out, op is the real comparison we'll be testing.
+ if (!Assumption)
+ op = NegateComparison(op);
- // From here on out, op is the real comparison we'll be testing.
- if (!Assumption)
- op = NegateComparison(op);
-
- return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
+ return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
+ }
}
case nonloc::ConcreteIntKind: {
// Idempotent ops (like a*1) can still change the type of an expression.
// Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
// dirty work.
- if (isIdempotent) {
- if (isa<SymbolData>(LHS))
+ if (isIdempotent)
return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
- else
- return evalCastFromNonLoc(nonloc::SymExprVal(LHS), resultTy);
- }
// If we reach this point, the expression cannot be simplified.
- // Make a SymExprVal for the entire thing.
+ // Make a SymbolVal for the entire expression.
return makeNonLoc(LHS, op, RHS, resultTy);
}
}
}
}
- case nonloc::SymExprValKind: {
- nonloc::SymExprVal *selhs = cast<nonloc::SymExprVal>(&lhs);
-
- // Only handle LHS of the form "$sym op constant", at least for now.
- const SymIntExpr *symIntExpr =
- dyn_cast<SymIntExpr>(selhs->getSymbolicExpression());
-
- if (!symIntExpr)
- return generateUnknownVal(state, op, lhs, rhs, resultTy);
-
- // Is this a logical not? (!x is represented as x == 0.)
- if (op == BO_EQ && rhs.isZeroConstant()) {
- // We know how to negate certain expressions. Simplify them here.
-
- BinaryOperator::Opcode opc = symIntExpr->getOpcode();
- switch (opc) {
- default:
- // We don't know how to negate this operation.
- // Just handle it as if it were a normal comparison to 0.
- break;
- case BO_LAnd:
- case BO_LOr:
- llvm_unreachable("Logical operators handled by branching logic.");
- case BO_Assign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_ShlAssign:
- case BO_ShrAssign:
- case BO_AndAssign:
- case BO_XorAssign:
- case BO_OrAssign:
- case BO_Comma:
- llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
- case BO_PtrMemD:
- case BO_PtrMemI:
- llvm_unreachable("Pointer arithmetic not handled here.");
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- // Negate the comparison and make a value.
- opc = NegateComparison(opc);
- assert(symIntExpr->getType(Context) == resultTy);
- return makeNonLoc(symIntExpr->getLHS(), opc,
- symIntExpr->getRHS(), resultTy);
- }
- }
-
- // For now, only handle expressions whose RHS is a constant.
- const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
- if (!rhsInt)
- return generateUnknownVal(state, op, lhs, rhs, resultTy);
-
- // If both the LHS and the current expression are additive,
- // fold their constants.
- if (BinaryOperator::isAdditiveOp(op)) {
- BinaryOperator::Opcode lop = symIntExpr->getOpcode();
- if (BinaryOperator::isAdditiveOp(lop)) {
- // resultTy may not be the best type to convert to, but it's
- // probably the best choice in expressions with mixed type
- // (such as x+1U+2LL). The rules for implicit conversions should
- // choose a reasonable type to preserve the expression, and will
- // at least match how the value is going to be used.
- const llvm::APSInt &first =
- BasicVals.Convert(resultTy, symIntExpr->getRHS());
- const llvm::APSInt &second =
- BasicVals.Convert(resultTy, rhsInt->getValue());
- const llvm::APSInt *newRHS;
- if (lop == op)
- newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
- else
- newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
- return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
- }
- }
-
- // Otherwise, make a SymExprVal out of the expression.
- return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
- }
case nonloc::ConcreteIntKind: {
const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
}
}
case nonloc::SymbolValKind: {
- nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
- SymbolRef Sym = slhs->getSymbol();
- QualType lhsType = Sym->getType(Context);
-
- // The conversion type is usually the result type, but not in the case
- // of relational expressions.
- QualType conversionType = resultTy;
- if (BinaryOperator::isRelationalOp(op))
- conversionType = lhsType;
-
- // Does the symbol simplify to a constant? If so, "fold" the constant
- // by setting 'lhs' to a ConcreteInt and try again.
- if (lhsType->isIntegerType())
- if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
- // The symbol evaluates to a constant. If necessary, promote the
- // folded constant (LHS) to the result type.
- const llvm::APSInt &lhs_I = BasicVals.Convert(conversionType,
- *Constant);
- lhs = nonloc::ConcreteInt(lhs_I);
-
- // Also promote the RHS (if necessary).
-
- // For shifts, it is not necessary to promote the RHS.
- if (BinaryOperator::isShiftOp(op))
- continue;
-
- // Other operators: do an implicit conversion. This shouldn't be
- // necessary once we support truncation/extension of symbolic values.
- if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){
- rhs = nonloc::ConcreteInt(BasicVals.Convert(conversionType,
- rhs_I->getValue()));
+ nonloc::SymbolVal *selhs = cast<nonloc::SymbolVal>(&lhs);
+
+ // LHS is a symbolic expression.
+ if (selhs->isExpression()) {
+
+ // Only handle LHS of the form "$sym op constant", at least for now.
+ const SymIntExpr *symIntExpr =
+ dyn_cast<SymIntExpr>(selhs->getSymbol());
+
+ if (!symIntExpr)
+ return generateUnknownVal(state, op, lhs, rhs, resultTy);
+
+ // Is this a logical not? (!x is represented as x == 0.)
+ if (op == BO_EQ && rhs.isZeroConstant()) {
+ // We know how to negate certain expressions. Simplify them here.
+
+ BinaryOperator::Opcode opc = symIntExpr->getOpcode();
+ switch (opc) {
+ default:
+ // We don't know how to negate this operation.
+ // Just handle it as if it were a normal comparison to 0.
+ break;
+ case BO_LAnd:
+ case BO_LOr:
+ llvm_unreachable("Logical operators handled by branching logic.");
+ case BO_Assign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ case BO_Comma:
+ llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ llvm_unreachable("Pointer arithmetic not handled here.");
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ // Negate the comparison and make a value.
+ opc = NegateComparison(opc);
+ assert(symIntExpr->getType(Context) == resultTy);
+ return makeNonLoc(symIntExpr->getLHS(), opc,
+ symIntExpr->getRHS(), resultTy);
}
-
- continue;
}
- // Is the RHS a symbol we can simplify?
- if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
- SymbolRef RSym = srhs->getSymbol();
- if (RSym->getType(Context)->isIntegerType()) {
- if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
- // The symbol evaluates to a constant.
- const llvm::APSInt &rhs_I = BasicVals.Convert(conversionType,
- *Constant);
- rhs = nonloc::ConcreteInt(rhs_I);
+ // For now, only handle expressions whose RHS is a constant.
+ const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
+ if (!rhsInt)
+ return generateUnknownVal(state, op, lhs, rhs, resultTy);
+
+ // If both the LHS and the current expression are additive,
+ // fold their constants.
+ if (BinaryOperator::isAdditiveOp(op)) {
+ BinaryOperator::Opcode lop = symIntExpr->getOpcode();
+ if (BinaryOperator::isAdditiveOp(lop)) {
+ // resultTy may not be the best type to convert to, but it's
+ // probably the best choice in expressions with mixed type
+ // (such as x+1U+2LL). The rules for implicit conversions should
+ // choose a reasonable type to preserve the expression, and will
+ // at least match how the value is going to be used.
+ const llvm::APSInt &first =
+ BasicVals.Convert(resultTy, symIntExpr->getRHS());
+ const llvm::APSInt &second =
+ BasicVals.Convert(resultTy, rhsInt->getValue());
+ const llvm::APSInt *newRHS;
+ if (lop == op)
+ newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
+ else
+ newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
+ return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
}
}
- }
- if (isa<nonloc::ConcreteInt>(rhs)) {
- return MakeSymIntVal(slhs->getSymbol(), op,
- cast<nonloc::ConcreteInt>(rhs).getValue(),
- resultTy);
- }
+ // Otherwise, make a SymbolVal out of the expression.
+ return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
- return generateUnknownVal(state, op, lhs, rhs, resultTy);
+ // LHS is a simple symbol.
+ } else {
+ nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
+ SymbolRef Sym = slhs->getSymbol();
+ QualType lhsType = Sym->getType(Context);
+
+ // The conversion type is usually the result type, but not in the case
+ // of relational expressions.
+ QualType conversionType = resultTy;
+ if (BinaryOperator::isRelationalOp(op))
+ conversionType = lhsType;
+
+ // Does the symbol simplify to a constant? If so, "fold" the constant
+ // by setting 'lhs' to a ConcreteInt and try again.
+ if (lhsType->isIntegerType())
+ if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
+ // The symbol evaluates to a constant. If necessary, promote the
+ // folded constant (LHS) to the result type.
+ const llvm::APSInt &lhs_I = BasicVals.Convert(conversionType,
+ *Constant);
+ lhs = nonloc::ConcreteInt(lhs_I);
+
+ // Also promote the RHS (if necessary).
+
+ // For shifts, it is not necessary to promote the RHS.
+ if (BinaryOperator::isShiftOp(op))
+ continue;
+
+ // Other operators: do an implicit conversion. This shouldn't be
+ // necessary once we support truncation/extension of symbolic values.
+ if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){
+ rhs = nonloc::ConcreteInt(BasicVals.Convert(conversionType,
+ rhs_I->getValue()));
+ }
+
+ continue;
+ }
+
+ // Is the RHS a symbol we can simplify?
+ if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
+ SymbolRef RSym = srhs->getSymbol();
+ if (RSym->getType(Context)->isIntegerType()) {
+ if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
+ // The symbol evaluates to a constant.
+ const llvm::APSInt &rhs_I = BasicVals.Convert(conversionType,
+ *Constant);
+ rhs = nonloc::ConcreteInt(rhs_I);
+ }
+ }
+ }
+
+ if (isa<nonloc::ConcreteInt>(rhs)) {
+ return MakeSymIntVal(slhs->getSymbol(), op,
+ cast<nonloc::ConcreteInt>(rhs).getValue(),
+ resultTy);
+ }
+
+ return generateUnknownVal(state, op, lhs, rhs, resultTy);
+ }
}
}
}