In r283838, we added the capability of splitting unspillable register.
When doing so we had to make sure the split live-ranges were also
unspillable and we did that by marking the related live-ranges in the
delegate method that is called when a new vreg is created.
However, by accessing the live-range there, we also triggered their lazy
computation (LiveIntervalAnalysis::getInterval) which is not what we
want in general. Indeed, later code in LiveRangeEdit is going to build
the live-ranges this lazy computation may mess up that computation
resulting in assertion failures. Namely, the createEmptyIntervalFrom
method expect that the live-range is going to be empty, not computed.
Thanks to Mikael Holmén <mikael.holmen@ericsson.com> for noticing and
reporting the problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293934
91177308-0d34-0410-b5e6-
96231b3b80d8
VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
}
LiveInterval &LI = LIS.createEmptyInterval(VReg);
+ if (Parent && !Parent->isSpillable())
+ LI.markNotSpillable();
// Create empty subranges if the OldReg's interval has them. Do not create
// the main range here---it will be constructed later after the subranges
// have been finalized.
if (VRM) {
VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
}
+ // FIXME: Getting the interval here actually computes it.
+ // In theory, this may not be what we want, but in practice
+ // the createEmptyIntervalFrom API is used when this is not
+ // the case. Generally speaking we just want to annotate the
+ // LiveInterval when it gets created but we cannot do that at
+ // the moment.
+ if (Parent && !Parent->isSpillable())
+ LIS.getInterval(VReg).markNotSpillable();
return VReg;
}
if (VRM)
VRM->grow();
- if (Parent && !Parent->isSpillable())
- LIS.getInterval(VReg).markNotSpillable();
-
NewRegs.push_back(VReg);
}