/// A and B isn't important.
///
/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
-static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
+static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
ScalarEvolution &SE) {
uint32_t BW = A.getBitWidth();
- assert(BW == B.getBitWidth() && "Bit widths must be the same.");
+ assert(BW == SE.getTypeSizeInBits(B->getType()));
assert(A != 0 && "A must be non-zero.");
// 1. D = gcd(A, N)
//
// B is divisible by D if and only if the multiplicity of prime factor 2 for B
// is not less than multiplicity of this prime factor for D.
- if (B.countTrailingZeros() < Mult2)
+ if (SE.GetMinTrailingZeros(B) < Mult2)
return SE.getCouldNotCompute();
// 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
// I * (B / D) mod (N / D)
// To simplify the computation, we factor out the divide by D:
// (I * B mod N) / D
- APInt Result = (I * B).lshr(Mult2);
-
- return SE.getConstant(Result);
+ const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
+ return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
}
/// Find the roots of the quadratic equation for the given quadratic chrec
return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
}
- // As a special case, handle the instance where Step is a positive power of
- // two. In this case, determining whether Step divides Distance evenly can be
- // done by counting and comparing the number of trailing zeros of Step and
- // Distance.
- if (!CountDown) {
- const APInt &StepV = StepC->getAPInt();
- // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
- // also returns true if StepV is maximally negative (eg, INT_MIN), but that
- // case is not handled as this code is guarded by !CountDown.
- if (StepV.isPowerOf2() &&
- GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
- // Here we've constrained the equation to be of the form
- //
- // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
- //
- // where we're operating on a W bit wide integer domain and k is
- // non-negative. The smallest unsigned solution for X is the trip count.
- //
- // (0) is equivalent to:
- //
- // 2^(N + k) * Distance' - 2^N * X = L * 2^W
- // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
- // <=> 2^k * Distance' - X = L * 2^(W - N)
- // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
- //
- // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
- // by 2^(W - N).
- //
- // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
- //
- // E.g. say we're solving
- //
- // 2 * Val = 2 * X (in i8) ... (3)
- //
- // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
- //
- // Note: It is tempting to solve (3) by setting X = Val, but Val is not
- // necessarily the smallest unsigned value of X that satisfies (3).
- // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
- // is i8 1, not i8 -127
-
- const auto *Limit = getUDivExactExpr(Distance, Step);
- return ExitLimit(Limit, Limit, false, Predicates);
- }
- }
-
// If the condition controls loop exit (the loop exits only if the expression
// is true) and the addition is no-wrap we can use unsigned divide to
// compute the backedge count. In this case, the step may not divide the
return ExitLimit(Exact, Exact, false, Predicates);
}
- // Then, try to solve the above equation provided that Start is constant.
- if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
- const SCEV *E = SolveLinEquationWithOverflow(
- StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
- return ExitLimit(E, E, false, Predicates);
- }
- return getCouldNotCompute();
+ // Solve the general equation.
+ const SCEV *E = SolveLinEquationWithOverflow(
+ StepC->getAPInt(), getNegativeSCEV(Start), *this);
+ return ExitLimit(E, E, false, Predicates);
}
ScalarEvolution::ExitLimit
ret void
; CHECK-LABEL: @test3
-; CHECK: Loop %loop: Unpredictable backedge-taken count.
-; CHECK: Loop %loop: Unpredictable max backedge-taken count.
+; CHECK: Loop %loop: backedge-taken count is ((-32 + (32 * %n)) /u 32)
+; CHECK: Loop %loop: max backedge-taken count is ((-32 + (32 * %n)) /u 32)
+}
+
+define void @test4(i32 %n) {
+entry:
+ %s = mul i32 %n, 4
+ br label %loop
+loop:
+ %i = phi i32 [ 0, %entry ], [ %i.next, %loop ]
+ %i.next = add i32 %i, 12
+ %t = icmp ne i32 %i.next, %s
+ br i1 %t, label %loop, label %exit
+exit:
+ ret void
+
+; CHECK-LABEL: @test4
+; CHECK: Loop %loop: backedge-taken count is ((-4 + (-1431655764 * %n)) /u 4)
+; CHECK: Loop %loop: max backedge-taken count is ((-4 + (-1431655764 * %n)) /u 4)
+}
+
+define void @test5(i32 %n) {
+entry:
+ %s = mul i32 %n, 4
+ br label %loop
+loop:
+ %i = phi i32 [ %s, %entry ], [ %i.next, %loop ]
+ %i.next = add i32 %i, -4
+ %t = icmp ne i32 %i.next, 0
+ br i1 %t, label %loop, label %exit
+exit:
+ ret void
+
+; CHECK-LABEL: @test5
+; CHECK: Loop %loop: backedge-taken count is ((-4 + (4 * %n)) /u 4)
+; CHECK: Loop %loop: max backedge-taken count is ((-4 + (4 * %n)) /u 4)
}