CLOSE_FDS = True
-class Struct(object):
+class ESPCoreDumpError(RuntimeError):
+ """Core dump runtime error class
+ """
+ def __init__(self, message):
+ """Constructor for core dump error
+ """
+ super(ESPCoreDumpError, self).__init__(message)
+
+class BinStruct(object):
+ """Binary structure representation
+
+ Subclasses must specify actual structure layout using 'fields' and 'format' members.
+ For example, the following subclass represents structure with two fields:
+ f1 of size 2 bytes and 4 bytes f2. Little endian.
+ class SomeStruct(BinStruct):
+ fields = ("f1",
+ "f2")
+ format = "<HL"
+
+ Then subclass can be used to initialize fields of underlaying structure and convert it to binary representation:
+ f = open('some_struct.bin', 'wb')
+ s = SomeStruct()
+ s.f1 = 1
+ s.f2 = 10
+ f.write(s.dump())
+ f.close()
+ """
+
def __init__(self, buf=None):
+ """Base constructor for binary structure objects
+ """
if buf is None:
buf = b'\0' * self.sizeof()
- fields = struct.unpack(self.__class__.fmt, buf[:self.sizeof()])
+ fields = struct.unpack(self.__class__.format, buf[:self.sizeof()])
self.__dict__.update(zip(self.__class__.fields, fields))
def sizeof(self):
- return struct.calcsize(self.__class__.fmt)
+ """Returns the size of the structure represented by specific subclass
+ """
+ return struct.calcsize(self.__class__.format)
def dump(self):
+ """Returns binary representation of structure
+ """
keys = self.__class__.fields
- if sys.version_info > (3, 0):
- # Convert strings into bytearrays if this is Python 3
- for k in keys:
- if type(self.__dict__[k]) is str:
- self.__dict__[k] = bytearray(self.__dict__[k], encoding='ascii')
- return struct.pack(self.__class__.fmt, *(self.__dict__[k] for k in keys))
-
- def __str__(self):
- keys = self.__class__.fields
- return (self.__class__.__name__ + "({" +
- ", ".join("%s:%r" % (k, self.__dict__[k]) for k in keys) +
- "})")
+ return struct.pack(self.__class__.format, *(self.__dict__[k] for k in keys))
+
+# def __str__(self):
+# keys = self.__class__.fields
+# return (self.__class__.__name__ + "({" +
+# ", ".join("%s:%r" % (k, self.__dict__[k]) for k in keys) +
+# "})")
-class Elf32FileHeader(Struct):
- """ELF32 File header"""
+class Elf32FileHeader(BinStruct):
+ """ELF32 file header
+ """
fields = ("e_ident",
"e_type",
"e_machine",
"e_shentsize",
"e_shnum",
"e_shstrndx")
- fmt = "<16sHHLLLLLHHHHHH"
+ format = "<16sHHLLLLLHHHHHH"
def __init__(self, buf=None):
+ """Constructor for ELF32 file header structure
+ """
super(Elf32FileHeader, self).__init__(buf)
if buf is None:
# Fill in sane ELF header for LSB32
self.e_ehsize = self.sizeof()
-class Elf32ProgramHeader(Struct):
- """ELF32 Program Header"""
+class Elf32ProgramHeader(BinStruct):
+ """ELF32 program header
+ """
fields = ("p_type",
"p_offset",
"p_vaddr",
"p_memsz",
"p_flags",
"p_align")
- fmt = "<LLLLLLLL"
+ format = "<LLLLLLLL"
class Elf32NoteDesc(object):
- """ELF32 Note Descriptor"""
- def __init__(self, name, type, data):
+ """ELF32 note descriptor
+ """
+ def __init__(self, name, type, desc):
+ """Constructor for ELF32 note descriptor
+ """
self.name = bytearray(name, encoding='ascii') + b'\0'
self.type = type
- self.data = data
+ self.desc = desc
def dump(self):
- """Conveninece function to format a note descriptor.
- All note descriptors must be concatenated and added to a
- PT_NOTE segment."""
- header = struct.pack("<LLL", len(self.name), len(self.data), self.type)
- # pad up to 4 byte alignment
+ """Returns binary representation of ELF32 note descriptor
+ """
+ hdr = struct.pack("<LLL", len(self.name), len(self.desc), self.type)
+ # pad for 4 byte alignment
name = self.name + ((4 - len(self.name)) % 4) * b'\0'
- desc = self.data + ((4 - len(self.data)) % 4) * b'\0'
- print "dump %d %d %d %d %d" % (len(header), len(name), len(self.name), len(desc), len(self.data))
- return header + name + desc
+ desc = self.desc + ((4 - len(self.desc)) % 4) * b'\0'
+ return hdr + name + desc
-class XtensaPrStatus(Struct):
- """Xtensa Program Status structure"""
- # Only pr_cursig and pr_pid are read by bfd
- # Structure followed by 72 bytes representing general-purpose registers
- # check elf32-xtensa.c in libbfd for details
+class XtensaPrStatus(BinStruct):
+ """Xtensa program status structure"""
fields = ("si_signo", "si_code", "si_errno",
- "pr_cursig", # Current signal
+ "pr_cursig",
"pr_pad0",
"pr_sigpend",
"pr_sighold",
- "pr_pid", # LWP ID
+ "pr_pid",
"pr_ppid",
"pr_pgrp",
"pr_sid",
"pr_stime",
"pr_cutime",
"pr_cstime")
- fmt = "<3LHHLLLLLLQQQQ"
+ format = "<3LHHLLLLLLQQQQ"
class ESPCoreDumpSegment(esptool.ImageSegment):
- """ Wrapper class for a program segment in an ELF image, has a section
- name as well as the common properties of an ImageSegment. """
+ """ Wrapper class for a program segment in core ELF file, has a segment
+ type and flags as well as the common properties of an ImageSegment.
+ """
# segment flags
PF_X = 0x1 # Execute
PF_W = 0x2 # Write
PF_R = 0x4 # Read
def __init__(self, addr, data, type, flags):
+ """Constructor for program segment
+ """
super(ESPCoreDumpSegment, self).__init__(addr, data)
self.flags = flags
self.type = type
def __repr__(self):
+ """Returns string representation of program segment
+ """
return "%s %s %s" % (self.type, self.attr_str(), super(ESPCoreDumpSegment, self).__repr__())
def attr_str(self):
+ """Returns string representation of program segment attributes
+ """
str = ''
if self.flags & self.PF_R:
str += 'R'
class ESPCoreDumpSection(esptool.ELFSection):
- """
- TBD
+ """ Wrapper class for a section in core ELF file, has a section
+ flags as well as the common properties of an esptool.ELFSection.
"""
# section flags
SHF_WRITE = 0x1
SHF_EXECINSTR = 0x4
def __init__(self, name, addr, data, flags):
+ """Constructor for section
+ """
super(ESPCoreDumpSection, self).__init__(name, addr, data)
self.flags = flags
def __repr__(self):
+ """Returns string representation of section
+ """
return "%s %s" % (super(ESPCoreDumpSection, self).__repr__(), self.attr_str())
def attr_str(self):
+ """Returns string representation of section attributes
+ """
str = "R"
if self.flags & self.SHF_WRITE:
str += 'W'
class ESPCoreDumpElfFile(esptool.ELFFile):
+ """ Wrapper class for core dump ELF file
+ """
# ELF file type
ET_NONE = 0x0 # No file type
ET_REL = 0x1 # Relocatable file
PT_PHDR = 0x6
def __init__(self, name=None):
+ """Constructor for core dump ELF file
+ """
if name:
super(ESPCoreDumpElfFile, self).__init__(name)
else:
self.e_machine = self.EM_NONE
def _read_elf_file(self, f):
+ """Reads core dump from ELF file
+ """
# read the ELF file header
LEN_FILE_HEADER = 0x34
try:
_ehsize, phentsize,phnum,_shentsize,
shnum,shstrndx) = struct.unpack("<16sHHLLLLLHHHHHH", f.read(LEN_FILE_HEADER))
except struct.error as e:
- raise FatalError("Failed to read a valid ELF header from %s: %s" % (self.name, e))
+ raise ESPCoreDumpError("Failed to read a valid ELF header from %s: %s" % (self.name, e))
if ident[0] != '\x7f' or ident[1:4] != 'ELF':
- raise FatalError("%s has invalid ELF magic header" % self.name)
+ raise ESPCoreDumpError("%s has invalid ELF magic header" % self.name)
if machine != self.EM_XTENSA:
- raise FatalError("%s does not appear to be an Xtensa ELF file. e_machine=%04x" % (self.name, machine))
+ raise ESPCoreDumpError("%s does not appear to be an Xtensa ELF file. e_machine=%04x" % (self.name, machine))
self.e_type = type
self.e_machine = machine
if shnum > 0:
self.program_segments = []
def _read_sections(self, f, section_header_offs, shstrndx):
+ """Reads core dump sections from ELF file
+ """
f.seek(section_header_offs)
section_header = f.read()
LEN_SEC_HEADER = 0x28
if len(section_header) == 0:
- raise FatalError("No section header found at offset %04x in ELF file." % section_header_offs)
+ raise ESPCoreDumpError("No section header found at offset %04x in ELF file." % section_header_offs)
if len(section_header) % LEN_SEC_HEADER != 0:
print 'WARNING: Unexpected ELF section header length %04x is not mod-%02x' % (len(section_header),LEN_SEC_HEADER)
# search for the string table section
if not shstrndx * LEN_SEC_HEADER in section_header_offsets:
- raise FatalError("ELF file has no STRTAB section at shstrndx %d" % shstrndx)
+ raise ESPCoreDumpError("ELF file has no STRTAB section at shstrndx %d" % shstrndx)
_,sec_type,_,_,sec_size,sec_offs = read_section_header(shstrndx * LEN_SEC_HEADER)
if sec_type != esptool.ELFFile.SEC_TYPE_STRTAB:
print 'WARNING: ELF file has incorrect STRTAB section type 0x%02x' % sec_type
self.sections = prog_sections
def _read_program_segments(self, f, seg_table_offs, entsz, num):
+ """Reads core dump program segments from ELF file
+ """
f.seek(seg_table_offs)
seg_table = f.read(entsz*num)
LEN_SEG_HEADER = 0x20
if len(seg_table) == 0:
- raise FatalError("No program header table found at offset %04x in ELF file." % seg_table_offs)
+ raise ESPCoreDumpError("No program header table found at offset %04x in ELF file." % seg_table_offs)
if len(seg_table) % LEN_SEG_HEADER != 0:
print 'WARNING: Unexpected ELF program header table length %04x is not mod-%02x' % (len(seg_table),LEN_SEG_HEADER)
seg_table_offs = range(0, len(seg_table), LEN_SEG_HEADER)
def read_program_header(offs):
- type,offset,vaddr,_paddr,filesz,_memsz,_flags,_align = struct.unpack_from("<LLLLLLLL", seg_table[offs:])
- return (type,offset,vaddr,filesz)
+ type,offset,vaddr,_paddr,filesz,_memsz,flags,_align = struct.unpack_from("<LLLLLLLL", seg_table[offs:])
+ return (type,offset,vaddr,filesz,flags)
all_segments = [read_program_header(offs) for offs in seg_table_offs]
prog_segments = [s for s in all_segments if s[0] == self.PT_LOAD]
f.seek(offs)
return f.read(size)
- prog_segments = [esptool.ImageSegment(vaddr, read_data(offset, filesz), offset) for (_type, offset, vaddr, filesz) in prog_segments
+ prog_segments = [ESPCoreDumpSegment(vaddr, read_data(offset, filesz), type, flags) for (type, offset, vaddr, filesz,flags) in prog_segments
if vaddr != 0]
self.program_segments = prog_segments
-# print "prog_segments=%s" % (self.program_segments)
- # currently merging is not supported
def add_program_segment(self, addr, data, type, flags):
+ """Adds new program segment
+ """
+ # TODO: currently merging with existing segments is not supported
data_sz = len(data)
- print "add_program_segment: %x %d" % (addr, data_sz)
# check for overlapping and merge if needed
if addr != 0 and data_sz != 0:
for ps in self.program_segments:
seg_len = len(ps.data)
if addr >= ps.addr and addr < (ps.addr + seg_len):
- raise FatalError("Can not add overlapping region [%x..%x] to ELF file. Conflict with existing [%x..%x]." %
+ raise ESPCoreDumpError("Can not add overlapping region [%x..%x] to ELF file. Conflict with existing [%x..%x]." %
(addr, addr + data_sz - 1, ps.addr, ps.addr + seg_len - 1))
if (addr + data_sz) > ps.addr and (addr + data_sz) <= (ps.addr + seg_len):
- raise FatalError("Can not add overlapping region [%x..%x] to ELF file. Conflict with existing [%x..%x]." %
+ raise ESPCoreDumpError("Can not add overlapping region [%x..%x] to ELF file. Conflict with existing [%x..%x]." %
(addr, addr + data_sz - 1, ps.addr, ps.addr + seg_len - 1))
# append
self.program_segments.append(ESPCoreDumpSegment(addr, data, type, flags))
- # currently dumps only program segments.
- # dumping sections is not supported yet
def dump(self, f):
- print "dump to '%s'" % f
+ """Write core dump contents to file
+ """
+ # TODO: currently dumps only program segments.
+ # dumping sections is not supported yet
# write ELF header
ehdr = Elf32FileHeader()
ehdr.e_type = self.e_type
f.write(ehdr.dump())
# write program header table
cur_off = ehdr.e_ehsize + ehdr.e_phnum * ehdr.e_phentsize
-# print "" % (ehdr.e_ehsize, ehdr.e_phnum, ehdr.e_phentsize)
for i in range(len(self.program_segments)):
- print "dump header for seg '%s'" % self.program_segments[i]
phdr = Elf32ProgramHeader()
phdr.p_type = self.program_segments[i].type
phdr.p_offset = cur_off
phdr.p_memsz = phdr.p_filesz # TODO
phdr.p_flags = self.program_segments[i].flags
phdr.p_align = 0 # TODO
-# print "header '%s'" % phdr
f.write(phdr.dump())
cur_off += phdr.p_filesz
# write program segments
for i in range(len(self.program_segments)):
- print "dump seg '%s'" % self.program_segments[i]
f.write(self.program_segments[i].data)
-class ESPCoreDumpError(RuntimeError):
- """
- TBD
- """
- def __init__(self, message):
- super(ESPCoreDumpError, self).__init__(message)
-
-
class ESPCoreDumpLoaderError(ESPCoreDumpError):
- """
- TBD
+ """Core dump loader error class
"""
def __init__(self, message):
+ """Constructor for core dump loader error
+ """
super(ESPCoreDumpLoaderError, self).__init__(message)
class ESPCoreDumpLoader(object):
- """
- TBD
+ """Core dump loader base class
"""
ESP32_COREDUMP_HDR_FMT = '<3L'
ESP32_COREDUMP_HDR_SZ = struct.calcsize(ESP32_COREDUMP_HDR_FMT)
ESP32_COREDUMP_TSK_HDR_FMT = '<3L'
ESP32_COREDUMP_TSK_HDR_SZ = struct.calcsize(ESP32_COREDUMP_TSK_HDR_FMT)
+
def __init__(self):
+ """Base constructor for core dump loader
+ """
self.fcore = None
def _get_registers_from_stack(self, data, grows_down):
- # from "gdb/xtensa-tdep.h"
- # typedef struct
- # {
- #0 xtensa_elf_greg_t pc;
- #1 xtensa_elf_greg_t ps;
- #2 xtensa_elf_greg_t lbeg;
- #3 xtensa_elf_greg_t lend;
- #4 xtensa_elf_greg_t lcount;
- #5 xtensa_elf_greg_t sar;
- #6 xtensa_elf_greg_t windowstart;
- #7 xtensa_elf_greg_t windowbase;
- #8..63 xtensa_elf_greg_t reserved[8+48];
- #64 xtensa_elf_greg_t ar[64];
- # } xtensa_elf_gregset_t;
+ """Returns list of registers (in GDB format) from xtensa stack frame
+ """
+ # from "gdb/xtensa-tdep.h"
+ # typedef struct
+ # {
+ #0 xtensa_elf_greg_t pc;
+ #1 xtensa_elf_greg_t ps;
+ #2 xtensa_elf_greg_t lbeg;
+ #3 xtensa_elf_greg_t lend;
+ #4 xtensa_elf_greg_t lcount;
+ #5 xtensa_elf_greg_t sar;
+ #6 xtensa_elf_greg_t windowstart;
+ #7 xtensa_elf_greg_t windowbase;
+ #8..63 xtensa_elf_greg_t reserved[8+48];
+ #64 xtensa_elf_greg_t ar[64];
+ # } xtensa_elf_gregset_t;
REG_PC_IDX=0
REG_PS_IDX=1
REG_LB_IDX=2
# FIXME: acc to xtensa_elf_gregset_t number of regs must be 128,
# but gdb complanis when it less then 129
REG_NUM=129
-
+
XT_SOL_EXIT=0
XT_SOL_PC=1
XT_SOL_PS=2
XT_SOL_AR_START=4
XT_SOL_AR_NUM=4
XT_SOL_FRMSZ=8
-
+
XT_STK_EXIT=0
XT_STK_PC=1
XT_STK_PS=2
XT_STK_LEND=23
XT_STK_LCOUNT=24
XT_STK_FRMSZ=25
-
+
regs = [0] * REG_NUM
# TODO: support for growing up stacks
if not grows_down:
- print "Growing up stacks are not supported for now!"
- return regs
- # for i in range(REG_NUM):
- # regs[i] = i
- # return regs
+ raise ESPCoreDumpLoaderError("Growing up stacks are not supported for now!")
ex_struct = "<%dL" % XT_STK_FRMSZ
if len(data) < struct.calcsize(ex_struct):
- print "Too small stack to keep frame: %d bytes!" % len(data)
- return regs
-
+ raise ESPCoreDumpLoaderError("Too small stack to keep frame: %d bytes!" % len(data))
+
stack = struct.unpack(ex_struct, data[:struct.calcsize(ex_struct)])
# Stack frame type indicator is always the first item
rc = stack[XT_STK_EXIT]
if rc != 0:
- print "EXCSTACKFRAME %d" % rc
regs[REG_PC_IDX] = stack[XT_STK_PC]
regs[REG_PS_IDX] = stack[XT_STK_PS]
for i in range(XT_STK_AR_NUM):
regs[REG_LB_IDX] = stack[XT_STK_LBEG]
regs[REG_LE_IDX] = stack[XT_STK_LEND]
regs[REG_LC_IDX] = stack[XT_STK_LCOUNT]
- print "get_registers_from_stack: pc %x ps %x a0 %x a1 %x a2 %x a3 %x" % (
- regs[REG_PC_IDX], regs[REG_PS_IDX], regs[REG_AR_NUM + 0],
- regs[REG_AR_NUM + 1], regs[REG_AR_NUM + 2], regs[REG_AR_NUM + 3])
# FIXME: crashed and some running tasks (e.g. prvIdleTask) have EXCM bit set
# and GDB can not unwind callstack properly (it implies not windowed call0)
if regs[REG_PS_IDX] & (1 << 5):
regs[REG_PS_IDX] &= ~(1 << 4)
else:
- print "SOLSTACKFRAME %d" % rc
regs[REG_PC_IDX] = stack[XT_SOL_PC]
regs[REG_PS_IDX] = stack[XT_SOL_PS]
for i in range(XT_SOL_AR_NUM):
regs[REG_AR_START_IDX + i] = stack[XT_SOL_AR_START + i]
nxt = stack[XT_SOL_NEXT]
- print "get_registers_from_stack: pc %x ps %x a0 %x a1 %x a2 %x a3 %x" % (
- regs[REG_PC_IDX], regs[REG_PS_IDX], regs[REG_AR_NUM + 0],
- regs[REG_AR_NUM + 1], regs[REG_AR_NUM + 2], regs[REG_AR_NUM + 3])
# TODO: remove magic hack with saved PC to get proper value
regs[REG_PC_IDX] = ((regs[REG_PC_IDX] & 0x3FFFFFFF) | 0x40000000)
return regs
def remove_tmp_file(self, fname):
+ """Silently removes temporary file
+ """
try:
os.remove(fname)
except OSError as e:
print "Warning failed to remove temp file '%s' (%d)!" % (fname, e.errno)
def cleanup(self):
+ """Cleans up loader resources
+ """
if self.fcore:
self.fcore.close()
if self.fcore_name:
self.remove_tmp_file(self.fcore_name)
def create_corefile(self, core_fname=None, off=0):
- """ TBD
+ """Creates core dump ELF file
"""
core_off = off
data = self.read_data(core_off, self.ESP32_COREDUMP_HDR_SZ)
tcbsz_aligned = tcbsz
if tcbsz_aligned % 4:
tcbsz_aligned = 4*(tcbsz_aligned/4 + 1)
- print "tot_len=%d, task_num=%d, tcbsz=%d" % (tot_len,task_num,tcbsz)
core_off += self.ESP32_COREDUMP_HDR_SZ
core_elf = ESPCoreDumpElfFile()
notes = b''
else:
stack_len = stack_top - stack_end
stack_base = stack_end
- print "tcb_addr=%x, stack_top=%x, stack_end=%x, stack_len=%d" % (tcb_addr,stack_top,stack_end,stack_len)
stack_len_aligned = stack_len
if stack_len_aligned % 4:
core_elf.add_program_segment(tcb_addr, data[:tcbsz - tcbsz_aligned], ESPCoreDumpElfFile.PT_LOAD, ESPCoreDumpSegment.PF_R | ESPCoreDumpSegment.PF_W)
else:
core_elf.add_program_segment(tcb_addr, data, ESPCoreDumpElfFile.PT_LOAD, ESPCoreDumpSegment.PF_R | ESPCoreDumpSegment.PF_W)
- # print "tcb=%s" % data
core_off += tcbsz_aligned
data = self.read_data(core_off, stack_len_aligned)
- # print "stk=%s" % data
if stack_len != stack_len_aligned:
data = data[:stack_len - stack_len_aligned]
core_elf.add_program_segment(stack_base, data, ESPCoreDumpElfFile.PT_LOAD, ESPCoreDumpSegment.PF_R | ESPCoreDumpSegment.PF_W)
prstatus.pr_cursig = 0 # TODO: set sig only for current/failed task
prstatus.pr_pid = i # TODO: use pid assigned by OS
note = Elf32NoteDesc("CORE", 1, prstatus.dump() + struct.pack("<%dL" % len(task_regs), *task_regs)).dump()
- print "NOTE_LEN %d" % len(note)
notes += note
# add notes
return core_fname
def read_data(self, off, sz):
-# print "read_data: %x %d" % (off, sz)
+ """Reads data from raw core dump got from flash or UART
+ """
self.fcore.seek(off)
data = self.fcore.read(sz)
-# print "data1: %s" % data
return data
class ESPCoreDumpFileLoader(ESPCoreDumpLoader):
- """ TBD
+ """Core dump file loader class
"""
def __init__(self, path, b64 = False):
+ """Constructor for core dump file loader
+ """
super(ESPCoreDumpFileLoader, self).__init__()
self.fcore = self._load_coredump(path, b64)
-
+
def _load_coredump(self, path, b64):
"""Loads core dump from (raw binary or base64-encoded) file
"""
class ESPCoreDumpFlashLoader(ESPCoreDumpLoader):
- """ TBD
+ """Core dump flash loader class
"""
ESP32_COREDUMP_FLASH_MAGIC_START = 0xE32C04ED
ESP32_COREDUMP_FLASH_MAGIC_END = 0xE32C04ED
ESP32_COREDUMP_FLASH_HDR_SZ = struct.calcsize(ESP32_COREDUMP_FLASH_HDR_FMT)
def __init__(self, off, tool_path=None, chip='esp32', port=None, baud=None):
-# print "esptool.__file__ %s" % esptool.__file__
+ """Constructor for core dump flash loader
+ """
super(ESPCoreDumpFlashLoader, self).__init__()
if not tool_path:
self.path = esptool.__file__
self.chip = chip
self.dump_sz = 0
self.fcore = self._load_coredump(off)
-
+
def _load_coredump(self, off):
"""Loads core dump from flash
"""
return f
def _read_core_dump_length(self, f):
- print "Read core dump header from '%s'" % f.name
+ """Reads core dump length
+ """
data = f.read(4*4)
mag1,tot_len,task_num,tcbsz = struct.unpack_from(self.ESP32_COREDUMP_FLASH_HDR_FMT, data)
if mag1 != self.ESP32_COREDUMP_FLASH_MAGIC_START:
return tot_len
def create_corefile(self, core_fname=None):
- """ TBD
+ """Checks flash coredump data integrity and creates ELF file
"""
data = self.read_data(0, self.ESP32_COREDUMP_FLASH_MAGIC_SZ)
mag1, = struct.unpack_from(self.ESP32_COREDUMP_FLASH_MAGIC_FMT, data)
if mag1 != self.ESP32_COREDUMP_FLASH_MAGIC_START:
- print "Invalid start marker %x" % mag1
- return None
+ raise ESPCoreDumpLoaderError("Invalid start marker %x" % mag1)
data = self.read_data(self.dump_sz-self.ESP32_COREDUMP_FLASH_MAGIC_SZ, self.ESP32_COREDUMP_FLASH_MAGIC_SZ)
mag2, = struct.unpack_from(self.ESP32_COREDUMP_FLASH_MAGIC_FMT, data)
if mag2 != self.ESP32_COREDUMP_FLASH_MAGIC_END:
- print "Invalid end marker %x" % mag2
- return None
+ raise ESPCoreDumpLoaderError("Invalid end marker %x" % mag2)
return super(ESPCoreDumpFlashLoader, self).create_corefile(core_fname, off=self.ESP32_COREDUMP_FLASH_MAGIC_SZ)
class GDBMIOutRecordHandler(object):
- """ TBD
+ """GDB/MI output record handler base class
"""
TAG = ''
def __init__(self, f, verbose=False):
+ """Base constructor for GDB/MI output record handler
+ """
self.verbose = verbose
def execute(self, ln):
+ """Base method to execute GDB/MI output record handler function
+ """
if self.verbose:
print "%s.execute '%s'" % (self.__class__.__name__, ln)
class GDBMIOutStreamHandler(GDBMIOutRecordHandler):
- """ TBD
+ """GDB/MI output stream handler class
"""
def __init__(self, f, verbose=False):
+ """Constructor for GDB/MI output stream handler
+ """
super(GDBMIOutStreamHandler, self).__init__(None, verbose)
self.func = f
def execute(self, ln):
+ """Executes GDB/MI output stream handler function
+ """
GDBMIOutRecordHandler.execute(self, ln)
if self.func:
# remove TAG / quotes and replace c-string \n with actual NL
class GDBMIResultHandler(GDBMIOutRecordHandler):
- """ TBD
+ """GDB/MI result handler class
"""
TAG = '^'
RC_DONE = 'done'
RC_EXIT = 'exit'
def __init__(self, verbose=False):
+ """Constructor for GDB/MI result handler
+ """
super(GDBMIResultHandler, self).__init__(None, verbose)
self.result_class = None
self.result_str = None
def _parse_rc(self, ln, rc):
+ """Parses result code
+ """
rc_str = "{0}{1}".format(self.TAG, rc)
if ln.startswith(rc_str):
self.result_class = rc
return False
def execute(self, ln):
+ """Executes GDB/MI result handler function
+ """
GDBMIOutRecordHandler.execute(self, ln)
if self._parse_rc(ln, self.RC_DONE):
return
return
if self._parse_rc(ln, self.RC_EXIT):
return
- print "Unknown result: '%s'" % ln
+ print "Unknown GDB/MI result: '%s'" % ln
class GDBMIStreamConsoleHandler(GDBMIOutStreamHandler):
- """ TBD
+ """GDB/MI console stream handler class
"""
TAG = '~'
def dbg_corefile(args):
- """ TBD
+ """ Command to load core dump from file or flash and run GDB debug session with it
"""
global CLOSE_FDS
loader = None
def info_corefile(args):
-# def info_corefile(args):
- """ TBD
+ """ Command to load core dump from file or flash and print it's data in user friendly form
"""
global CLOSE_FDS
def gdbmi_console_stream_handler(ln):
- # print ln
sys.stdout.write(ln)
sys.stdout.flush()
-
def gdbmi_read2prompt(f, out_handlers=None):
- """ TBD
- """
while True:
ln = f.readline().rstrip(' \r\n')
if ln == '(gdb)':
gdbmi_read2prompt(p.stdout, handlers)
exe_elf = ESPCoreDumpElfFile(args.prog)
core_elf = ESPCoreDumpElfFile(core_fname)
- merged_segs = []#[(s, 0) for s in exe_elf.sections if s.flags & (esptool.ELFSection.SHF_ALLOC | esptool.ELFSection.SHF_WRITE)]
+ merged_segs = []
+ core_segs = core_elf.program_segments
for s in exe_elf.sections:
merged = False
- for ps in core_elf.program_segments:
+ for ps in core_segs:
if ps.addr <= s.addr and ps.addr + len(ps.data) >= s.addr:
# sec: |XXXXXXXXXX|
# seg: |...XXX.............|
# merged: |XXXXXXXXXXXXXXXXX|
seg_len = len(ps.data)
merged_segs.append((s.name, seg_addr, seg_len, s.attr_str(), True))
+ core_segs.remove(ps)
merged = True
elif ps.addr >= s.addr and ps.addr <= s.addr + len(s.data):
# sec: |XXXXXXXXXX|
# merged: |XXXXXXXXXX|
seg_len = len(s.data)
merged_segs.append((s.name, seg_addr, seg_len, s.attr_str(), True))
+ core_segs.remove(ps)
merged = True
if not merged:
merged_segs.append((s.name, s.addr, len(s.data), s.attr_str(), False))
-# merged_segs.append(('None', ps.addr, len(ps.data), 'None'))
print "==============================================================="
print "==================== ESP32 CORE DUMP START ===================="
gdbmi_read2prompt(p.stdout, handlers)
if handlers[GDBMIResultHandler.TAG].result_class != GDBMIResultHandler.RC_DONE:
print "GDB/MI command failed (%s / %s)!" % (handlers[GDBMIResultHandler.TAG].result_class, handlers[GDBMIResultHandler.TAG].result_str)
- print "\n======================= MEMORY REGIONS ========================"
+ print "\n======================= ALL MEMORY REGIONS ========================"
print "Name Address Size Attrs"
for ms in merged_segs:
print "%s 0x%x 0x%x %s" % (ms[0], ms[1], ms[2], ms[3])
type=int,
default=os.environ.get('ESPTOOL_BAUD', esptool.ESPLoader.ESP_ROM_BAUD))
-# parser.add_argument(
-# '--no-stub',
-# help="Disable launching the flasher stub, only talk to ROM bootloader. Some features will not be available.",
-# action='store_true')
-
subparsers = parser.add_subparsers(
dest='operation',
help='Run coredumper {command} -h for additional help')
args = parser.parse_args()
- print 'coredumper.py v%s' % __version__
-
- # operation function can take 1 arg (args), 2 args (esp, arg)
- # or be a member function of the ESPLoader class.
+ print 'espcoredump.py v%s' % __version__
operation_func = globals()[args.operation]
operation_func(args)
--- /dev/null
+ESP32 Core Dump
+================
+
+Overview
+--------
+
+ESP-IDF provides support to generate core dumps on unrecoverable software errors. This useful technique allows post-mortem analisys of software state at the moment of failure.
+Upon the crash system enters panic state, prints some information and halts or reboots depending configuration. User can choose to generate core dump in order to analyse
+the reason of failure on PC later on. Core dump contains snapshots of all tasks in the system at the moment of failure. Snapshots include tasks control blocks (TCB) and stacks.
+So it is possible to find out what task, at what instruction (line of code) and what callstack of that task lead to the crash.
+ESP-IDF provides special script `espcoredump.py` to help users to retrieve and analyse core dumps. This tool provides two commands for core dumps analysis:
+
+* info_corefile - prints crashed task's registers, callstack, list of available tasks in the system, memory regions and contents of memory stored in core dump (TCBs and stacks)
+* dbg_corefile - creates core dump ELF file and runs GDB debug session with this file. User can examine memory, variables and tasks states manually. Note that since not all memory is saved in core dump only values of variables allocated on stack will be meaningfull
+
+Configuration
+-------------
+
+Currently there are three options related to core dump generation which user can choose in configuration menu of the application (`make menuconfig`):
+
+* Disable core dump generation
+* Save core dump to flash
+* Print core dump to UART
+
+These options can be choosen in Components -> ESP32-specific config -> Core dump destination menu item.
+
+Save core dump to flash
+-----------------------
+
+When this option is selected core dumps are saved to special partition on flash. When using default partition table files which are provided with ESP-IDF it automatically
+allocates necessary space on flash, But if user wants to use its own layout file together with core dump feature it should define separate partition for core dump
+as it is shown below::
+
+ # Name, Type, SubType, Offset, Size
+ # Note: if you change the phy_init or app partition offset, make sure to change the offset in Kconfig.projbuild
+ nvs, data, nvs, 0x9000, 0x6000
+ phy_init, data, phy, 0xf000, 0x1000
+ factory, app, factory, 0x10000, 1M
+ coredump, data, 3, , 64K
+
+There are no special requrements for partition name. It can be choosen according to the user application needs, but partition type should be 'data' and
+sub-type should be 3. Also when choosing partition size note that core dump data structure introduces constant overhead of 20 bytes and per-task overhead of 12 bytes.
+This overhead does not include size of TCB and stack for every task. So partirion size should be at least 20 + max tasks number x (12 + TCB size + max task stack size) bytes.
+
+The example of generic command to analyze core dump from flash is: `espcoredump.py -p </path/to/serial/port> info_corefile </path/to/program/elf/file>`
+or `espcoredump.py -p </path/to/serial/port> dbg_corefile </path/to/program/elf/file>`
+
+Print core dump to UART
+-----------------------
+
+When this option is selected base64-encoded core dumps are printed on UART upon system panic. In this case user should save core dump text body to some file manually and
+then run the following command: `espcoredump.py -p </path/to/serial/port> info_corefile -t b64 -c </path/to/saved/base64/text> </path/to/program/elf/file>`
+or `espcoredump.py -p </path/to/serial/port> dbg_corefile -t b64 -c </path/to/saved/base64/text> </path/to/program/elf/file>`
+
+Base64-encoded body of core dump will be between the following header and footer::
+
+ ================= CORE DUMP START =================
+ <body of base64-encoded core dump, copy it to file on disk>
+ ================= CORE DUMP END ===================
+
+Command Options For 'espcoredump.py'
+--------------------------------------------
+
+usage: coredumper [-h] [--chip {auto,esp32}] [--port PORT] [--baud BAUD]
+ {dbg_corefile,info_corefile} ...
+
+espcoredump.py v0.1-dev - ESP32 Core Dump Utility
+
+positional arguments:
+ {dbg_corefile,info_corefile}
+ Run coredumper {command} -h for additional help
+ dbg_corefile Starts GDB debugging session with specified corefile
+ info_corefile Print core dump info from file
+
+optional arguments:
+ -h, --help show this help message and exit
+ --chip {auto,esp32}, -c {auto,esp32}
+ Target chip type
+ --port PORT, -p PORT Serial port device
+ --baud BAUD, -b BAUD Serial port baud rate used when flashing/reading
+
+
+usage: coredumper info_corefile [-h] [--gdb GDB] [--core CORE]
+ [--core-format CORE_FORMAT] [--off OFF]
+ [--save-core SAVE_CORE] [--print-mem]
+ prog
+
+positional arguments:
+ prog Path to program's ELF binary
+
+optional arguments:
+ -h, --help show this help message and exit
+ --gdb GDB, -g GDB Path to gdb
+ --core CORE, -c CORE Path to core dump file (if skipped core dump will be
+ read from flash)
+ --core-format CORE_FORMAT, -t CORE_FORMAT
+ (elf, raw or b64). File specified with "-c" is an ELF
+ ("elf"), raw (raw) or base64-encoded (b64) binary
+ --off OFF, -o OFF Ofsset of coredump partition in flash (type "make
+ partition_table" to see).
+ --save-core SAVE_CORE, -s SAVE_CORE
+ Save core to file. Othwerwise temporary core file will
+ be deleted. Does not work with "-c"
+ --print-mem, -m Print memory dump
+
+
+usage: coredumper dbg_corefile [-h] [--gdb GDB] [--core CORE]
+ [--core-format CORE_FORMAT] [--off OFF]
+ [--save-core SAVE_CORE]
+ prog
+
+positional arguments:
+ prog Path to program's ELF binary
+
+optional arguments:
+ -h, --help show this help message and exit
+ --gdb GDB, -g GDB Path to gdb
+ --core CORE, -c CORE Path to core dump file (if skipped core dump will be
+ read from flash)
+ --core-format CORE_FORMAT, -t CORE_FORMAT
+ (elf, raw or b64). File specified with "-c" is an ELF
+ ("elf"), raw (raw) or base64-encoded (b64) binary
+ --off OFF, -o OFF Ofsset of coredump partition in flash (type "make
+ partition_table" to see).
+ --save-core SAVE_CORE, -s SAVE_CORE
+ Save core to file. Othwerwise temporary core file will
+ be deleted. Ignored with "-c"