}
Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
+
+ // Perform vector logical not on comparison with zero vector.
+ if (E->getType()->isExtVectorType()) {
+ Value *Oper = Visit(E->getSubExpr());
+ Value *Zero = llvm::Constant::getNullValue(Oper->getType());
+ Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
+ return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
+ }
+
// Compare operand to zero.
Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
}
Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
+
+ // Perform vector logical and on comparisons with zero vectors.
+ if (E->getType()->isVectorType()) {
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+ Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
+ LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
+ RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
+ Value *And = Builder.CreateAnd(LHS, RHS);
+ return Builder.CreateSExt(And, Zero->getType(), "sext");
+ }
+
llvm::Type *ResTy = ConvertType(E->getType());
// If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
}
Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
+
+ // Perform vector logical or on comparisons with zero vectors.
+ if (E->getType()->isVectorType()) {
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+ Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
+ LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
+ RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
+ Value *Or = Builder.CreateOr(LHS, RHS);
+ return Builder.CreateSExt(Or, Zero->getType(), "sext");
+ }
+
llvm::Type *ResTy = ConvertType(E->getType());
// If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
return InvalidOperands(Loc, LHS, RHS);
}
+
+// Return a signed type that is of identical size and number of elements.
+// For floating point vectors, return an integer type of identical size
+// and number of elements.
+QualType Sema::GetSignedVectorType(QualType V) {
+ const VectorType *VTy = V->getAs<VectorType>();
+ unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
+ if (TypeSize == Context.getTypeSize(Context.CharTy))
+ return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
+ else if (TypeSize == Context.getTypeSize(Context.ShortTy))
+ return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
+ else if (TypeSize == Context.getTypeSize(Context.IntTy))
+ return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
+ else if (TypeSize == Context.getTypeSize(Context.LongTy))
+ return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
+ assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
+ "Unhandled vector element size in vector compare");
+ return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
+}
+
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
/// operates on extended vector types. Instead of producing an IntTy result,
/// like a scalar comparison, a vector comparison produces a vector of integer
assert (RHS.get()->getType()->hasFloatingRepresentation());
CheckFloatComparison(Loc, LHS.get(), RHS.get());
}
+
+ // Return a signed type for the vector.
+ return GetSignedVectorType(LHSType);
+}
- // Return a signed type that is of identical size and number of elements.
- // For floating point vectors, return an integer type of identical size
- // and number of elements.
- const VectorType *VTy = LHSType->getAs<VectorType>();
- unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
- if (TypeSize == Context.getTypeSize(Context.CharTy))
- return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
- else if (TypeSize == Context.getTypeSize(Context.ShortTy))
- return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
- else if (TypeSize == Context.getTypeSize(Context.IntTy))
- return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
- else if (TypeSize == Context.getTypeSize(Context.LongTy))
- return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
- assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
- "Unhandled vector element size in vector compare");
- return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
+QualType Sema::CheckVectorLogicalOperands(ExprResult LHS, ExprResult RHS,
+ SourceLocation Loc)
+{
+ // Ensure that either both operands are of the same vector type, or
+ // one operand is of a vector type and the other is of its element type.
+ QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
+ if (vType.isNull() || vType->isFloatingType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ return GetSignedVectorType(LHS.get()->getType());
}
inline QualType Sema::CheckBitwiseOperands(
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
+ // Check vector operands differently.
+ if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
+ return CheckVectorLogicalOperands(LHS, RHS, Loc);
+
// Diagnose cases where the user write a logical and/or but probably meant a
// bitwise one. We do this when the LHS is a non-bool integer and the RHS
// is a constant.
Input = ImpCastExprToType(Input.take(), Context.BoolTy,
ScalarTypeToBooleanCastKind(resultType));
}
+ }
+ else if (resultType->isExtVectorType()) {
+ // Handle vector types.
+ // Vector logical not returns the signed variant of the operand type.
+ resultType = GetSignedVectorType(resultType);
+ break;
} else {
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input.get()->getSourceRange());