return II;
}
+ unsigned ObjCOrBuiltinID = ReadUnalignedLE16(d);
unsigned Bits = ReadUnalignedLE16(d);
bool CPlusPlusOperatorKeyword = Bits & 0x01;
Bits >>= 1;
Bits >>= 1;
bool ExtensionToken = Bits & 0x01;
Bits >>= 1;
+ bool hadMacroDefinition = Bits & 0x01;
+ Bits >>= 1;
bool hasMacroDefinition = Bits & 0x01;
Bits >>= 1;
- unsigned ObjCOrBuiltinID = Bits & 0x7FF;
- Bits >>= 11;
assert(Bits == 0 && "Extra bits in the identifier?");
- DataLen -= 6;
+ DataLen -= 8;
// Build the IdentifierInfo itself and link the identifier ID with
// the new IdentifierInfo.
// If this identifier is a macro, deserialize the macro
// definition.
- if (hasMacroDefinition) {
+ if (hadMacroDefinition) {
// FIXME: Check for conflicts?
uint32_t Offset = ReadUnalignedLE32(d);
unsigned LocalSubmoduleID = ReadUnalignedLE32(d);
// module is not yet visible.
Reader.HiddenNamesMap[Owner].push_back(II);
}
- }
+ }
}
-
- Reader.setIdentifierIsMacro(II, F, Offset, Visible);
+
+ Reader.setIdentifierIsMacro(II, F, Offset, Visible && hasMacroDefinition);
DataLen -= 8;
}
Error("macro must have a name in AST file");
return;
}
-
- SourceLocation Loc = ReadSourceLocation(F, Record[1]);
- bool isUsed = Record[2];
+ unsigned NextIndex = 1;
+ SourceLocation Loc = ReadSourceLocation(F, Record, NextIndex);
MacroInfo *MI = PP.AllocateMacroInfo(Loc);
- MI->setIsUsed(isUsed);
+
+ SourceLocation UndefLoc = ReadSourceLocation(F, Record, NextIndex);
+ if (UndefLoc.isValid())
+ MI->setUndefLoc(UndefLoc);
+
+ MI->setIsUsed(Record[NextIndex++]);
MI->setIsFromAST();
- bool IsPublic = Record[3];
- unsigned NextIndex = 4;
+ bool IsPublic = Record[NextIndex++];
MI->setVisibility(IsPublic, ReadSourceLocation(F, Record, NextIndex));
-
+
if (RecType == PP_MACRO_FUNCTION_LIKE) {
// Decode function-like macro info.
bool isC99VarArgs = Record[NextIndex++];
D->Hidden = false;
else {
IdentifierInfo *II = Names[I].get<IdentifierInfo *>();
+ // FIXME: Check if this works correctly with macro history.
if (!II->hasMacroDefinition()) {
// Make sure that this macro hasn't been #undef'd in the mean-time.
llvm::DenseMap<IdentifierInfo*, MacroInfo*>::iterator Known
SmallVector<std::pair<const IdentifierInfo *, MacroInfo *>, 2>
MacrosToEmit;
llvm::SmallPtrSet<const IdentifierInfo*, 4> MacroDefinitionsSeen;
- for (Preprocessor::macro_iterator I = PP.macro_begin(Chain == 0),
+ for (Preprocessor::macro_iterator I = PP.macro_begin(Chain == 0),
E = PP.macro_end(Chain == 0);
I != E; ++I) {
- // FIXME: We'll need to store macro history in PCH.
- if (I->first->hasMacroDefinition()) {
- if (!IsModule || I->second->isPublic()) {
- MacroDefinitionsSeen.insert(I->first);
- MacrosToEmit.push_back(std::make_pair(I->first, I->second));
- }
+ if (!IsModule || I->second->isPublic()) {
+ MacroDefinitionsSeen.insert(I->first);
+ MacrosToEmit.push_back(std::make_pair(I->first, I->second));
}
}
-
+
// Sort the set of macro definitions that need to be serialized by the
// name of the macro, to provide a stable ordering.
- llvm::array_pod_sort(MacrosToEmit.begin(), MacrosToEmit.end(),
+ llvm::array_pod_sort(MacrosToEmit.begin(), MacrosToEmit.end(),
&compareMacroDefinitions);
-
+
// Resolve any identifiers that defined macros at the time they were
// deserialized, adding them to the list of macros to emit (if appropriate).
for (unsigned I = 0, N = DeserializedMacroNames.size(); I != N; ++I) {
IdentifierInfo *Name
= const_cast<IdentifierInfo *>(DeserializedMacroNames[I]);
- if (Name->hasMacroDefinition() && MacroDefinitionsSeen.insert(Name))
+ if (Name->hadMacroDefinition() && MacroDefinitionsSeen.insert(Name))
MacrosToEmit.push_back(std::make_pair(Name, PP.getMacroInfo(Name)));
}
-
+
for (unsigned I = 0, N = MacrosToEmit.size(); I != N; ++I) {
const IdentifierInfo *Name = MacrosToEmit[I].first;
MacroInfo *MI = MacrosToEmit[I].second;
if (!MI)
continue;
-
- // Don't emit builtin macros like __LINE__ to the AST file unless they have
- // been redefined by the header (in which case they are not isBuiltinMacro).
- // Also skip macros from a AST file if we're chaining.
-
- // FIXME: There is a (probably minor) optimization we could do here, if
- // the macro comes from the original PCH but the identifier comes from a
- // chained PCH, by storing the offset into the original PCH rather than
- // writing the macro definition a second time.
- if (MI->isBuiltinMacro() ||
- (Chain &&
- Name->isFromAST() && !Name->hasChangedSinceDeserialization() &&
- MI->isFromAST() && !MI->hasChangedAfterLoad()))
- continue;
- AddIdentifierRef(Name, Record);
- MacroOffsets[Name] = Stream.GetCurrentBitNo();
- Record.push_back(MI->getDefinitionLoc().getRawEncoding());
- Record.push_back(MI->isUsed());
- Record.push_back(MI->isPublic());
- AddSourceLocation(MI->getVisibilityLocation(), Record);
- unsigned Code;
- if (MI->isObjectLike()) {
- Code = PP_MACRO_OBJECT_LIKE;
- } else {
- Code = PP_MACRO_FUNCTION_LIKE;
-
- Record.push_back(MI->isC99Varargs());
- Record.push_back(MI->isGNUVarargs());
- Record.push_back(MI->getNumArgs());
- for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end();
- I != E; ++I)
- AddIdentifierRef(*I, Record);
+ // History of macro definitions for this identifier in chronological order.
+ SmallVector<MacroInfo*, 8> MacroHistory;
+ while (MI) {
+ MacroHistory.push_back(MI);
+ MI = MI->getPreviousDefinition();
}
- // If we have a detailed preprocessing record, record the macro definition
- // ID that corresponds to this macro.
- if (PPRec)
- Record.push_back(MacroDefinitions[PPRec->findMacroDefinition(MI)]);
+ while (!MacroHistory.empty()) {
+ MI = MacroHistory.pop_back_val();
+
+ // Don't emit builtin macros like __LINE__ to the AST file unless they
+ // have been redefined by the header (in which case they are not
+ // isBuiltinMacro).
+ // Also skip macros from a AST file if we're chaining.
+
+ // FIXME: There is a (probably minor) optimization we could do here, if
+ // the macro comes from the original PCH but the identifier comes from a
+ // chained PCH, by storing the offset into the original PCH rather than
+ // writing the macro definition a second time.
+ if (MI->isBuiltinMacro() ||
+ (Chain &&
+ Name->isFromAST() && !Name->hasChangedSinceDeserialization() &&
+ MI->isFromAST() && !MI->hasChangedAfterLoad()))
+ continue;
- Stream.EmitRecord(Code, Record);
- Record.clear();
+ AddIdentifierRef(Name, Record);
+ MacroOffsets[Name] = Stream.GetCurrentBitNo();
+ AddSourceLocation(MI->getDefinitionLoc(), Record);
+ AddSourceLocation(MI->getUndefLoc(), Record);
+ Record.push_back(MI->isUsed());
+ Record.push_back(MI->isPublic());
+ AddSourceLocation(MI->getVisibilityLocation(), Record);
+ unsigned Code;
+ if (MI->isObjectLike()) {
+ Code = PP_MACRO_OBJECT_LIKE;
+ } else {
+ Code = PP_MACRO_FUNCTION_LIKE;
+
+ Record.push_back(MI->isC99Varargs());
+ Record.push_back(MI->isGNUVarargs());
+ Record.push_back(MI->getNumArgs());
+ for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end();
+ I != E; ++I)
+ AddIdentifierRef(*I, Record);
+ }
- // Emit the tokens array.
- for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) {
- // Note that we know that the preprocessor does not have any annotation
- // tokens in it because they are created by the parser, and thus can't be
- // in a macro definition.
- const Token &Tok = MI->getReplacementToken(TokNo);
-
- Record.push_back(Tok.getLocation().getRawEncoding());
- Record.push_back(Tok.getLength());
-
- // FIXME: When reading literal tokens, reconstruct the literal pointer if
- // it is needed.
- AddIdentifierRef(Tok.getIdentifierInfo(), Record);
- // FIXME: Should translate token kind to a stable encoding.
- Record.push_back(Tok.getKind());
- // FIXME: Should translate token flags to a stable encoding.
- Record.push_back(Tok.getFlags());
-
- Stream.EmitRecord(PP_TOKEN, Record);
+ // If we have a detailed preprocessing record, record the macro definition
+ // ID that corresponds to this macro.
+ if (PPRec)
+ Record.push_back(MacroDefinitions[PPRec->findMacroDefinition(MI)]);
+
+ Stream.EmitRecord(Code, Record);
Record.clear();
+
+ // Emit the tokens array.
+ for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) {
+ // Note that we know that the preprocessor does not have any annotation
+ // tokens in it because they are created by the parser, and thus can't
+ // be in a macro definition.
+ const Token &Tok = MI->getReplacementToken(TokNo);
+
+ Record.push_back(Tok.getLocation().getRawEncoding());
+ Record.push_back(Tok.getLength());
+
+ // FIXME: When reading literal tokens, reconstruct the literal pointer
+ // if it is needed.
+ AddIdentifierRef(Tok.getIdentifierInfo(), Record);
+ // FIXME: Should translate token kind to a stable encoding.
+ Record.push_back(Tok.getKind());
+ // FIXME: Should translate token flags to a stable encoding.
+ Record.push_back(Tok.getFlags());
+
+ Stream.EmitRecord(PP_TOKEN, Record);
+ Record.clear();
+ }
+ ++NumMacros;
}
- ++NumMacros;
}
Stream.ExitBlock();
}
II->getFETokenInfo<void>())
return true;
- return hasMacroDefinition(II, Macro);
+ return hadMacroDefinition(II, Macro);
}
-
- bool hasMacroDefinition(IdentifierInfo *II, MacroInfo *&Macro) {
- if (!II->hasMacroDefinition())
+
+ bool hadMacroDefinition(IdentifierInfo *II, MacroInfo *&Macro) {
+ if (!II->hadMacroDefinition())
return false;
-
- if (Macro || (Macro = PP.getMacroInfo(II)))
+
+ if (Macro || (Macro = PP.getMacroInfoHistory(II)))
return !Macro->isBuiltinMacro() && (!IsModule || Macro->isPublic());
-
- return false;
+
+ return false;
}
public:
unsigned DataLen = 4; // 4 bytes for the persistent ID << 1
MacroInfo *Macro = 0;
if (isInterestingIdentifier(II, Macro)) {
- DataLen += 2; // 2 bytes for builtin ID, flags
- if (hasMacroDefinition(II, Macro))
+ DataLen += 2; // 2 bytes for builtin ID
+ DataLen += 2; // 2 bytes for flags
+ if (hadMacroDefinition(II, Macro))
DataLen += 8;
-
+
for (IdentifierResolver::iterator D = IdResolver.begin(II),
DEnd = IdResolver.end();
D != DEnd; ++D)
}
clang::io::Emit32(Out, (ID << 1) | 0x01);
- uint32_t Bits = 0;
- bool HasMacroDefinition = hasMacroDefinition(II, Macro);
- Bits = (uint32_t)II->getObjCOrBuiltinID();
- assert((Bits & 0x7ff) == Bits && "ObjCOrBuiltinID too big for ASTReader.");
+ uint32_t Bits = (uint32_t)II->getObjCOrBuiltinID();
+ assert((Bits & 0xffff) == Bits && "ObjCOrBuiltinID too big for ASTReader.");
+ clang::io::Emit16(Out, Bits);
+ Bits = 0;
+ bool HadMacroDefinition = hadMacroDefinition(II, Macro);
+ bool HasMacroDefinition = HadMacroDefinition && II->hasMacroDefinition();
Bits = (Bits << 1) | unsigned(HasMacroDefinition);
+ Bits = (Bits << 1) | unsigned(HadMacroDefinition);
Bits = (Bits << 1) | unsigned(II->isExtensionToken());
Bits = (Bits << 1) | unsigned(II->isPoisoned());
Bits = (Bits << 1) | unsigned(II->hasRevertedTokenIDToIdentifier());
Bits = (Bits << 1) | unsigned(II->isCPlusPlusOperatorKeyword());
clang::io::Emit16(Out, Bits);
- if (HasMacroDefinition) {
+ if (HadMacroDefinition) {
clang::io::Emit32(Out, Writer.getMacroOffset(II));
- clang::io::Emit32(Out,
+ clang::io::Emit32(Out,
Writer.inferSubmoduleIDFromLocation(Macro->getDefinitionLoc()));
}
-
+
// Emit the declaration IDs in reverse order, because the
// IdentifierResolver provides the declarations as they would be
// visible (e.g., the function "stat" would come before the struct
void ASTWriter::IdentifierRead(IdentID ID, IdentifierInfo *II) {
IdentifierIDs[II] = ID;
- if (II->hasMacroDefinition())
+ if (II->hadMacroDefinition())
DeserializedMacroNames.push_back(II);
}