/// declaration context DC.
bool Encloses(const DeclContext *DC) const;
+ /// \brief Find the nearest non-closure ancestor of this context,
+ /// i.e. the innermost semantic parent of this context which is not
+ /// a closure. A context may be its own non-closure ancestor.
+ DeclContext *getNonClosureAncestor();
+ const DeclContext *getNonClosureAncestor() const {
+ return const_cast<DeclContext*>(this)->getNonClosureAncestor();
+ }
+
/// getPrimaryContext - There may be many different
/// declarations of the same entity (including forward declarations
/// of classes, multiple definitions of namespaces, etc.), each with
bool isCompoundAssignmentOp() const {
return isCompoundAssignmentOp(getOpcode());
}
+ static Opcode getOpForCompoundAssignment(Opcode Opc) {
+ assert(isCompoundAssignmentOp(Opc));
+ if (Opc >= BO_XorAssign)
+ return Opcode(unsigned(Opc) - BO_XorAssign + BO_Xor);
+ else
+ return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
+ }
static bool isShiftAssignOp(Opcode Opc) {
return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
};
+/// PseudoObjectExpr - An expression which accesses a pseudo-object
+/// l-value. A pseudo-object is an abstract object, accesses to which
+/// are translated to calls. The pseudo-object expression has a
+/// syntactic form, which shows how the expression was actually
+/// written in the source code, and a semantic form, which is a series
+/// of expressions to be executed in order which detail how the
+/// operation is actually evaluated. Optionally, one of the semantic
+/// forms may also provide a result value for the expression.
+///
+/// If any of the semantic-form expressions is an OpaqueValueExpr,
+/// that OVE is required to have a source expression, and it is bound
+/// to the result of that source expression. Such OVEs may appear
+/// only in subsequent semantic-form expressions and as
+/// sub-expressions of the syntactic form.
+///
+/// PseudoObjectExpr should be used only when an operation can be
+/// usefully described in terms of fairly simple rewrite rules on
+/// objects and functions that are meant to be used by end-developers.
+/// For example, under the Itanium ABI, dynamic casts are implemented
+/// as a call to a runtime function called __dynamic_cast; using this
+/// class to describe that would be inappropriate because that call is
+/// not really part of the user-visible semantics, and instead the
+/// cast is properly reflected in the AST and IR-generation has been
+/// taught to generate the call as necessary. In contrast, an
+/// Objective-C property access is semantically defined to be
+/// equivalent to a particular message send, and this is very much
+/// part of the user model. The name of this class encourages this
+/// modelling design.
+class PseudoObjectExpr : public Expr {
+ // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
+ // Always at least two, because the first sub-expression is the
+ // syntactic form.
+
+ // PseudoObjectExprBits.ResultIndex - The index of the
+ // sub-expression holding the result. 0 means the result is void,
+ // which is unambiguous because it's the index of the syntactic
+ // form. Note that this is therefore 1 higher than the value passed
+ // in to Create, which is an index within the semantic forms.
+ // Note also that ASTStmtWriter assumes this encoding.
+
+ Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
+ const Expr * const *getSubExprsBuffer() const {
+ return reinterpret_cast<const Expr * const *>(this + 1);
+ }
+
+ friend class ASTStmtReader;
+
+ PseudoObjectExpr(QualType type, ExprValueKind VK,
+ Expr *syntactic, ArrayRef<Expr*> semantic,
+ unsigned resultIndex);
+
+ PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
+
+ unsigned getNumSubExprs() const {
+ return PseudoObjectExprBits.NumSubExprs;
+ }
+
+public:
+ /// NoResult - A value for the result index indicating that there is
+ /// no semantic result.
+ enum { NoResult = ~0U };
+
+ static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
+ ArrayRef<Expr*> semantic,
+ unsigned resultIndex);
+
+ static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
+ unsigned numSemanticExprs);
+
+ /// Return the syntactic form of this expression, i.e. the
+ /// expression it actually looks like. Likely to be expressed in
+ /// terms of OpaqueValueExprs bound in the semantic form.
+ Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
+ const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
+
+ /// Return the index of the result-bearing expression into the semantics
+ /// expressions, or PseudoObjectExpr::NoResult if there is none.
+ unsigned getResultExprIndex() const {
+ if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
+ return PseudoObjectExprBits.ResultIndex - 1;
+ }
+
+ /// Return the result-bearing expression, or null if there is none.
+ Expr *getResultExpr() {
+ if (PseudoObjectExprBits.ResultIndex == 0)
+ return 0;
+ return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
+ }
+ const Expr *getResultExpr() const {
+ return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
+ }
+
+ unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
+
+ typedef Expr * const *semantics_iterator;
+ typedef const Expr * const *const_semantics_iterator;
+ semantics_iterator semantics_begin() {
+ return getSubExprsBuffer() + 1;
+ }
+ const_semantics_iterator semantics_begin() const {
+ return getSubExprsBuffer() + 1;
+ }
+ semantics_iterator semantics_end() {
+ return getSubExprsBuffer() + getNumSubExprs();
+ }
+ const_semantics_iterator semantics_end() const {
+ return getSubExprsBuffer() + getNumSubExprs();
+ }
+ Expr *getSemanticExpr(unsigned index) {
+ assert(index + 1 < getNumSubExprs());
+ return getSubExprsBuffer()[index + 1];
+ }
+ const Expr *getSemanticExpr(unsigned index) const {
+ return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
+ }
+
+ SourceLocation getExprLoc() const {
+ return getSyntacticForm()->getExprLoc();
+ }
+ SourceRange getSourceRange() const {
+ return getSyntacticForm()->getSourceRange();
+ }
+
+ child_range children() {
+ Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
+ return child_range(cs, cs + getNumSubExprs());
+ }
+
+ static bool classof(const Stmt *T) {
+ return T->getStmtClass() == PseudoObjectExprClass;
+ }
+ static bool classof(const PseudoObjectExpr *) { return true; }
+};
+
/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
/// similarly-named C++0x instructions. All of these instructions take one
return true;
}
+// PseudoObjectExpr is a special case because of the wierdness with
+// syntactic expressions and opaque values.
+template<typename Derived>
+bool RecursiveASTVisitor<Derived>::
+TraversePseudoObjectExpr(PseudoObjectExpr *S) {
+ TRY_TO(WalkUpFromPseudoObjectExpr(S));
+ TRY_TO(TraverseStmt(S->getSyntacticForm()));
+ for (PseudoObjectExpr::semantics_iterator
+ i = S->semantics_begin(), e = S->semantics_end(); i != e; ++i) {
+ Expr *sub = *i;
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(sub))
+ sub = OVE->getSourceExpr();
+ TRY_TO(TraverseStmt(sub));
+ }
+ return true;
+}
+
DEF_TRAVERSE_STMT(CXXScalarValueInitExpr, {
// This is called for code like 'return T()' where T is a built-in
// (i.e. non-class) type.
friend class CXXUnresolvedConstructExpr; // ctor
friend class CXXDependentScopeMemberExpr; // ctor
friend class OverloadExpr; // ctor
+ friend class PseudoObjectExpr; // ctor
friend class AtomicExpr; // ctor
unsigned : NumStmtBits;
unsigned NumPreArgs : 1;
};
+ class PseudoObjectExprBitfields {
+ friend class PseudoObjectExpr;
+ friend class ASTStmtReader; // deserialization
+
+ unsigned : NumExprBits;
+
+ // These don't need to be particularly wide, because they're
+ // strictly limited by the forms of expressions we permit.
+ unsigned NumSubExprs : 8;
+ unsigned ResultIndex : 32 - 8 - NumExprBits;
+ };
+
class ObjCIndirectCopyRestoreExprBitfields {
friend class ObjCIndirectCopyRestoreExpr;
unsigned : NumExprBits;
DeclRefExprBitfields DeclRefExprBits;
CastExprBitfields CastExprBits;
CallExprBitfields CallExprBits;
+ PseudoObjectExprBitfields PseudoObjectExprBits;
ObjCIndirectCopyRestoreExprBitfields ObjCIndirectCopyRestoreExprBits;
};
def ParenListExpr : DStmt<Expr>;
def VAArgExpr : DStmt<Expr>;
def GenericSelectionExpr : DStmt<Expr>;
+def PseudoObjectExpr : DStmt<Expr>;
// Atomic expressions
def AtomicExpr : DStmt<Expr>;
EXPR_BLOCK_DECL_REF,
/// \brief A GenericSelectionExpr record.
EXPR_GENERIC_SELECTION,
+ /// \brief A PseudoObjectExpr record.
+ EXPR_PSEUDO_OBJECT,
/// \brief An AtomicExpr record.
EXPR_ATOMIC,
if (!E) return false;
E = E->IgnoreParenCasts();
+
+ // Also look through property-getter sugar.
+ if (PseudoObjectExpr *pseudoOp = dyn_cast<PseudoObjectExpr>(E))
+ E = pseudoOp->getResultExpr()->IgnoreImplicit();
+
if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E))
return (ME->isInstanceMessage() && ME->getSelector() == DelegateSel);
- if (ObjCPropertyRefExpr *propE = dyn_cast<ObjCPropertyRefExpr>(E))
- return propE->getGetterSelector() == DelegateSel;
-
return false;
}
}
}
- if (ImplicitCastExpr *implCE = dyn_cast<ImplicitCastExpr>(E->getSubExpr())){
+ Expr *subExpr = E->getSubExpr();
+
+ // Look through pseudo-object expressions.
+ if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(subExpr)) {
+ subExpr = pseudo->getResultExpr();
+ assert(subExpr && "no result for pseudo-object of non-void type?");
+ }
+
+ if (ImplicitCastExpr *implCE = dyn_cast<ImplicitCastExpr>(subExpr)) {
if (implCE->getCastKind() == CK_ARCConsumeObject)
return rewriteToBridgedCast(E, OBC_BridgeRetained);
if (implCE->getCastKind() == CK_ARCReclaimReturnedObject)
return true;
}
+ bool VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
+ if (isZeroingPropIvar(POE) && isRemovable(POE)) {
+ Transaction Trans(Pass.TA);
+ Pass.TA.removeStmt(POE);
+ }
+
+ return true;
+ }
+
bool VisitBinaryOperator(BinaryOperator *BOE) {
if (isZeroingPropIvar(BOE) && isRemovable(BOE)) {
Transaction Trans(Pass.TA);
}
bool isZeroingPropIvar(Expr *E) {
- BinaryOperator *BOE = dyn_cast_or_null<BinaryOperator>(E);
- if (!BOE) return false;
+ E = E->IgnoreParens();
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
+ return isZeroingPropIvar(BO);
+ if (PseudoObjectExpr *PO = dyn_cast<PseudoObjectExpr>(E))
+ return isZeroingPropIvar(PO);
+ return false;
+ }
+ bool isZeroingPropIvar(BinaryOperator *BOE) {
if (BOE->getOpcode() == BO_Comma)
return isZeroingPropIvar(BOE->getLHS()) &&
isZeroingPropIvar(BOE->getRHS());
if (BOE->getOpcode() != BO_Assign)
- return false;
-
- ASTContext &Ctx = Pass.Ctx;
+ return false;
Expr *LHS = BOE->getLHS();
if (ObjCIvarRefExpr *IV = dyn_cast<ObjCIvarRefExpr>(LHS)) {
if (!IvarBacksPropertySynthesis)
return false;
}
- else if (ObjCPropertyRefExpr *PropRefExp = dyn_cast<ObjCPropertyRefExpr>(LHS)) {
- // TODO: Using implicit property decl.
- if (PropRefExp->isImplicitProperty())
- return false;
- if (ObjCPropertyDecl *PDecl = PropRefExp->getExplicitProperty()) {
- if (!SynthesizedProperties.count(PDecl))
- return false;
- }
- }
else
return false;
- Expr *RHS = BOE->getRHS();
- bool RHSIsNull = RHS->isNullPointerConstant(Ctx,
- Expr::NPC_ValueDependentIsNull);
- if (RHSIsNull)
+ return isZero(BOE->getRHS());
+ }
+
+ bool isZeroingPropIvar(PseudoObjectExpr *PO) {
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(PO->getSyntacticForm());
+ if (!BO) return false;
+ if (BO->getOpcode() != BO_Assign) return false;
+
+ ObjCPropertyRefExpr *PropRefExp =
+ dyn_cast<ObjCPropertyRefExpr>(BO->getLHS()->IgnoreParens());
+ if (!PropRefExp) return false;
+
+ // TODO: Using implicit property decl.
+ if (PropRefExp->isImplicitProperty())
+ return false;
+
+ if (ObjCPropertyDecl *PDecl = PropRefExp->getExplicitProperty()) {
+ if (!SynthesizedProperties.count(PDecl))
+ return false;
+ }
+
+ return isZero(cast<OpaqueValueExpr>(BO->getRHS())->getSourceExpr());
+ }
+
+ bool isZero(Expr *E) {
+ if (E->isNullPointerConstant(Pass.Ctx, Expr::NPC_ValueDependentIsNull))
return true;
- return isZeroingPropIvar(RHS);
+ return isZeroingPropIvar(E);
}
};
}
DeclContext *Decl::getNonClosureContext() {
- DeclContext *DC = getDeclContext();
+ return getDeclContext()->getNonClosureAncestor();
+}
+
+DeclContext *DeclContext::getNonClosureAncestor() {
+ DeclContext *DC = this;
// This is basically "while (DC->isClosure()) DC = DC->getParent();"
// except that it's significantly more efficient to cast to a known
R1 = getSourceRange();
return true;
+ case PseudoObjectExprClass: {
+ const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
+
+ // Only complain about things that have the form of a getter.
+ if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
+ isa<BinaryOperator>(PO->getSyntacticForm()))
+ return false;
+
+ Loc = getExprLoc();
+ R1 = getSourceRange();
+ return true;
+ }
+
case StmtExprClass: {
// Statement exprs don't logically have side effects themselves, but are
// sometimes used in macros in ways that give them a type that is unused.
} else if (const MaterializeTemporaryExpr *M
= dyn_cast<MaterializeTemporaryExpr>(this)) {
return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
+ if (const Expr *Source = OVE->getSourceExpr())
+ return Source->isNullPointerConstant(Ctx, NPC);
}
// C++0x nullptr_t is always a null pointer constant.
return cast<OpaqueValueExpr>(e);
}
+PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
+ unsigned numSemanticExprs) {
+ void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
+ (1 + numSemanticExprs) * sizeof(Expr*),
+ llvm::alignOf<PseudoObjectExpr>());
+ return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
+}
+
+PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
+ : Expr(PseudoObjectExprClass, shell) {
+ PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
+}
+
+PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
+ ArrayRef<Expr*> semantics,
+ unsigned resultIndex) {
+ assert(syntax && "no syntactic expression!");
+ assert(semantics.size() && "no semantic expressions!");
+
+ QualType type;
+ ExprValueKind VK;
+ if (resultIndex == NoResult) {
+ type = C.VoidTy;
+ VK = VK_RValue;
+ } else {
+ assert(resultIndex < semantics.size());
+ type = semantics[resultIndex]->getType();
+ VK = semantics[resultIndex]->getValueKind();
+ assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
+ }
+
+ void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
+ (1 + semantics.size()) * sizeof(Expr*),
+ llvm::alignOf<PseudoObjectExpr>());
+ return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
+ resultIndex);
+}
+
+PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
+ Expr *syntax, ArrayRef<Expr*> semantics,
+ unsigned resultIndex)
+ : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
+ /*filled in at end of ctor*/ false, false, false, false) {
+ PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
+ PseudoObjectExprBits.ResultIndex = resultIndex + 1;
+
+ for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
+ Expr *E = (i == 0 ? syntax : semantics[i-1]);
+ getSubExprsBuffer()[i] = E;
+
+ if (E->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (E->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (E->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (E->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ if (isa<OpaqueValueExpr>(E))
+ assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
+ "opaque-value semantic expressions for pseudo-object "
+ "operations must have sources");
+ }
+}
+
//===----------------------------------------------------------------------===//
// ExprIterator.
//===----------------------------------------------------------------------===//
return ClassifyExprValueKind(Lang, E,
cast<OpaqueValueExpr>(E)->getValueKind());
+ // Pseudo-object expressions can produce l-values with reference magic.
+ case Expr::PseudoObjectExprClass:
+ return ClassifyExprValueKind(Lang, E,
+ cast<PseudoObjectExpr>(E)->getValueKind());
+
// Implicit casts are lvalues if they're lvalue casts. Other than that, we
// only specifically record class temporaries.
case Expr::ImplicitCastExprClass:
case Expr::AsTypeExprClass:
case Expr::ObjCIndirectCopyRestoreExprClass:
case Expr::MaterializeTemporaryExprClass:
+ case Expr::PseudoObjectExprClass:
case Expr::AtomicExprClass:
return ICEDiag(2, E->getLocStart());
case Expr::CXXNoexceptExprClass:
case Expr::CUDAKernelCallExprClass:
case Expr::AsTypeExprClass:
+ case Expr::PseudoObjectExprClass:
case Expr::AtomicExprClass:
{
// As bad as this diagnostic is, it's better than crashing.
void VisitCompoundAssignOperator(CompoundAssignOperator *Node);
void VisitAddrLabelExpr(AddrLabelExpr *Node);
void VisitBlockExpr(BlockExpr *Node);
+ void VisitOpaqueValueExpr(OpaqueValueExpr *Node);
// C++
void VisitCXXNamedCastExpr(CXXNamedCastExpr *Node);
DumpSubTree(block->getBody());
}
+void StmtDumper::VisitOpaqueValueExpr(OpaqueValueExpr *Node) {
+ DumpExpr(Node);
+
+ if (Expr *Source = Node->getSourceExpr()) {
+ OS << '\n';
+ DumpSubTree(Source);
+ }
+}
+
// GNU extensions.
void StmtDumper::VisitAddrLabelExpr(AddrLabelExpr *Node) {
OS << ")";
}
+void StmtPrinter::VisitPseudoObjectExpr(PseudoObjectExpr *Node) {
+ PrintExpr(Node->getSyntacticForm());
+}
+
void StmtPrinter::VisitAtomicExpr(AtomicExpr *Node) {
const char *Name = 0;
switch (Node->getOp()) {
}
}
+void StmtProfiler::VisitPseudoObjectExpr(const PseudoObjectExpr *S) {
+ VisitExpr(S);
+ for (PseudoObjectExpr::const_semantics_iterator
+ i = S->semantics_begin(), e = S->semantics_end(); i != e; ++i)
+ // Normally, we would not profile the source expressions of OVEs.
+ if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(*i))
+ Visit(OVE->getSourceExpr());
+}
+
void StmtProfiler::VisitAtomicExpr(const AtomicExpr *S) {
VisitExpr(S);
ID.AddInteger(S->getOp());
CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
CFGBlock *VisitReturnStmt(ReturnStmt *R);
+ CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
AddStmtChoice asc);
CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
case Stmt::OpaqueValueExprClass:
return Block;
+ case Stmt::PseudoObjectExprClass:
+ return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
+
case Stmt::ReturnStmtClass:
return VisitReturnStmt(cast<ReturnStmt>(S));
return NYS();
}
+CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ autoCreateBlock();
+
+ // Add the PseudoObject as the last thing.
+ appendStmt(Block, E);
+
+ CFGBlock *lastBlock = Block;
+
+ // Before that, evaluate all of the semantics in order. In
+ // CFG-land, that means appending them in reverse order.
+ for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
+ Expr *Semantic = E->getSemanticExpr(--i);
+
+ // If the semantic is an opaque value, we're being asked to bind
+ // it to its source expression.
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
+ Semantic = OVE->getSourceExpr();
+
+ if (CFGBlock *B = Visit(Semantic))
+ lastBlock = B;
+ }
+
+ return lastBlock;
+}
+
CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
CFGBlock *LoopSuccessor = NULL;
}
break;
}
+ case Stmt::PseudoObjectExprClass: {
+ // A pseudo-object operation only directly consumes its result
+ // expression.
+ Expr *child = cast<PseudoObjectExpr>(S)->getResultExpr();
+ if (!child) return;
+ if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(child))
+ child = OV->getSourceExpr();
+ child = child->IgnoreParens();
+ val.liveStmts = LV.SSetFact.add(val.liveStmts, child);
+ return;
+ }
+
// FIXME: These cases eventually shouldn't be needed.
case Stmt::ExprWithCleanupsClass: {
S = cast<ExprWithCleanups>(S)->getSubExpr();
return EmitStringLiteralLValue(cast<StringLiteral>(E));
case Expr::ObjCEncodeExprClass:
return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
+ case Expr::PseudoObjectExprClass:
+ return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
case Expr::BlockDeclRefExprClass:
return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy,
Node);
}
+
+namespace {
+ struct LValueOrRValue {
+ LValue LV;
+ RValue RV;
+ };
+}
+
+static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
+ const PseudoObjectExpr *E,
+ bool forLValue,
+ AggValueSlot slot) {
+ llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
+
+ // Find the result expression, if any.
+ const Expr *resultExpr = E->getResultExpr();
+ LValueOrRValue result;
+
+ for (PseudoObjectExpr::const_semantics_iterator
+ i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
+ const Expr *semantic = *i;
+
+ // If this semantic expression is an opaque value, bind it
+ // to the result of its source expression.
+ if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
+
+ // If this is the result expression, we may need to evaluate
+ // directly into the slot.
+ typedef CodeGenFunction::OpaqueValueMappingData OVMA;
+ OVMA opaqueData;
+ if (ov == resultExpr && ov->isRValue() && !forLValue &&
+ CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
+ !ov->getType()->isAnyComplexType()) {
+ CGF.EmitAggExpr(ov->getSourceExpr(), slot);
+
+ LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
+ opaqueData = OVMA::bind(CGF, ov, LV);
+ result.RV = slot.asRValue();
+
+ // Otherwise, emit as normal.
+ } else {
+ opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
+
+ // If this is the result, also evaluate the result now.
+ if (ov == resultExpr) {
+ if (forLValue)
+ result.LV = CGF.EmitLValue(ov);
+ else
+ result.RV = CGF.EmitAnyExpr(ov, slot);
+ }
+ }
+
+ opaques.push_back(opaqueData);
+
+ // Otherwise, if the expression is the result, evaluate it
+ // and remember the result.
+ } else if (semantic == resultExpr) {
+ if (forLValue)
+ result.LV = CGF.EmitLValue(semantic);
+ else
+ result.RV = CGF.EmitAnyExpr(semantic, slot);
+
+ // Otherwise, evaluate the expression in an ignored context.
+ } else {
+ CGF.EmitIgnoredExpr(semantic);
+ }
+ }
+
+ // Unbind all the opaques now.
+ for (unsigned i = 0, e = opaques.size(); i != e; ++i)
+ opaques[i].unbind(CGF);
+
+ return result;
+}
+
+RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
+ AggValueSlot slot) {
+ return emitPseudoObjectExpr(*this, E, false, slot).RV;
+}
+
+LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
+ return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
+}
void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
void VisitOpaqueValueExpr(OpaqueValueExpr *E);
+ void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ if (E->isGLValue()) {
+ LValue LV = CGF.EmitPseudoObjectLValue(E);
+ return EmitFinalDestCopy(E, LV);
+ }
+
+ CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
+ }
+
void VisitVAArgExpr(VAArgExpr *E);
void EmitInitializationToLValue(Expr *E, LValue Address);
return CGF.getOpaqueRValueMapping(E).getComplexVal();
}
+ ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ return CGF.EmitPseudoObjectRValue(E).getComplexVal();
+ }
+
// FIXME: CompoundLiteralExpr
ComplexPairTy EmitCast(CastExpr::CastKind CK, Expr *Op, QualType DestTy);
return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
}
+ Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ return CGF.EmitPseudoObjectRValue(E).getScalarVal();
+ }
+
Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
if (E->isGLValue())
return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
return true;
}
+/// Try to emit a PseudoObjectExpr at +1.
+///
+/// This massively duplicates emitPseudoObjectRValue.
+static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
+ const PseudoObjectExpr *E) {
+ llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
+
+ // Find the result expression.
+ const Expr *resultExpr = E->getResultExpr();
+ assert(resultExpr);
+ TryEmitResult result;
+
+ for (PseudoObjectExpr::const_semantics_iterator
+ i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
+ const Expr *semantic = *i;
+
+ // If this semantic expression is an opaque value, bind it
+ // to the result of its source expression.
+ if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
+ typedef CodeGenFunction::OpaqueValueMappingData OVMA;
+ OVMA opaqueData;
+
+ // If this semantic is the result of the pseudo-object
+ // expression, try to evaluate the source as +1.
+ if (ov == resultExpr) {
+ assert(!OVMA::shouldBindAsLValue(ov));
+ result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
+ opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
+
+ // Otherwise, just bind it.
+ } else {
+ opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
+ }
+ opaques.push_back(opaqueData);
+
+ // Otherwise, if the expression is the result, evaluate it
+ // and remember the result.
+ } else if (semantic == resultExpr) {
+ result = tryEmitARCRetainScalarExpr(CGF, semantic);
+
+ // Otherwise, evaluate the expression in an ignored context.
+ } else {
+ CGF.EmitIgnoredExpr(semantic);
+ }
+ }
+
+ // Unbind all the opaques now.
+ for (unsigned i = 0, e = opaques.size(); i != e; ++i)
+ opaques[i].unbind(CGF);
+
+ return result;
+}
+
static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
// Look through cleanups.
llvm::Value *result = emitARCRetainCall(CGF, e);
if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
return TryEmitResult(result, true);
+
+ // Look through pseudo-object expressions.
+ } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
+ TryEmitResult result
+ = tryEmitARCRetainPseudoObject(CGF, pseudo);
+ if (resultType) {
+ llvm::Value *value = result.getPointer();
+ value = CGF.Builder.CreateBitCast(value, resultType);
+ result.setPointer(value);
+ }
+ return result;
}
// Conservatively halt the search at any other expression kind.
class ObjCPropertyRefExpr;
namespace CodeGen {
+ class AggValueSlot;
class CGBitFieldInfo;
/// RValue - This trivial value class is used to represent the result of an
RValue asRValue() const {
return RValue::getAggregate(getAddr(), isVolatile());
}
-
+
void setZeroed(bool V = true) { ZeroedFlag = V; }
IsZeroed_t isZeroed() const {
return IsZeroed_t(ZeroedFlag);
public:
PeepholeProtection() : Inst(0) {}
- };
+ };
- /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
- class OpaqueValueMapping {
- CodeGenFunction &CGF;
+ /// A non-RAII class containing all the information about a bound
+ /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
+ /// this which makes individual mappings very simple; using this
+ /// class directly is useful when you have a variable number of
+ /// opaque values or don't want the RAII functionality for some
+ /// reason.
+ class OpaqueValueMappingData {
const OpaqueValueExpr *OpaqueValue;
bool BoundLValue;
CodeGenFunction::PeepholeProtection Protection;
+ OpaqueValueMappingData(const OpaqueValueExpr *ov,
+ bool boundLValue)
+ : OpaqueValue(ov), BoundLValue(boundLValue) {}
public:
+ OpaqueValueMappingData() : OpaqueValue(0) {}
+
static bool shouldBindAsLValue(const Expr *expr) {
return expr->isGLValue() || expr->getType()->isRecordType();
}
+ static OpaqueValueMappingData bind(CodeGenFunction &CGF,
+ const OpaqueValueExpr *ov,
+ const Expr *e) {
+ if (shouldBindAsLValue(ov))
+ return bind(CGF, ov, CGF.EmitLValue(e));
+ return bind(CGF, ov, CGF.EmitAnyExpr(e));
+ }
+
+ static OpaqueValueMappingData bind(CodeGenFunction &CGF,
+ const OpaqueValueExpr *ov,
+ const LValue &lv) {
+ assert(shouldBindAsLValue(ov));
+ CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
+ return OpaqueValueMappingData(ov, true);
+ }
+
+ static OpaqueValueMappingData bind(CodeGenFunction &CGF,
+ const OpaqueValueExpr *ov,
+ const RValue &rv) {
+ assert(!shouldBindAsLValue(ov));
+ CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
+
+ OpaqueValueMappingData data(ov, false);
+
+ // Work around an extremely aggressive peephole optimization in
+ // EmitScalarConversion which assumes that all other uses of a
+ // value are extant.
+ data.Protection = CGF.protectFromPeepholes(rv);
+
+ return data;
+ }
+
+ bool isValid() const { return OpaqueValue != 0; }
+ void clear() { OpaqueValue = 0; }
+
+ void unbind(CodeGenFunction &CGF) {
+ assert(OpaqueValue && "no data to unbind!");
+
+ if (BoundLValue) {
+ CGF.OpaqueLValues.erase(OpaqueValue);
+ } else {
+ CGF.OpaqueRValues.erase(OpaqueValue);
+ CGF.unprotectFromPeepholes(Protection);
+ }
+ }
+ };
+
+ /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
+ class OpaqueValueMapping {
+ CodeGenFunction &CGF;
+ OpaqueValueMappingData Data;
+
+ public:
+ static bool shouldBindAsLValue(const Expr *expr) {
+ return OpaqueValueMappingData::shouldBindAsLValue(expr);
+ }
+
/// Build the opaque value mapping for the given conditional
/// operator if it's the GNU ?: extension. This is a common
/// enough pattern that the convenience operator is really
///
OpaqueValueMapping(CodeGenFunction &CGF,
const AbstractConditionalOperator *op) : CGF(CGF) {
- if (isa<ConditionalOperator>(op)) {
- OpaqueValue = 0;
- BoundLValue = false;
+ if (isa<ConditionalOperator>(op))
+ // Leave Data empty.
return;
- }
const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
- init(e->getOpaqueValue(), e->getCommon());
+ Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
+ e->getCommon());
}
OpaqueValueMapping(CodeGenFunction &CGF,
const OpaqueValueExpr *opaqueValue,
LValue lvalue)
- : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
- assert(opaqueValue && "no opaque value expression!");
- assert(shouldBindAsLValue(opaqueValue));
- initLValue(lvalue);
+ : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
}
OpaqueValueMapping(CodeGenFunction &CGF,
const OpaqueValueExpr *opaqueValue,
RValue rvalue)
- : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
- assert(opaqueValue && "no opaque value expression!");
- assert(!shouldBindAsLValue(opaqueValue));
- initRValue(rvalue);
+ : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
}
void pop() {
- assert(OpaqueValue && "mapping already popped!");
- popImpl();
- OpaqueValue = 0;
+ Data.unbind(CGF);
+ Data.clear();
}
~OpaqueValueMapping() {
- if (OpaqueValue) popImpl();
- }
-
- private:
- void popImpl() {
- if (BoundLValue)
- CGF.OpaqueLValues.erase(OpaqueValue);
- else {
- CGF.OpaqueRValues.erase(OpaqueValue);
- CGF.unprotectFromPeepholes(Protection);
- }
- }
-
- void init(const OpaqueValueExpr *ov, const Expr *e) {
- OpaqueValue = ov;
- BoundLValue = shouldBindAsLValue(ov);
- assert(BoundLValue == shouldBindAsLValue(e)
- && "inconsistent expression value kinds!");
- if (BoundLValue)
- initLValue(CGF.EmitLValue(e));
- else
- initRValue(CGF.EmitAnyExpr(e));
- }
-
- void initLValue(const LValue &lv) {
- CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
- }
-
- void initRValue(const RValue &rv) {
- // Work around an extremely aggressive peephole optimization in
- // EmitScalarConversion which assumes that all other uses of a
- // value are extant.
- Protection = CGF.protectFromPeepholes(rv);
- CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
+ if (Data.isValid()) Data.unbind(CGF);
}
};
LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
+ RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
+ AggValueSlot slot = AggValueSlot::ignored());
+ LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
+
llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
const ObjCIvarDecl *Ivar);
LValue EmitLValueForAnonRecordField(llvm::Value* Base,
llvm::DenseMap<BlockExpr *, std::string> RewrittenBlockExprs;
- // This maps a property to it's assignment statement.
- llvm::DenseMap<Expr *, BinaryOperator *> PropSetters;
- // This maps a property to it's synthesied message expression.
- // This allows us to rewrite chained getters (e.g. o.a.b.c).
- llvm::DenseMap<Expr *, Stmt *> PropGetters;
-
// This maps an original source AST to it's rewritten form. This allows
// us to avoid rewriting the same node twice (which is very uncommon).
// This is needed to support some of the exotic property rewriting.
VarDecl *GlobalVarDecl;
bool DisableReplaceStmt;
+ class DisableReplaceStmtScope {
+ RewriteObjC &R;
+ bool SavedValue;
+
+ public:
+ DisableReplaceStmtScope(RewriteObjC &R)
+ : R(R), SavedValue(R.DisableReplaceStmt) {
+ R.DisableReplaceStmt = true;
+ }
+ ~DisableReplaceStmtScope() {
+ R.DisableReplaceStmt = SavedValue;
+ }
+ };
static const int OBJC_ABI_VERSION = 7;
public:
return; // We can't rewrite the same node twice.
if (DisableReplaceStmt)
- return; // Used when rewriting the assignment of a property setter.
+ return;
// If replacement succeeded or warning disabled return with no warning.
if (!Rewrite.ReplaceStmt(Old, New)) {
}
void ReplaceStmtWithRange(Stmt *Old, Stmt *New, SourceRange SrcRange) {
+ if (DisableReplaceStmt)
+ return;
+
// Measure the old text.
int Size = Rewrite.getRangeSize(SrcRange);
if (Size == -1) {
// Expression Rewriting.
Stmt *RewriteFunctionBodyOrGlobalInitializer(Stmt *S);
- void CollectPropertySetters(Stmt *S);
Stmt *CurrentBody;
ParentMap *PropParentMap; // created lazily.
Stmt *RewriteAtEncode(ObjCEncodeExpr *Exp);
- Stmt *RewriteObjCIvarRefExpr(ObjCIvarRefExpr *IV, SourceLocation OrigStart,
- bool &replaced);
- Stmt *RewriteObjCNestedIvarRefExpr(Stmt *S, bool &replaced);
- Stmt *RewritePropertyOrImplicitGetter(Expr *PropOrGetterRefExpr);
- Stmt *RewritePropertyOrImplicitSetter(BinaryOperator *BinOp, Expr *newStmt,
- SourceRange SrcRange);
+ Stmt *RewriteObjCIvarRefExpr(ObjCIvarRefExpr *IV);
+ Stmt *RewritePropertyOrImplicitGetter(PseudoObjectExpr *Pseudo);
+ Stmt *RewritePropertyOrImplicitSetter(PseudoObjectExpr *Pseudo);
Stmt *RewriteAtSelector(ObjCSelectorExpr *Exp);
Stmt *RewriteMessageExpr(ObjCMessageExpr *Exp);
Stmt *RewriteObjCStringLiteral(ObjCStringLiteral *Exp);
"/* @end */");
}
-Stmt *RewriteObjC::RewritePropertyOrImplicitSetter(BinaryOperator *BinOp, Expr *newStmt,
- SourceRange SrcRange) {
- ObjCMethodDecl *OMD = 0;
- QualType Ty;
- Selector Sel;
- Stmt *Receiver = 0;
- bool Super = false;
- QualType SuperTy;
- SourceLocation SuperLocation;
- SourceLocation SelectorLoc;
- // Synthesize a ObjCMessageExpr from a ObjCPropertyRefExpr or ObjCImplicitSetterGetterRefExpr.
- // This allows us to reuse all the fun and games in SynthMessageExpr().
- if (ObjCPropertyRefExpr *PropRefExpr =
- dyn_cast<ObjCPropertyRefExpr>(BinOp->getLHS())) {
- SelectorLoc = PropRefExpr->getLocation();
- if (PropRefExpr->isExplicitProperty()) {
- ObjCPropertyDecl *PDecl = PropRefExpr->getExplicitProperty();
- OMD = PDecl->getSetterMethodDecl();
- Ty = PDecl->getType();
- Sel = PDecl->getSetterName();
- } else {
- OMD = PropRefExpr->getImplicitPropertySetter();
- Sel = OMD->getSelector();
- Ty = (*OMD->param_begin())->getType();
- }
- Super = PropRefExpr->isSuperReceiver();
- if (!Super) {
- Receiver = PropRefExpr->getBase();
- } else {
- SuperTy = PropRefExpr->getSuperReceiverType();
- SuperLocation = PropRefExpr->getReceiverLocation();
+Stmt *RewriteObjC::RewritePropertyOrImplicitSetter(PseudoObjectExpr *PseudoOp) {
+ SourceRange OldRange = PseudoOp->getSourceRange();
+
+ // We just magically know some things about the structure of this
+ // expression.
+ ObjCMessageExpr *OldMsg =
+ cast<ObjCMessageExpr>(PseudoOp->getSemanticExpr(
+ PseudoOp->getNumSemanticExprs() - 1));
+
+ // Because the rewriter doesn't allow us to rewrite rewritten code,
+ // we need to suppress rewriting the sub-statements.
+ Expr *Base, *RHS;
+ {
+ DisableReplaceStmtScope S(*this);
+
+ // Rebuild the base expression if we have one.
+ Base = 0;
+ if (OldMsg->getReceiverKind() == ObjCMessageExpr::Instance) {
+ Base = OldMsg->getInstanceReceiver();
+ Base = cast<OpaqueValueExpr>(Base)->getSourceExpr();
+ Base = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(Base));
}
+
+ // Rebuild the RHS.
+ RHS = cast<BinaryOperator>(PseudoOp->getSyntacticForm())->getRHS();
+ RHS = cast<OpaqueValueExpr>(RHS)->getSourceExpr();
+ RHS = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(RHS));
+ }
+
+ // TODO: avoid this copy.
+ SmallVector<SourceLocation, 1> SelLocs;
+ OldMsg->getSelectorLocs(SelLocs);
+
+ ObjCMessageExpr *NewMsg;
+ switch (OldMsg->getReceiverKind()) {
+ case ObjCMessageExpr::Class:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getClassReceiverTypeInfo(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ RHS,
+ OldMsg->getRightLoc());
+ break;
+
+ case ObjCMessageExpr::Instance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ Base,
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ RHS,
+ OldMsg->getRightLoc());
+ break;
+
+ case ObjCMessageExpr::SuperClass:
+ case ObjCMessageExpr::SuperInstance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getSuperLoc(),
+ OldMsg->getReceiverKind() == ObjCMessageExpr::SuperInstance,
+ OldMsg->getSuperType(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ RHS,
+ OldMsg->getRightLoc());
+ break;
}
-
- assert(OMD && "RewritePropertyOrImplicitSetter - null OMD");
-
- ObjCMessageExpr *MsgExpr;
- if (Super)
- MsgExpr = ObjCMessageExpr::Create(*Context,
- Ty.getNonReferenceType(),
- Expr::getValueKindForType(Ty),
- /*FIXME?*/SourceLocation(),
- SuperLocation,
- /*IsInstanceSuper=*/true,
- SuperTy,
- Sel, SelectorLoc, OMD,
- newStmt,
- /*FIXME:*/SourceLocation());
- else {
- // FIXME. Refactor this into common code with that in
- // RewritePropertyOrImplicitGetter
- assert(Receiver && "RewritePropertyOrImplicitSetter - null Receiver");
- if (Expr *Exp = dyn_cast<Expr>(Receiver))
- if (PropGetters[Exp])
- // This allows us to handle chain/nested property/implicit getters.
- Receiver = PropGetters[Exp];
-
- MsgExpr = ObjCMessageExpr::Create(*Context,
- Ty.getNonReferenceType(),
- Expr::getValueKindForType(Ty),
- /*FIXME: */SourceLocation(),
- cast<Expr>(Receiver),
- Sel, SelectorLoc, OMD,
- newStmt,
- /*FIXME:*/SourceLocation());
- }
- Stmt *ReplacingStmt = SynthMessageExpr(MsgExpr);
- // Now do the actual rewrite.
- ReplaceStmtWithRange(BinOp, ReplacingStmt, SrcRange);
- //delete BinOp;
- // NOTE: We don't want to call MsgExpr->Destroy(), as it holds references
- // to things that stay around.
- Context->Deallocate(MsgExpr);
- return ReplacingStmt;
+ Stmt *Replacement = SynthMessageExpr(NewMsg);
+ ReplaceStmtWithRange(PseudoOp, Replacement, OldRange);
+ return Replacement;
}
-Stmt *RewriteObjC::RewritePropertyOrImplicitGetter(Expr *PropOrGetterRefExpr) {
- // Synthesize a ObjCMessageExpr from a ObjCPropertyRefExpr or ImplicitGetter.
- // This allows us to reuse all the fun and games in SynthMessageExpr().
- Stmt *Receiver = 0;
- ObjCMethodDecl *OMD = 0;
- QualType Ty;
- Selector Sel;
- bool Super = false;
- QualType SuperTy;
- SourceLocation SuperLocation;
- SourceLocation SelectorLoc;
- if (ObjCPropertyRefExpr *PropRefExpr =
- dyn_cast<ObjCPropertyRefExpr>(PropOrGetterRefExpr)) {
- SelectorLoc = PropRefExpr->getLocation();
- if (PropRefExpr->isExplicitProperty()) {
- ObjCPropertyDecl *PDecl = PropRefExpr->getExplicitProperty();
- OMD = PDecl->getGetterMethodDecl();
- Ty = PDecl->getType();
- Sel = PDecl->getGetterName();
- } else {
- OMD = PropRefExpr->getImplicitPropertyGetter();
- Sel = OMD->getSelector();
- Ty = OMD->getResultType();
- }
- Super = PropRefExpr->isSuperReceiver();
- if (!Super)
- Receiver = PropRefExpr->getBase();
- else {
- SuperTy = PropRefExpr->getSuperReceiverType();
- SuperLocation = PropRefExpr->getReceiverLocation();
+Stmt *RewriteObjC::RewritePropertyOrImplicitGetter(PseudoObjectExpr *PseudoOp) {
+ SourceRange OldRange = PseudoOp->getSourceRange();
+
+ // We just magically know some things about the structure of this
+ // expression.
+ ObjCMessageExpr *OldMsg =
+ cast<ObjCMessageExpr>(PseudoOp->getResultExpr()->IgnoreImplicit());
+
+ // Because the rewriter doesn't allow us to rewrite rewritten code,
+ // we need to suppress rewriting the sub-statements.
+ Expr *Base = 0;
+ {
+ DisableReplaceStmtScope S(*this);
+
+ // Rebuild the base expression if we have one.
+ if (OldMsg->getReceiverKind() == ObjCMessageExpr::Instance) {
+ Base = OldMsg->getInstanceReceiver();
+ Base = cast<OpaqueValueExpr>(Base)->getSourceExpr();
+ Base = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(Base));
}
}
-
- assert (OMD && "RewritePropertyOrImplicitGetter - OMD is null");
-
- ObjCMessageExpr *MsgExpr;
- if (Super)
- MsgExpr = ObjCMessageExpr::Create(*Context,
- Ty.getNonReferenceType(),
- Expr::getValueKindForType(Ty),
- PropOrGetterRefExpr->getLocStart(),
- SuperLocation,
- /*IsInstanceSuper=*/true,
- SuperTy,
- Sel, SelectorLoc, OMD,
- ArrayRef<Expr*>(),
- PropOrGetterRefExpr->getLocEnd());
- else {
- assert (Receiver && "RewritePropertyOrImplicitGetter - Receiver is null");
- if (Expr *Exp = dyn_cast<Expr>(Receiver))
- if (PropGetters[Exp])
- // This allows us to handle chain/nested property/implicit getters.
- Receiver = PropGetters[Exp];
- MsgExpr = ObjCMessageExpr::Create(*Context,
- Ty.getNonReferenceType(),
- Expr::getValueKindForType(Ty),
- PropOrGetterRefExpr->getLocStart(),
- cast<Expr>(Receiver),
- Sel, SelectorLoc, OMD,
- ArrayRef<Expr*>(),
- PropOrGetterRefExpr->getLocEnd());
- }
-
- Stmt *ReplacingStmt = SynthMessageExpr(MsgExpr, MsgExpr->getLocStart(),
- MsgExpr->getLocEnd());
-
- if (!PropParentMap)
- PropParentMap = new ParentMap(CurrentBody);
- bool NestedPropertyRef = false;
- Stmt *Parent = PropParentMap->getParent(PropOrGetterRefExpr);
- ImplicitCastExpr*ICE=0;
- if (Parent)
- if ((ICE = dyn_cast<ImplicitCastExpr>(Parent))) {
- assert((ICE->getCastKind() == CK_GetObjCProperty)
- && "RewritePropertyOrImplicitGetter");
- Parent = PropParentMap->getParent(Parent);
- NestedPropertyRef = (Parent && isa<ObjCPropertyRefExpr>(Parent));
- }
- if (NestedPropertyRef) {
- // We stash away the ReplacingStmt since actually doing the
- // replacement/rewrite won't work for nested getters (e.g. obj.p.i)
- PropGetters[ICE] = ReplacingStmt;
- // NOTE: We don't want to call MsgExpr->Destroy(), as it holds references
- // to things that stay around.
- Context->Deallocate(MsgExpr);
- return PropOrGetterRefExpr; // return the original...
- } else {
- ReplaceStmt(PropOrGetterRefExpr, ReplacingStmt);
- // delete PropRefExpr; elsewhere...
- // NOTE: We don't want to call MsgExpr->Destroy(), as it holds references
- // to things that stay around.
- Context->Deallocate(MsgExpr);
- return ReplacingStmt;
+
+ // Intentionally empty.
+ SmallVector<SourceLocation, 1> SelLocs;
+ SmallVector<Expr*, 1> Args;
+
+ ObjCMessageExpr *NewMsg;
+ switch (OldMsg->getReceiverKind()) {
+ case ObjCMessageExpr::Class:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getClassReceiverTypeInfo(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc());
+ break;
+
+ case ObjCMessageExpr::Instance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ Base,
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc());
+ break;
+
+ case ObjCMessageExpr::SuperClass:
+ case ObjCMessageExpr::SuperInstance:
+ NewMsg = ObjCMessageExpr::Create(*Context, OldMsg->getType(),
+ OldMsg->getValueKind(),
+ OldMsg->getLeftLoc(),
+ OldMsg->getSuperLoc(),
+ OldMsg->getReceiverKind() == ObjCMessageExpr::SuperInstance,
+ OldMsg->getSuperType(),
+ OldMsg->getSelector(),
+ SelLocs,
+ OldMsg->getMethodDecl(),
+ Args,
+ OldMsg->getRightLoc());
+ break;
}
+
+ Stmt *Replacement = SynthMessageExpr(NewMsg);
+ ReplaceStmtWithRange(PseudoOp, Replacement, OldRange);
+ return Replacement;
}
-Stmt *RewriteObjC::RewriteObjCIvarRefExpr(ObjCIvarRefExpr *IV,
- SourceLocation OrigStart,
- bool &replaced) {
+Stmt *RewriteObjC::RewriteObjCIvarRefExpr(ObjCIvarRefExpr *IV) {
+ SourceRange OldRange = IV->getSourceRange();
+ Expr *BaseExpr = IV->getBase();
+
+ // Rewrite the base, but without actually doing replaces.
+ {
+ DisableReplaceStmtScope S(*this);
+ BaseExpr = cast<Expr>(RewriteFunctionBodyOrGlobalInitializer(BaseExpr));
+ IV->setBase(BaseExpr);
+ }
+
ObjCIvarDecl *D = IV->getDecl();
- const Expr *BaseExpr = IV->getBase();
+
+ Expr *Replacement = IV;
if (CurMethodDef) {
if (BaseExpr->getType()->isObjCObjectPointerType()) {
const ObjCInterfaceType *iFaceDecl =
CK_BitCast,
IV->getBase());
// Don't forget the parens to enforce the proper binding.
- ParenExpr *PE = new (Context) ParenExpr(IV->getBase()->getLocStart(),
- IV->getBase()->getLocEnd(),
+ ParenExpr *PE = new (Context) ParenExpr(OldRange.getBegin(),
+ OldRange.getEnd(),
castExpr);
- replaced = true;
if (IV->isFreeIvar() &&
CurMethodDef->getClassInterface() == iFaceDecl->getDecl()) {
MemberExpr *ME = new (Context) MemberExpr(PE, true, D,
IV->getLocation(),
D->getType(),
VK_LValue, OK_Ordinary);
- // delete IV; leak for now, see RewritePropertyOrImplicitSetter() usage for more info.
- return ME;
+ Replacement = ME;
+ } else {
+ IV->setBase(PE);
}
- // Get the new text
- // Cannot delete IV->getBase(), since PE points to it.
- // Replace the old base with the cast. This is important when doing
- // embedded rewrites. For example, [newInv->_container addObject:0].
- IV->setBase(PE);
- return IV;
}
} else { // we are outside a method.
assert(!IV->isFreeIvar() && "Cannot have a free standing ivar outside a method");
// Don't forget the parens to enforce the proper binding.
ParenExpr *PE = new (Context) ParenExpr(IV->getBase()->getLocStart(),
IV->getBase()->getLocEnd(), castExpr);
- replaced = true;
// Cannot delete IV->getBase(), since PE points to it.
// Replace the old base with the cast. This is important when doing
// embedded rewrites. For example, [newInv->_container addObject:0].
IV->setBase(PE);
- return IV;
}
}
- return IV;
-}
-Stmt *RewriteObjC::RewriteObjCNestedIvarRefExpr(Stmt *S, bool &replaced) {
- for (Stmt::child_range CI = S->children(); CI; ++CI) {
- if (*CI) {
- Stmt *newStmt = RewriteObjCNestedIvarRefExpr(*CI, replaced);
- if (newStmt)
- *CI = newStmt;
- }
- }
- if (ObjCIvarRefExpr *IvarRefExpr = dyn_cast<ObjCIvarRefExpr>(S)) {
- SourceRange OrigStmtRange = S->getSourceRange();
- Stmt *newStmt = RewriteObjCIvarRefExpr(IvarRefExpr, OrigStmtRange.getBegin(),
- replaced);
- return newStmt;
- }
- if (ObjCMessageExpr *MsgRefExpr = dyn_cast<ObjCMessageExpr>(S)) {
- Stmt *newStmt = SynthMessageExpr(MsgRefExpr);
- return newStmt;
- }
- return S;
+ ReplaceStmtWithRange(IV, Replacement, OldRange);
+ return Replacement;
}
/// SynthCountByEnumWithState - To print:
return CondExpr;
} else if (const ObjCIvarRefExpr *IRE = dyn_cast<ObjCIvarRefExpr>(BlockExp)) {
CPT = IRE->getType()->getAs<BlockPointerType>();
+ } else if (const PseudoObjectExpr *POE
+ = dyn_cast<PseudoObjectExpr>(BlockExp)) {
+ CPT = POE->getType()->castAs<BlockPointerType>();
} else {
assert(1 && "RewriteBlockClass: Bad type");
}
// Function Body / Expression rewriting
//===----------------------------------------------------------------------===//
-// This is run as a first "pass" prior to RewriteFunctionBodyOrGlobalInitializer().
-// The allows the main rewrite loop to associate all ObjCPropertyRefExprs with
-// their respective BinaryOperator. Without this knowledge, we'd need to rewrite
-// the ObjCPropertyRefExpr twice (once as a getter, and later as a setter).
-// Since the rewriter isn't capable of rewriting rewritten code, it's important
-// we get this right.
-void RewriteObjC::CollectPropertySetters(Stmt *S) {
- // Perform a bottom up traversal of all children.
- for (Stmt::child_range CI = S->children(); CI; ++CI)
- if (*CI)
- CollectPropertySetters(*CI);
-
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(S)) {
- if (BinOp->isAssignmentOp()) {
- if (isa<ObjCPropertyRefExpr>(BinOp->getLHS()))
- PropSetters[BinOp->getLHS()] = BinOp;
- }
- }
-}
-
Stmt *RewriteObjC::RewriteFunctionBodyOrGlobalInitializer(Stmt *S) {
if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
isa<DoStmt>(S) || isa<ForStmt>(S))
ObjCBcLabelNo.push_back(++BcLabelCount);
}
+ // Pseudo-object operations and ivar references need special
+ // treatment because we're going to recursively rewrite them.
+ if (PseudoObjectExpr *PseudoOp = dyn_cast<PseudoObjectExpr>(S)) {
+ if (isa<BinaryOperator>(PseudoOp->getSyntacticForm())) {
+ return RewritePropertyOrImplicitSetter(PseudoOp);
+ } else {
+ return RewritePropertyOrImplicitGetter(PseudoOp);
+ }
+ } else if (ObjCIvarRefExpr *IvarRefExpr = dyn_cast<ObjCIvarRefExpr>(S)) {
+ return RewriteObjCIvarRefExpr(IvarRefExpr);
+ }
+
SourceRange OrigStmtRange = S->getSourceRange();
// Perform a bottom up rewrite of all children.
for (Stmt::child_range CI = S->children(); CI; ++CI)
if (*CI) {
- Stmt *newStmt;
- Stmt *ChildStmt = (*CI);
- if (ObjCIvarRefExpr *IvarRefExpr = dyn_cast<ObjCIvarRefExpr>(ChildStmt)) {
- Expr *OldBase = IvarRefExpr->getBase();
- bool replaced = false;
- newStmt = RewriteObjCNestedIvarRefExpr(ChildStmt, replaced);
- if (replaced) {
- if (ObjCIvarRefExpr *IRE = dyn_cast<ObjCIvarRefExpr>(newStmt))
- ReplaceStmt(OldBase, IRE->getBase());
- else
- ReplaceStmt(ChildStmt, newStmt);
- }
- }
- else
- newStmt = RewriteFunctionBodyOrGlobalInitializer(ChildStmt);
+ Stmt *childStmt = (*CI);
+ Stmt *newStmt = RewriteFunctionBodyOrGlobalInitializer(childStmt);
if (newStmt) {
- if (Expr *PropOrImplicitRefExpr = dyn_cast<Expr>(ChildStmt))
- if (PropSetters[PropOrImplicitRefExpr] == S) {
- S = newStmt;
- newStmt = 0;
- }
- if (newStmt)
- *CI = newStmt;
+ *CI = newStmt;
}
- // If dealing with an assignment with LHS being a property reference
- // expression, the entire assignment tree is rewritten into a property
- // setter messaging. This involvs the RHS too. Do not attempt to rewrite
- // RHS again.
- if (Expr *Exp = dyn_cast<Expr>(ChildStmt))
- if (isa<ObjCPropertyRefExpr>(Exp)) {
- if (PropSetters[Exp]) {
- ++CI;
- continue;
- }
- }
}
if (BlockExpr *BE = dyn_cast<BlockExpr>(S)) {
// Rewrite the block body in place.
Stmt *SaveCurrentBody = CurrentBody;
CurrentBody = BE->getBody();
- CollectPropertySetters(CurrentBody);
PropParentMap = 0;
// block literal on rhs of a property-dot-sytax assignment
// must be replaced by its synthesize ast so getRewrittenText
if (ObjCEncodeExpr *AtEncode = dyn_cast<ObjCEncodeExpr>(S))
return RewriteAtEncode(AtEncode);
- if (isa<ObjCPropertyRefExpr>(S)) {
- Expr *PropOrImplicitRefExpr = dyn_cast<Expr>(S);
- assert(PropOrImplicitRefExpr && "Property or implicit setter/getter is null");
-
- BinaryOperator *BinOp = PropSetters[PropOrImplicitRefExpr];
- if (BinOp) {
- // Because the rewriter doesn't allow us to rewrite rewritten code,
- // we need to rewrite the right hand side prior to rewriting the setter.
- DisableReplaceStmt = true;
- // Save the source range. Even if we disable the replacement, the
- // rewritten node will have been inserted into the tree. If the synthesized
- // node is at the 'end', the rewriter will fail. Consider this:
- // self.errorHandler = handler ? handler :
- // ^(NSURL *errorURL, NSError *error) { return (BOOL)1; };
- SourceRange SrcRange = BinOp->getSourceRange();
- Stmt *newStmt = RewriteFunctionBodyOrGlobalInitializer(BinOp->getRHS());
- // Need to rewrite the ivar access expression if need be.
- if (isa<ObjCIvarRefExpr>(newStmt)) {
- bool replaced = false;
- newStmt = RewriteObjCNestedIvarRefExpr(newStmt, replaced);
- }
-
- DisableReplaceStmt = false;
- //
- // Unlike the main iterator, we explicily avoid changing 'BinOp'. If
- // we changed the RHS of BinOp, the rewriter would fail (since it needs
- // to see the original expression). Consider this example:
- //
- // Foo *obj1, *obj2;
- //
- // obj1.i = [obj2 rrrr];
- //
- // 'BinOp' for the previous expression looks like:
- //
- // (BinaryOperator 0x231ccf0 'int' '='
- // (ObjCPropertyRefExpr 0x231cc70 'int' Kind=PropertyRef Property="i"
- // (DeclRefExpr 0x231cc50 'Foo *' Var='obj1' 0x231cbb0))
- // (ObjCMessageExpr 0x231ccb0 'int' selector=rrrr
- // (DeclRefExpr 0x231cc90 'Foo *' Var='obj2' 0x231cbe0)))
- //
- // 'newStmt' represents the rewritten message expression. For example:
- //
- // (CallExpr 0x231d300 'id':'struct objc_object *'
- // (ParenExpr 0x231d2e0 'int (*)(id, SEL)'
- // (CStyleCastExpr 0x231d2c0 'int (*)(id, SEL)'
- // (CStyleCastExpr 0x231d220 'void *'
- // (DeclRefExpr 0x231d200 'id (id, SEL, ...)' FunctionDecl='objc_msgSend' 0x231cdc0))))
- //
- // Note that 'newStmt' is passed to RewritePropertyOrImplicitSetter so that it
- // can be used as the setter argument. ReplaceStmt() will still 'see'
- // the original RHS (since we haven't altered BinOp).
- //
- // This implies the Rewrite* routines can no longer delete the original
- // node. As a result, we now leak the original AST nodes.
- //
- return RewritePropertyOrImplicitSetter(BinOp, dyn_cast<Expr>(newStmt), SrcRange);
- } else {
- return RewritePropertyOrImplicitGetter(PropOrImplicitRefExpr);
- }
- }
-
if (ObjCSelectorExpr *AtSelector = dyn_cast<ObjCSelectorExpr>(S))
return RewriteAtSelector(AtSelector);
if (CompoundStmt *Body = dyn_cast_or_null<CompoundStmt>(FD->getBody())) {
CurFunctionDef = FD;
CurFunctionDeclToDeclareForBlock = FD;
- CollectPropertySetters(Body);
CurrentBody = Body;
Body =
cast_or_null<CompoundStmt>(RewriteFunctionBodyOrGlobalInitializer(Body));
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
if (CompoundStmt *Body = MD->getCompoundBody()) {
CurMethodDef = MD;
- CollectPropertySetters(Body);
CurrentBody = Body;
Body =
cast_or_null<CompoundStmt>(RewriteFunctionBodyOrGlobalInitializer(Body));
}
if (VD->getInit()) {
GlobalVarDecl = VD;
- CollectPropertySetters(VD->getInit());
CurrentBody = VD->getInit();
RewriteFunctionBodyOrGlobalInitializer(VD->getInit());
CurrentBody = 0;
continue;
}
+ if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
+ // Only pay attention to pseudo-objects on property references.
+ ObjCPropertyRefExpr *pre
+ = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
+ ->IgnoreParens());
+ if (!pre) return false;
+ if (pre->isImplicitProperty()) return false;
+ ObjCPropertyDecl *property = pre->getExplicitProperty();
+ if (!property->isRetaining() &&
+ !(property->getPropertyIvarDecl() &&
+ property->getPropertyIvarDecl()->getType()
+ .getObjCLifetime() == Qualifiers::OCL_Strong))
+ return false;
+
+ owner.Indirect = true;
+ e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
+ ->getSourceExpr());
+ continue;
+ }
+
// Array ivars?
return false;
// The operand must be either an l-value or a function designator
if (!op->getType()->isFunctionType()) {
// Use a special diagnostic for loads from property references.
- if (isa<ObjCPropertyRefExpr>(op->IgnoreImplicit()->IgnoreParens())) {
+ if (isa<PseudoObjectExpr>(op)) {
AddressOfError = AO_Property_Expansion;
} else {
// FIXME: emit more specific diag...
} else if (op->getObjectKind() == OK_VectorComponent) {
// The operand cannot be an element of a vector
AddressOfError = AO_Vector_Element;
- } else if (op->getObjectKind() == OK_ObjCProperty) {
- // cannot take address of a property expression.
- AddressOfError = AO_Property_Expansion;
} else if (dcl) { // C99 6.5.3.2p1
// We have an lvalue with a decl. Make sure the decl is not declared
// with the register storage-class specifier.
return;
}
- // Strip off any parens and casts.
- StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
+ // Ignore any parens, implicit casts (should only be
+ // array-to-pointer decays), and not-so-opaque values. The last is
+ // important for making this trigger for property assignments.
+ SrcExpr = SrcExpr->IgnoreParenImpCasts();
+ if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
+ if (OV->getSourceExpr())
+ SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
+
+ StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
if (!SL || !SL->isAscii())
return;
bool Sema::isSelfExpr(Expr *receiver) {
// 'self' is objc 'self' in an objc method only.
- DeclContext *DC = CurContext;
- while (isa<BlockDecl>(DC))
- DC = DC->getParent();
- if (DC && !isa<ObjCMethodDecl>(DC))
- return false;
+ ObjCMethodDecl *method =
+ dyn_cast<ObjCMethodDecl>(CurContext->getNonClosureAncestor());
+ if (!method) return false;
+
receiver = receiver->IgnoreParenLValueCasts();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver))
- if (DRE->getDecl()->getIdentifier() == &Context.Idents.get("self"))
+ if (DRE->getDecl() == method->getSelfDecl())
return true;
return false;
}
return merge(left, Visit(e->getFalseExpr()));
}
+ /// Look through pseudo-objects.
+ ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) {
+ // If we're getting here, we should always have a result.
+ return Visit(e->getResultExpr());
+ }
+
/// Statement expressions are okay if their result expression is okay.
ACCResult VisitStmtExpr(StmtExpr *e) {
return Visit(e->getSubStmt()->body_back());
using namespace clang;
using namespace sema;
+namespace {
+ // Basically just a very focused copy of TreeTransform.
+ template <class T> struct Rebuilder {
+ Sema &S;
+ Rebuilder(Sema &S) : S(S) {}
+
+ T &getDerived() { return static_cast<T&>(*this); }
+
+ Expr *rebuild(Expr *e) {
+ // Fast path: nothing to look through.
+ if (typename T::specific_type *specific
+ = dyn_cast<typename T::specific_type>(e))
+ return getDerived().rebuildSpecific(specific);
+
+ // Otherwise, we should look through and rebuild anything that
+ // IgnoreParens would.
+
+ if (ParenExpr *parens = dyn_cast<ParenExpr>(e)) {
+ e = rebuild(parens->getSubExpr());
+ return new (S.Context) ParenExpr(parens->getLParen(),
+ parens->getRParen(),
+ e);
+ }
+
+ if (UnaryOperator *uop = dyn_cast<UnaryOperator>(e)) {
+ assert(uop->getOpcode() == UO_Extension);
+ e = rebuild(uop->getSubExpr());
+ return new (S.Context) UnaryOperator(e, uop->getOpcode(),
+ uop->getType(),
+ uop->getValueKind(),
+ uop->getObjectKind(),
+ uop->getOperatorLoc());
+ }
+
+ if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
+ assert(!gse->isResultDependent());
+ unsigned resultIndex = gse->getResultIndex();
+ unsigned numAssocs = gse->getNumAssocs();
+
+ SmallVector<Expr*, 8> assocs(numAssocs);
+ SmallVector<TypeSourceInfo*, 8> assocTypes(numAssocs);
+
+ for (unsigned i = 0; i != numAssocs; ++i) {
+ Expr *assoc = gse->getAssocExpr(i);
+ if (i == resultIndex) assoc = rebuild(assoc);
+ assocs[i] = assoc;
+ assocTypes[i] = gse->getAssocTypeSourceInfo(i);
+ }
+
+ return new (S.Context) GenericSelectionExpr(S.Context,
+ gse->getGenericLoc(),
+ gse->getControllingExpr(),
+ assocTypes.data(),
+ assocs.data(),
+ numAssocs,
+ gse->getDefaultLoc(),
+ gse->getRParenLoc(),
+ gse->containsUnexpandedParameterPack(),
+ resultIndex);
+ }
+
+ llvm_unreachable("bad expression to rebuild!");
+ }
+ };
+
+ struct ObjCPropertyRefRebuilder : Rebuilder<ObjCPropertyRefRebuilder> {
+ Expr *NewBase;
+ ObjCPropertyRefRebuilder(Sema &S, Expr *newBase)
+ : Rebuilder(S), NewBase(newBase) {}
+
+ typedef ObjCPropertyRefExpr specific_type;
+ Expr *rebuildSpecific(ObjCPropertyRefExpr *refExpr) {
+ // Fortunately, the constraint that we're rebuilding something
+ // with a base limits the number of cases here.
+ assert(refExpr->getBase());
+
+ if (refExpr->isExplicitProperty()) {
+ return new (S.Context)
+ ObjCPropertyRefExpr(refExpr->getExplicitProperty(),
+ refExpr->getType(), refExpr->getValueKind(),
+ refExpr->getObjectKind(), refExpr->getLocation(),
+ NewBase);
+ }
+ return new (S.Context)
+ ObjCPropertyRefExpr(refExpr->getImplicitPropertyGetter(),
+ refExpr->getImplicitPropertySetter(),
+ refExpr->getType(), refExpr->getValueKind(),
+ refExpr->getObjectKind(),refExpr->getLocation(),
+ NewBase);
+ }
+ };
+
+ class PseudoOpBuilder {
+ public:
+ Sema &S;
+ unsigned ResultIndex;
+ SourceLocation GenericLoc;
+ SmallVector<Expr *, 4> Semantics;
+
+ PseudoOpBuilder(Sema &S, SourceLocation genericLoc)
+ : S(S), ResultIndex(PseudoObjectExpr::NoResult),
+ GenericLoc(genericLoc) {}
+
+ /// Add a normal semantic expression.
+ void addSemanticExpr(Expr *semantic) {
+ Semantics.push_back(semantic);
+ }
+
+ /// Add the 'result' semantic expression.
+ void addResultSemanticExpr(Expr *resultExpr) {
+ assert(ResultIndex == PseudoObjectExpr::NoResult);
+ ResultIndex = Semantics.size();
+ Semantics.push_back(resultExpr);
+ }
+
+ ExprResult buildRValueOperation(Expr *op);
+ ExprResult buildAssignmentOperation(Scope *Sc,
+ SourceLocation opLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS);
+ ExprResult buildIncDecOperation(Scope *Sc, SourceLocation opLoc,
+ UnaryOperatorKind opcode,
+ Expr *op);
+
+ ExprResult complete(Expr *syntacticForm);
+
+ OpaqueValueExpr *capture(Expr *op);
+ OpaqueValueExpr *captureValueAsResult(Expr *op);
+
+ void setResultToLastSemantic() {
+ assert(ResultIndex == PseudoObjectExpr::NoResult);
+ ResultIndex = Semantics.size() - 1;
+ }
+
+ /// Return true if assignments have a non-void result.
+ virtual bool assignmentsHaveResult() { return true; }
+
+ virtual Expr *rebuildAndCaptureObject(Expr *) = 0;
+ virtual ExprResult buildGet() = 0;
+ virtual ExprResult buildSet(Expr *, SourceLocation,
+ bool captureSetValueAsResult) = 0;
+ };
+
+ /// A PseudoOpBuilder for Objective-C @properties.
+ class ObjCPropertyOpBuilder : public PseudoOpBuilder {
+ ObjCPropertyRefExpr *RefExpr;
+ OpaqueValueExpr *InstanceReceiver;
+ ObjCMethodDecl *Getter;
+
+ ObjCMethodDecl *Setter;
+ Selector SetterSelector;
+
+ public:
+ ObjCPropertyOpBuilder(Sema &S, ObjCPropertyRefExpr *refExpr) :
+ PseudoOpBuilder(S, refExpr->getLocation()), RefExpr(refExpr),
+ InstanceReceiver(0), Getter(0), Setter(0) {
+ }
+
+ ExprResult buildRValueOperation(Expr *op);
+ ExprResult buildAssignmentOperation(Scope *Sc,
+ SourceLocation opLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS);
+ ExprResult buildIncDecOperation(Scope *Sc, SourceLocation opLoc,
+ UnaryOperatorKind opcode,
+ Expr *op);
+
+ bool tryBuildGetOfReference(Expr *op, ExprResult &result);
+ bool findSetter();
+ bool findGetter();
+
+ Expr *rebuildAndCaptureObject(Expr *syntacticBase);
+ ExprResult buildGet();
+ ExprResult buildSet(Expr *op, SourceLocation, bool);
+ };
+}
+
+/// Capture the given expression in an OpaqueValueExpr.
+OpaqueValueExpr *PseudoOpBuilder::capture(Expr *e) {
+ // Make a new OVE whose source is the given expression.
+ OpaqueValueExpr *captured =
+ new (S.Context) OpaqueValueExpr(GenericLoc, e->getType(),
+ e->getValueKind());
+ captured->setSourceExpr(e);
+
+ // Make sure we bind that in the semantics.
+ addSemanticExpr(captured);
+ return captured;
+}
+
+/// Capture the given expression as the result of this pseudo-object
+/// operation. This routine is safe against expressions which may
+/// already be captured.
+///
+/// \param Returns the captured expression, which will be the
+/// same as the input if the input was already captured
+OpaqueValueExpr *PseudoOpBuilder::captureValueAsResult(Expr *e) {
+ assert(ResultIndex == PseudoObjectExpr::NoResult);
+
+ // If the expression hasn't already been captured, just capture it
+ // and set the new semantic
+ if (!isa<OpaqueValueExpr>(e)) {
+ OpaqueValueExpr *cap = capture(e);
+ setResultToLastSemantic();
+ return cap;
+ }
+
+ // Otherwise, it must already be one of our semantic expressions;
+ // set ResultIndex to its index.
+ unsigned index = 0;
+ for (;; ++index) {
+ assert(index < Semantics.size() &&
+ "captured expression not found in semantics!");
+ if (e == Semantics[index]) break;
+ }
+ ResultIndex = index;
+ return cast<OpaqueValueExpr>(e);
+}
+
+/// The routine which creates the final PseudoObjectExpr.
+ExprResult PseudoOpBuilder::complete(Expr *syntactic) {
+ return PseudoObjectExpr::Create(S.Context, syntactic,
+ Semantics, ResultIndex);
+}
+
+/// The main skeleton for building an r-value operation.
+ExprResult PseudoOpBuilder::buildRValueOperation(Expr *op) {
+ Expr *syntacticBase = rebuildAndCaptureObject(op);
+
+ ExprResult getExpr = buildGet();
+ if (getExpr.isInvalid()) return ExprError();
+ addResultSemanticExpr(getExpr.take());
+
+ return complete(syntacticBase);
+}
+
+/// The basic skeleton for building a simple or compound
+/// assignment operation.
+ExprResult
+PseudoOpBuilder::buildAssignmentOperation(Scope *Sc, SourceLocation opcLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS) {
+ assert(BinaryOperator::isAssignmentOp(opcode));
+
+ Expr *syntacticLHS = rebuildAndCaptureObject(LHS);
+ OpaqueValueExpr *capturedRHS = capture(RHS);
+
+ Expr *syntactic;
+
+ ExprResult result;
+ if (opcode == BO_Assign) {
+ result = capturedRHS;
+ syntactic = new (S.Context) BinaryOperator(syntacticLHS, capturedRHS,
+ opcode, capturedRHS->getType(),
+ capturedRHS->getValueKind(),
+ OK_Ordinary, opcLoc);
+ } else {
+ ExprResult opLHS = buildGet();
+ if (opLHS.isInvalid()) return ExprError();
+
+ // Build an ordinary, non-compound operation.
+ BinaryOperatorKind nonCompound =
+ BinaryOperator::getOpForCompoundAssignment(opcode);
+ result = S.BuildBinOp(Sc, opcLoc, nonCompound,
+ opLHS.take(), capturedRHS);
+ if (result.isInvalid()) return ExprError();
+
+ syntactic =
+ new (S.Context) CompoundAssignOperator(syntacticLHS, capturedRHS, opcode,
+ result.get()->getType(),
+ result.get()->getValueKind(),
+ OK_Ordinary,
+ opLHS.get()->getType(),
+ result.get()->getType(),
+ opcLoc);
+ }
+
+ // The result of the assignment, if not void, is the value set into
+ // the l-value.
+ result = buildSet(result.take(), opcLoc, assignmentsHaveResult());
+ if (result.isInvalid()) return ExprError();
+ addSemanticExpr(result.take());
+
+ return complete(syntactic);
+}
+
+/// The basic skeleton for building an increment or decrement
+/// operation.
+ExprResult
+PseudoOpBuilder::buildIncDecOperation(Scope *Sc, SourceLocation opcLoc,
+ UnaryOperatorKind opcode,
+ Expr *op) {
+ assert(UnaryOperator::isIncrementDecrementOp(opcode));
+
+ Expr *syntacticOp = rebuildAndCaptureObject(op);
+
+ // Load the value.
+ ExprResult result = buildGet();
+ if (result.isInvalid()) return ExprError();
+
+ QualType resultType = result.get()->getType();
+
+ // That's the postfix result.
+ if (UnaryOperator::isPostfix(opcode) && assignmentsHaveResult()) {
+ result = capture(result.take());
+ setResultToLastSemantic();
+ }
+
+ // Add or subtract a literal 1.
+ llvm::APInt oneV(S.Context.getTypeSize(S.Context.IntTy), 1);
+ Expr *one = IntegerLiteral::Create(S.Context, oneV, S.Context.IntTy,
+ GenericLoc);
+
+ if (UnaryOperator::isIncrementOp(opcode)) {
+ result = S.BuildBinOp(Sc, opcLoc, BO_Add, result.take(), one);
+ } else {
+ result = S.BuildBinOp(Sc, opcLoc, BO_Sub, result.take(), one);
+ }
+ if (result.isInvalid()) return ExprError();
+
+ // Store that back into the result. The value stored is the result
+ // of a prefix operation.
+ result = buildSet(result.take(), opcLoc,
+ UnaryOperator::isPrefix(opcode) && assignmentsHaveResult());
+ if (result.isInvalid()) return ExprError();
+ addSemanticExpr(result.take());
+
+ UnaryOperator *syntactic =
+ new (S.Context) UnaryOperator(syntacticOp, opcode, resultType,
+ VK_LValue, OK_Ordinary, opcLoc);
+ return complete(syntactic);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Objective-C @property and implicit property references
+//===----------------------------------------------------------------------===//
+
+/// Look up a method in the receiver type of an Objective-C property
+/// reference.
static ObjCMethodDecl *LookupMethodInReceiverType(Sema &S, Selector sel,
const ObjCPropertyRefExpr *PRE) {
if (PRE->isObjectReceiver()) {
const ObjCObjectPointerType *PT =
PRE->getBase()->getType()->castAs<ObjCObjectPointerType>();
+
+ // Special case for 'self' in class method implementations.
+ if (PT->isObjCClassType() &&
+ S.isSelfExpr(const_cast<Expr*>(PRE->getBase()))) {
+ // This cast is safe because isSelfExpr is only true within
+ // methods.
+ ObjCMethodDecl *method =
+ cast<ObjCMethodDecl>(S.CurContext->getNonClosureAncestor());
+ return S.LookupMethodInObjectType(sel,
+ S.Context.getObjCInterfaceType(method->getClassInterface()),
+ /*instance*/ false);
+ }
+
return S.LookupMethodInObjectType(sel, PT->getPointeeType(), true);
}
return S.LookupMethodInObjectType(sel, IT, false);
}
-ExprResult Sema::checkPseudoObjectRValue(Expr *E) {
- assert(E->getValueKind() == VK_LValue &&
- E->getObjectKind() == OK_ObjCProperty);
- const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
-
- QualType ReceiverType;
- if (PRE->isObjectReceiver())
- ReceiverType = PRE->getBase()->getType();
- else if (PRE->isSuperReceiver())
- ReceiverType = PRE->getSuperReceiverType();
- else
- ReceiverType = Context.getObjCInterfaceType(PRE->getClassReceiver());
-
- ExprValueKind VK = VK_RValue;
- QualType T;
- if (PRE->isImplicitProperty()) {
- if (ObjCMethodDecl *GetterMethod =
- PRE->getImplicitPropertyGetter()) {
- T = getMessageSendResultType(ReceiverType, GetterMethod,
- PRE->isClassReceiver(),
- PRE->isSuperReceiver());
- VK = Expr::getValueKindForType(GetterMethod->getResultType());
- } else {
- Diag(PRE->getLocation(), diag::err_getter_not_found)
- << PRE->getBase()->getType();
- return ExprError();
- }
- } else {
- ObjCPropertyDecl *prop = PRE->getExplicitProperty();
-
- ObjCMethodDecl *getter =
- LookupMethodInReceiverType(*this, prop->getGetterName(), PRE);
- if (getter && !getter->hasRelatedResultType())
- DiagnosePropertyAccessorMismatch(prop, getter, PRE->getLocation());
- if (!getter) getter = prop->getGetterMethodDecl();
-
- // Figure out the type of the expression. Mostly this is the
- // result type of the getter, if possible.
- if (getter) {
- T = getMessageSendResultType(ReceiverType, getter,
- PRE->isClassReceiver(),
- PRE->isSuperReceiver());
- VK = Expr::getValueKindForType(getter->getResultType());
-
- // As a special case, if the method returns 'id', try to get a
- // better type from the property.
- if (VK == VK_RValue && T->isObjCIdType() &&
- prop->getType()->isObjCRetainableType())
- T = prop->getType();
+bool ObjCPropertyOpBuilder::findGetter() {
+ if (Getter) return true;
+
+ Getter = LookupMethodInReceiverType(S, RefExpr->getGetterSelector(), RefExpr);
+ return (Getter != 0);
+}
+
+/// Try to find the most accurate setter declaration for the property
+/// reference.
+///
+/// \return true if a setter was found, in which case Setter
+bool ObjCPropertyOpBuilder::findSetter() {
+ // For implicit properties, just trust the lookup we already did.
+ if (RefExpr->isImplicitProperty()) {
+ if (ObjCMethodDecl *setter = RefExpr->getImplicitPropertySetter()) {
+ Setter = setter;
+ SetterSelector = setter->getSelector();
+ return true;
} else {
- T = prop->getType();
- VK = Expr::getValueKindForType(T);
- T = T.getNonLValueExprType(Context);
+ IdentifierInfo *getterName =
+ RefExpr->getImplicitPropertyGetter()->getSelector()
+ .getIdentifierInfoForSlot(0);
+ SetterSelector =
+ SelectorTable::constructSetterName(S.PP.getIdentifierTable(),
+ S.PP.getSelectorTable(),
+ getterName);
+ return false;
}
}
- E->setType(T);
- E = ImplicitCastExpr::Create(Context, T, CK_GetObjCProperty, E, 0, VK);
+ // For explicit properties, this is more involved.
+ ObjCPropertyDecl *prop = RefExpr->getExplicitProperty();
+ SetterSelector = prop->getSetterName();
+
+ // Do a normal method lookup first.
+ if (ObjCMethodDecl *setter =
+ LookupMethodInReceiverType(S, SetterSelector, RefExpr)) {
+ Setter = setter;
+ return true;
+ }
+
+ // That can fail in the somewhat crazy situation that we're
+ // type-checking a message send within the @interface declaration
+ // that declared the @property. But it's not clear that that's
+ // valuable to support.
+
+ return false;
+}
+
+/// Capture the base object of an Objective-C property expression.
+Expr *ObjCPropertyOpBuilder::rebuildAndCaptureObject(Expr *syntacticBase) {
+ assert(InstanceReceiver == 0);
+
+ // If we have a base, capture it in an OVE and rebuild the syntactic
+ // form to use the OVE as its base.
+ if (RefExpr->isObjectReceiver()) {
+ InstanceReceiver = capture(RefExpr->getBase());
+
+ syntacticBase =
+ ObjCPropertyRefRebuilder(S, InstanceReceiver).rebuild(syntacticBase);
+ }
+
+ return syntacticBase;
+}
+
+/// Load from an Objective-C property reference.
+ExprResult ObjCPropertyOpBuilder::buildGet() {
+ findGetter();
+ assert(Getter);
- ExprResult Result = MaybeBindToTemporary(E);
- if (!Result.isInvalid())
- E = Result.take();
+ QualType receiverType;
+ SourceLocation superLoc;
+ if (RefExpr->isClassReceiver()) {
+ receiverType = S.Context.getObjCInterfaceType(RefExpr->getClassReceiver());
+ } else if (RefExpr->isSuperReceiver()) {
+ superLoc = RefExpr->getReceiverLocation();
+ receiverType = RefExpr->getSuperReceiverType();
+ } else {
+ assert(InstanceReceiver);
+ receiverType = InstanceReceiver->getType();
+ }
- return Owned(E);
+ // Build a message-send.
+ ExprResult msg;
+ if (Getter->isInstanceMethod() || RefExpr->isObjectReceiver()) {
+ assert(InstanceReceiver || RefExpr->isSuperReceiver());
+ msg = S.BuildInstanceMessage(InstanceReceiver, receiverType, superLoc,
+ Getter->getSelector(), Getter,
+ GenericLoc, GenericLoc, GenericLoc,
+ MultiExprArg());
+ } else {
+ TypeSourceInfo *receiverTypeInfo = 0;
+ if (!RefExpr->isSuperReceiver())
+ receiverTypeInfo = S.Context.getTrivialTypeSourceInfo(receiverType);
+
+ msg = S.BuildClassMessage(receiverTypeInfo, receiverType, superLoc,
+ Getter->getSelector(), Getter,
+ GenericLoc, GenericLoc, GenericLoc,
+ MultiExprArg());
+ }
+ return msg;
}
-namespace {
- struct PseudoObjectInfo {
- const ObjCPropertyRefExpr *RefExpr;
- bool HasSetter;
- Selector SetterSelector;
- ParmVarDecl *SetterParam;
- QualType SetterParamType;
+/// Store to an Objective-C property reference.
+///
+/// \param bindSetValueAsResult - If true, capture the actual
+/// value being set as the value of the property operation.
+ExprResult ObjCPropertyOpBuilder::buildSet(Expr *op, SourceLocation opcLoc,
+ bool captureSetValueAsResult) {
+ bool hasSetter = findSetter();
+ assert(hasSetter); (void) hasSetter;
+
+ QualType receiverType;
+ SourceLocation superLoc;
+ if (RefExpr->isClassReceiver()) {
+ receiverType = S.Context.getObjCInterfaceType(RefExpr->getClassReceiver());
+ } else if (RefExpr->isSuperReceiver()) {
+ superLoc = RefExpr->getReceiverLocation();
+ receiverType = RefExpr->getSuperReceiverType();
+ } else {
+ assert(InstanceReceiver);
+ receiverType = InstanceReceiver->getType();
+ }
- void setSetter(ObjCMethodDecl *setter) {
- HasSetter = true;
- SetterParam = *setter->param_begin();
- SetterParamType = SetterParam->getType().getUnqualifiedType();
+ // Use assignment constraints when possible; they give us better
+ // diagnostics. "When possible" basically means anything except a
+ // C++ class type.
+ if (!S.getLangOptions().CPlusPlus || !op->getType()->isRecordType()) {
+ QualType paramType = (*Setter->param_begin())->getType();
+ if (!S.getLangOptions().CPlusPlus || !paramType->isRecordType()) {
+ ExprResult opResult = op;
+ Sema::AssignConvertType assignResult
+ = S.CheckSingleAssignmentConstraints(paramType, opResult);
+ if (S.DiagnoseAssignmentResult(assignResult, opcLoc, paramType,
+ op->getType(), opResult.get(),
+ Sema::AA_Assigning))
+ return ExprError();
+
+ op = opResult.take();
+ assert(op && "successful assignment left argument invalid?");
}
+ }
- PseudoObjectInfo(Sema &S, Expr *E)
- : RefExpr(E->getObjCProperty()), HasSetter(false), SetterParam(0) {
-
- assert(E->getValueKind() == VK_LValue &&
- E->getObjectKind() == OK_ObjCProperty);
-
- // Try to find a setter.
-
- // For implicit properties, just trust the lookup we already did.
- if (RefExpr->isImplicitProperty()) {
- if (ObjCMethodDecl *setter = RefExpr->getImplicitPropertySetter()) {
- setSetter(setter);
- SetterSelector = setter->getSelector();
- } else {
- IdentifierInfo *getterName =
- RefExpr->getImplicitPropertyGetter()->getSelector()
- .getIdentifierInfoForSlot(0);
- SetterSelector =
- SelectorTable::constructSetterName(S.PP.getIdentifierTable(),
- S.PP.getSelectorTable(),
- getterName);
- }
- return;
- }
+ // Arguments.
+ Expr *args[] = { op };
- // For explicit properties, this is more involved.
- ObjCPropertyDecl *prop = RefExpr->getExplicitProperty();
- SetterSelector = prop->getSetterName();
+ // Build a message-send.
+ ExprResult msg;
+ if (Setter->isInstanceMethod() || RefExpr->isObjectReceiver()) {
+ msg = S.BuildInstanceMessage(InstanceReceiver, receiverType, superLoc,
+ SetterSelector, Setter,
+ GenericLoc, GenericLoc, GenericLoc,
+ MultiExprArg(args, 1));
+ } else {
+ TypeSourceInfo *receiverTypeInfo = 0;
+ if (!RefExpr->isSuperReceiver())
+ receiverTypeInfo = S.Context.getTrivialTypeSourceInfo(receiverType);
+
+ msg = S.BuildClassMessage(receiverTypeInfo, receiverType, superLoc,
+ SetterSelector, Setter,
+ GenericLoc, GenericLoc, GenericLoc,
+ MultiExprArg(args, 1));
+ }
- // Do a normal method lookup first.
- if (ObjCMethodDecl *setter =
- LookupMethodInReceiverType(S, SetterSelector, RefExpr)) {
- setSetter(setter);
- return;
- }
+ if (!msg.isInvalid() && captureSetValueAsResult) {
+ ObjCMessageExpr *msgExpr =
+ cast<ObjCMessageExpr>(msg.get()->IgnoreImplicit());
+ Expr *arg = msgExpr->getArg(0);
+ msgExpr->setArg(0, captureValueAsResult(arg));
+ }
- // If that failed, trust the type on the @property declaration.
- if (!prop->isReadOnly()) {
- HasSetter = true;
- SetterParamType = prop->getType().getUnqualifiedType();
- }
+ return msg;
+}
+
+/// @property-specific behavior for doing lvalue-to-rvalue conversion.
+ExprResult ObjCPropertyOpBuilder::buildRValueOperation(Expr *op) {
+ // Explicit properties always have getters, but implicit ones don't.
+ // Check that before proceeding.
+ if (RefExpr->isImplicitProperty() &&
+ !RefExpr->getImplicitPropertyGetter()) {
+ S.Diag(RefExpr->getLocation(), diag::err_getter_not_found)
+ << RefExpr->getBase()->getType();
+ return ExprError();
+ }
+
+ ExprResult result = PseudoOpBuilder::buildRValueOperation(op);
+ if (result.isInvalid()) return ExprError();
+
+ if (RefExpr->isExplicitProperty() && !Getter->hasRelatedResultType())
+ S.DiagnosePropertyAccessorMismatch(RefExpr->getExplicitProperty(),
+ Getter, RefExpr->getLocation());
+
+ // As a special case, if the method returns 'id', try to get
+ // a better type from the property.
+ if (RefExpr->isExplicitProperty() && result.get()->isRValue() &&
+ result.get()->getType()->isObjCIdType()) {
+ QualType propType = RefExpr->getExplicitProperty()->getType();
+ if (const ObjCObjectPointerType *ptr
+ = propType->getAs<ObjCObjectPointerType>()) {
+ if (!ptr->isObjCIdType())
+ result = S.ImpCastExprToType(result.get(), propType, CK_BitCast);
}
- };
+ }
+
+ return result;
}
-/// Check an increment or decrement of a pseudo-object expression.
-ExprResult Sema::checkPseudoObjectIncDec(Scope *S, SourceLocation opcLoc,
- UnaryOperatorKind opcode, Expr *op) {
- assert(UnaryOperator::isIncrementDecrementOp(opcode));
- PseudoObjectInfo info(*this, op);
+/// Try to build this as a call to a getter that returns a reference.
+///
+/// \return true if it was possible, whether or not it actually
+/// succeeded
+bool ObjCPropertyOpBuilder::tryBuildGetOfReference(Expr *op,
+ ExprResult &result) {
+ if (!S.getLangOptions().CPlusPlus) return false;
+
+ findGetter();
+ assert(Getter && "property has no setter and no getter!");
+
+ // Only do this if the getter returns an l-value reference type.
+ QualType resultType = Getter->getResultType();
+ if (!resultType->isLValueReferenceType()) return false;
+
+ result = buildRValueOperation(op);
+ return true;
+}
+
+/// @property-specific behavior for doing assignments.
+ExprResult
+ObjCPropertyOpBuilder::buildAssignmentOperation(Scope *Sc,
+ SourceLocation opcLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS) {
+ assert(BinaryOperator::isAssignmentOp(opcode));
// If there's no setter, we have no choice but to try to assign to
// the result of the getter.
- if (!info.HasSetter) {
- QualType resultType = info.RefExpr->getGetterResultType();
- assert(!resultType.isNull() && "property has no setter and no getter!");
-
- // Only do this if the getter returns an l-value reference type.
- if (const LValueReferenceType *refType
- = resultType->getAs<LValueReferenceType>()) {
- op = ImplicitCastExpr::Create(Context, refType->getPointeeType(),
- CK_GetObjCProperty, op, 0, VK_LValue);
- return BuildUnaryOp(S, opcLoc, opcode, op);
+ if (!findSetter()) {
+ ExprResult result;
+ if (tryBuildGetOfReference(LHS, result)) {
+ if (result.isInvalid()) return ExprError();
+ return S.BuildBinOp(Sc, opcLoc, opcode, result.take(), RHS);
}
// Otherwise, it's an error.
- Diag(opcLoc, diag::err_nosetter_property_incdec)
- << unsigned(info.RefExpr->isImplicitProperty())
- << unsigned(UnaryOperator::isDecrementOp(opcode))
- << info.SetterSelector
- << op->getSourceRange();
+ S.Diag(opcLoc, diag::err_nosetter_property_assignment)
+ << unsigned(RefExpr->isImplicitProperty())
+ << SetterSelector
+ << LHS->getSourceRange() << RHS->getSourceRange();
return ExprError();
}
- // ++/-- behave like compound assignments, i.e. they need a getter.
- QualType getterResultType = info.RefExpr->getGetterResultType();
- if (getterResultType.isNull()) {
- assert(info.RefExpr->isImplicitProperty());
- Diag(opcLoc, diag::err_nogetter_property_incdec)
- << unsigned(UnaryOperator::isDecrementOp(opcode))
- << info.RefExpr->getImplicitPropertyGetter()->getSelector()
- << op->getSourceRange();
+ // If there is a setter, we definitely want to use it.
+
+ // Verify that we can do a compound assignment.
+ if (opcode != BO_Assign && !findGetter()) {
+ S.Diag(opcLoc, diag::err_nogetter_property_compound_assignment)
+ << LHS->getSourceRange() << RHS->getSourceRange();
return ExprError();
}
- // HACK: change the type of the operand to prevent further placeholder
- // transformation.
- op->setType(getterResultType.getNonLValueExprType(Context));
- op->setObjectKind(OK_Ordinary);
-
- ExprResult result = CreateBuiltinUnaryOp(opcLoc, opcode, op);
+ ExprResult result =
+ PseudoOpBuilder::buildAssignmentOperation(Sc, opcLoc, opcode, LHS, RHS);
if (result.isInvalid()) return ExprError();
- // Change the object kind back.
- op->setObjectKind(OK_ObjCProperty);
+ // Various warnings about property assignments in ARC.
+ if (S.getLangOptions().ObjCAutoRefCount && InstanceReceiver) {
+ S.checkRetainCycles(InstanceReceiver->getSourceExpr(), RHS);
+ S.checkUnsafeExprAssigns(opcLoc, LHS, RHS);
+ }
+
return result;
}
-ExprResult Sema::checkPseudoObjectAssignment(Scope *S, SourceLocation opcLoc,
- BinaryOperatorKind opcode,
- Expr *LHS, Expr *RHS) {
- assert(BinaryOperator::isAssignmentOp(opcode));
- PseudoObjectInfo info(*this, LHS);
-
+/// @property-specific behavior for doing increments and decrements.
+ExprResult
+ObjCPropertyOpBuilder::buildIncDecOperation(Scope *Sc, SourceLocation opcLoc,
+ UnaryOperatorKind opcode,
+ Expr *op) {
// If there's no setter, we have no choice but to try to assign to
// the result of the getter.
- if (!info.HasSetter) {
- QualType resultType = info.RefExpr->getGetterResultType();
- assert(!resultType.isNull() && "property has no setter and no getter!");
-
- // Only do this if the getter returns an l-value reference type.
- if (const LValueReferenceType *refType
- = resultType->getAs<LValueReferenceType>()) {
- LHS = ImplicitCastExpr::Create(Context, refType->getPointeeType(),
- CK_GetObjCProperty, LHS, 0, VK_LValue);
- return BuildBinOp(S, opcLoc, opcode, LHS, RHS);
+ if (!findSetter()) {
+ ExprResult result;
+ if (tryBuildGetOfReference(op, result)) {
+ if (result.isInvalid()) return ExprError();
+ return S.BuildUnaryOp(Sc, opcLoc, opcode, result.take());
}
// Otherwise, it's an error.
- Diag(opcLoc, diag::err_nosetter_property_assignment)
- << unsigned(info.RefExpr->isImplicitProperty())
- << info.SetterSelector
- << LHS->getSourceRange() << RHS->getSourceRange();
+ S.Diag(opcLoc, diag::err_nosetter_property_incdec)
+ << unsigned(RefExpr->isImplicitProperty())
+ << unsigned(UnaryOperator::isDecrementOp(opcode))
+ << SetterSelector
+ << op->getSourceRange();
return ExprError();
}
// If there is a setter, we definitely want to use it.
- // If this is a simple assignment, just initialize the parameter
- // with the RHS.
- if (opcode == BO_Assign) {
- LHS->setType(info.SetterParamType.getNonLValueExprType(Context));
-
- // Under certain circumstances, we need to type-check the RHS as a
- // straight-up parameter initialization. This gives somewhat
- // inferior diagnostics, so we try to avoid it.
-
- if (RHS->isTypeDependent()) {
- // Just build the expression.
-
- } else if ((getLangOptions().CPlusPlus && LHS->getType()->isRecordType()) ||
- (getLangOptions().ObjCAutoRefCount &&
- info.SetterParam &&
- info.SetterParam->hasAttr<NSConsumedAttr>())) {
- InitializedEntity param = (info.SetterParam
- ? InitializedEntity::InitializeParameter(Context, info.SetterParam)
- : InitializedEntity::InitializeParameter(Context, info.SetterParamType,
- /*consumed*/ false));
- ExprResult arg = PerformCopyInitialization(param, opcLoc, RHS);
- if (arg.isInvalid()) return ExprError();
- RHS = arg.take();
-
- // Warn about assignments of +1 objects to unsafe pointers in ARC.
- // CheckAssignmentOperands does this on the other path.
- if (getLangOptions().ObjCAutoRefCount)
- checkUnsafeExprAssigns(opcLoc, LHS, RHS);
- } else {
- ExprResult RHSResult = Owned(RHS);
-
- LHS->setObjectKind(OK_Ordinary);
- QualType resultType = CheckAssignmentOperands(LHS, RHSResult, opcLoc,
- /*compound*/ QualType());
- LHS->setObjectKind(OK_ObjCProperty);
+ // We also need a getter.
+ if (!findGetter()) {
+ assert(RefExpr->isImplicitProperty());
+ S.Diag(opcLoc, diag::err_nogetter_property_incdec)
+ << unsigned(UnaryOperator::isDecrementOp(opcode))
+ << RefExpr->getImplicitPropertyGetter()->getSelector() // FIXME!
+ << op->getSourceRange();
+ return ExprError();
+ }
- if (!RHSResult.isInvalid()) RHS = RHSResult.take();
- if (resultType.isNull()) return ExprError();
- }
+ return PseudoOpBuilder::buildIncDecOperation(Sc, opcLoc, opcode, op);
+}
- // Warn about property sets in ARC that might cause retain cycles.
- if (getLangOptions().ObjCAutoRefCount && !info.RefExpr->isSuperReceiver())
- checkRetainCycles(const_cast<Expr*>(info.RefExpr->getBase()), RHS);
+//===----------------------------------------------------------------------===//
+// General Sema routines.
+//===----------------------------------------------------------------------===//
- return new (Context) BinaryOperator(LHS, RHS, opcode, RHS->getType(),
- RHS->getValueKind(),
- RHS->getObjectKind(),
- opcLoc);
+ExprResult Sema::checkPseudoObjectRValue(Expr *E) {
+ Expr *opaqueRef = E->IgnoreParens();
+ if (ObjCPropertyRefExpr *refExpr
+ = dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) {
+ ObjCPropertyOpBuilder builder(*this, refExpr);
+ return builder.buildRValueOperation(E);
+ } else {
+ llvm_unreachable("unknown pseudo-object kind!");
}
+}
- // If this is a compound assignment, we need to use the getter, too.
- QualType getterResultType = info.RefExpr->getGetterResultType();
- if (getterResultType.isNull()) {
- Diag(opcLoc, diag::err_nogetter_property_compound_assignment)
- << LHS->getSourceRange() << RHS->getSourceRange();
- return ExprError();
+/// Check an increment or decrement of a pseudo-object expression.
+ExprResult Sema::checkPseudoObjectIncDec(Scope *Sc, SourceLocation opcLoc,
+ UnaryOperatorKind opcode, Expr *op) {
+ // Do nothing if the operand is dependent.
+ if (op->isTypeDependent())
+ return new (Context) UnaryOperator(op, opcode, Context.DependentTy,
+ VK_RValue, OK_Ordinary, opcLoc);
+
+ assert(UnaryOperator::isIncrementDecrementOp(opcode));
+ Expr *opaqueRef = op->IgnoreParens();
+ if (ObjCPropertyRefExpr *refExpr
+ = dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) {
+ ObjCPropertyOpBuilder builder(*this, refExpr);
+ return builder.buildIncDecOperation(Sc, opcLoc, opcode, op);
+ } else {
+ llvm_unreachable("unknown pseudo-object kind!");
}
+}
- // HACK: change the type of the LHS to prevent further placeholder
- // transformation.
- LHS->setType(getterResultType.getNonLValueExprType(Context));
- LHS->setObjectKind(OK_Ordinary);
-
- ExprResult result = CreateBuiltinBinOp(opcLoc, opcode, LHS, RHS);
- if (result.isInvalid()) return ExprError();
+ExprResult Sema::checkPseudoObjectAssignment(Scope *S, SourceLocation opcLoc,
+ BinaryOperatorKind opcode,
+ Expr *LHS, Expr *RHS) {
+ // Do nothing if either argument is dependent.
+ if (LHS->isTypeDependent() || RHS->isTypeDependent())
+ return new (Context) BinaryOperator(LHS, RHS, opcode, Context.DependentTy,
+ VK_RValue, OK_Ordinary, opcLoc);
+
+ // Filter out non-overload placeholder types in the RHS.
+ if (const BuiltinType *PTy = RHS->getType()->getAsPlaceholderType()) {
+ if (PTy->getKind() != BuiltinType::Overload) {
+ ExprResult result = CheckPlaceholderExpr(RHS);
+ if (result.isInvalid()) return ExprError();
+ RHS = result.take();
+ }
+ }
- // Change the object kind back.
- LHS->setObjectKind(OK_ObjCProperty);
- return result;
+ Expr *opaqueRef = LHS->IgnoreParens();
+ if (ObjCPropertyRefExpr *refExpr
+ = dyn_cast<ObjCPropertyRefExpr>(opaqueRef)) {
+ ObjCPropertyOpBuilder builder(*this, refExpr);
+ return builder.buildAssignmentOperation(S, opcLoc, opcode, LHS, RHS);
+ } else {
+ llvm_unreachable("unknown pseudo-object kind!");
+ }
}
Diag(Loc, diag::warn_unused_result) << R1 << R2;
return;
}
- } else if (isa<ObjCPropertyRefExpr>(E)) {
+ } else if (isa<PseudoObjectExpr>(E)) {
DiagID = diag::warn_unused_property_expr;
} else if (const CXXFunctionalCastExpr *FC
= dyn_cast<CXXFunctionalCastExpr>(E)) {
return SemaRef.Owned(E);
}
+template<typename Derived>
+ExprResult
+TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) {
+ // Rebuild the syntactic form.
+ ExprResult result = getDerived().TransformExpr(E->getSyntacticForm());
+ if (result.isInvalid()) return ExprError();
+
+ // If that gives us a pseudo-object result back, the pseudo-object
+ // expression must have been an lvalue-to-rvalue conversion which we
+ // should reapply.
+ if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject))
+ result = SemaRef.checkPseudoObjectRValue(result.take());
+
+ return result;
+}
+
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
E->RParenLoc = ReadSourceLocation(Record, Idx);
}
+void ASTStmtReader::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ VisitExpr(E);
+ unsigned numSemanticExprs = Record[Idx++];
+ assert(numSemanticExprs + 1 == E->PseudoObjectExprBits.NumSubExprs);
+ E->PseudoObjectExprBits.ResultIndex = Record[Idx++];
+
+ // Read the syntactic expression.
+ E->getSubExprsBuffer()[0] = Reader.ReadSubExpr();
+
+ // Read all the semantic expressions.
+ for (unsigned i = 0; i != numSemanticExprs; ++i) {
+ Expr *subExpr = Reader.ReadSubExpr();
+ if (isa<OpaqueValueExpr>(subExpr))
+ cast<OpaqueValueExpr>(subExpr)->setSourceExpr(Reader.ReadSubExpr());
+ E->getSubExprsBuffer()[i+1] = subExpr;
+ }
+}
+
void ASTStmtReader::VisitAtomicExpr(AtomicExpr *E) {
VisitExpr(E);
E->setOp(AtomicExpr::AtomicOp(Record[Idx++]));
S = new (Context) AsTypeExpr(Empty);
break;
+ case EXPR_PSEUDO_OBJECT: {
+ unsigned numSemanticExprs = Record[ASTStmtReader::NumExprFields];
+ S = PseudoObjectExpr::Create(Context, Empty, numSemanticExprs);
+ break;
+ }
+
case EXPR_ATOMIC:
S = new (Context) AtomicExpr(Empty);
break;
Code = serialization::EXPR_GENERIC_SELECTION;
}
+void ASTStmtWriter::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ VisitExpr(E);
+ Record.push_back(E->getNumSemanticExprs());
+
+ // Push the result index. Currently, this needs to exactly match
+ // the encoding used internally for ResultIndex.
+ unsigned result = E->getResultExprIndex();
+ result = (result == PseudoObjectExpr::NoResult ? 0 : result + 1);
+ Record.push_back(result);
+
+ Writer.AddStmt(E->getSyntacticForm());
+ for (PseudoObjectExpr::semantics_iterator
+ i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
+ Writer.AddStmt(*i);
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(*i))
+ Writer.AddStmt(OVE->getSourceExpr());
+ }
+}
+
void ASTStmtWriter::VisitAtomicExpr(AtomicExpr *E) {
VisitExpr(E);
Record.push_back(E->getOp());
Bldr.addNodes(Dst);
break;
}
+
+ case Stmt::PseudoObjectExprClass: {
+ Bldr.takeNodes(Pred);
+ const ProgramState *state = Pred->getState();
+ const PseudoObjectExpr *PE = cast<PseudoObjectExpr>(S);
+ if (const Expr *Result = PE->getResultExpr()) {
+ SVal V = state->getSVal(Result);
+ Bldr.generateNode(S, Pred, state->BindExpr(S, V));
+ }
+ else
+ Bldr.generateNode(S, Pred, state->BindExpr(S, UnknownVal()));
+
+ Bldr.addNodes(Dst);
+ break;
+ }
}
}
RDR10087620Enum elem;
}
@property (readwrite, nonatomic) RDR10087620Enum elem;
+@end
+
static void
adium_media_ready_cb(RDR10087620 *InObj)
{
InObj.elem |= EEOne;
}
-@end
\ No newline at end of file
// RUN: %clang_cc1 -triple x86_64-apple-darwin10 -analyze -analyzer-checker=core,osx.coreFoundation.CFRetainRelease,osx.cocoa.ClassRelease,osx.cocoa.RetainCount -analyzer-store=region -analyzer-output=text -verify %s
+// This actually still works after the pseudo-object refactor, it just
+// uses messages that say 'method' instead of 'property'. Ted wanted
+// this xfailed and filed as a bug. rdar://problem/10402993
+// XFAIL: *
+
/***
This file is for testing the path-sensitive notes for retain/release errors.
Its goal is to have simple branch coverage of any path-based diagnostics,
void VisitUnresolvedMemberExpr(UnresolvedMemberExpr *U);
void VisitVAArgExpr(VAArgExpr *E);
void VisitSizeOfPackExpr(SizeOfPackExpr *E);
+ void VisitPseudoObjectExpr(PseudoObjectExpr *E);
+ void VisitOpaqueValueExpr(OpaqueValueExpr *E);
private:
void AddDeclarationNameInfo(Stmt *S);
void EnqueueVisitor::VisitSizeOfPackExpr(SizeOfPackExpr *E) {
WL.push_back(SizeOfPackExprParts(E, Parent));
}
+void EnqueueVisitor::VisitOpaqueValueExpr(OpaqueValueExpr *E) {
+ // If the opaque value has a source expression, just transparently
+ // visit that. This is useful for (e.g.) pseudo-object expressions.
+ if (Expr *SourceExpr = E->getSourceExpr())
+ return Visit(SourceExpr);
+ AddStmt(E);
+}
+void EnqueueVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ // Treat the expression like its syntactic form.
+ Visit(E->getSyntacticForm());
+}
void CursorVisitor::EnqueueWorkList(VisitorWorkList &WL, Stmt *S) {
EnqueueVisitor(WL, MakeCXCursor(S, StmtParent, TU,RegionOfInterest)).Visit(S);
return RE->getDecl();
if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(E))
return PRE->isExplicitProperty() ? PRE->getExplicitProperty() : 0;
+ if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
+ return getDeclFromExpr(POE->getSyntacticForm());
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
+ if (Expr *Src = OVE->getSourceExpr())
+ return getDeclFromExpr(Src);
if (CallExpr *CE = dyn_cast<CallExpr>(E))
return getDeclFromExpr(CE->getCallee());
case Stmt::MaterializeTemporaryExprClass:
case Stmt::ObjCIndirectCopyRestoreExprClass:
case Stmt::OffsetOfExprClass:
- case Stmt::OpaqueValueExprClass:
case Stmt::ParenListExprClass:
case Stmt::PredefinedExprClass:
case Stmt::ShuffleVectorExprClass:
K = CXCursor_UnexposedExpr;
break;
+ case Stmt::OpaqueValueExprClass:
+ if (Expr *Src = cast<OpaqueValueExpr>(S)->getSourceExpr())
+ return MakeCXCursor(Src, Parent, TU, RegionOfInterest);
+ K = CXCursor_UnexposedExpr;
+ break;
+
+ case Stmt::PseudoObjectExprClass:
+ return MakeCXCursor(cast<PseudoObjectExpr>(S)->getSyntacticForm(),
+ Parent, TU, RegionOfInterest);
+
case Stmt::CompoundStmtClass:
K = CXCursor_CompoundStmt;
break;