}
}
-static void set_partitioning(VP9_COMP *cpi, MODE_INFO *m, BLOCK_SIZE bsize) {
+// Check to see if the given partition size is allowed for a specified number
+// of 8x8 block rows and columns remaining in the image.
+// If not then return the largest allowed partition size
+static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
+ int rows_left, int cols_left,
+ int *bh, int *bw) {
+ if ((rows_left <= 0) || (cols_left <= 0)) {
+ return MIN(bsize, BLOCK_8X8);
+ } else {
+ for (; bsize > 0; --bsize) {
+ *bh = num_8x8_blocks_high_lookup[bsize];
+ *bw = num_8x8_blocks_wide_lookup[bsize];
+ if ((*bh <= rows_left) && (*bw <= cols_left)) {
+ break;
+ }
+ }
+ }
+ return bsize;
+}
+
+// This function attempts to set all mode info entries in a given SB64
+// to the same block partition size.
+// However, at the bottom and right borders of the image the requested size
+// may not be allowed in which case this code attempts to choose the largest
+// allowable partition.
+static void set_partitioning(VP9_COMP *cpi, MODE_INFO *m,
+ int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
+ BLOCK_SIZE bsize = cpi->sf.always_this_block_size;
const int mis = cm->mode_info_stride;
+ int row8x8_remaining = cm->cur_tile_mi_row_end - mi_row;
+ int col8x8_remaining = cm->cur_tile_mi_col_end - mi_col;
int block_row, block_col;
- for (block_row = 0; block_row < 8; ++block_row) {
- for (block_col = 0; block_col < 8; ++block_col) {
- m[block_row * mis + block_col].mbmi.sb_type = bsize;
+
+ assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
+
+ // Apply the requested partition size to the SB64 if it is all "in image"
+ if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
+ (row8x8_remaining >= MI_BLOCK_SIZE)) {
+ for (block_row = 0; block_row < MI_BLOCK_SIZE; ++block_row) {
+ for (block_col = 0; block_col < MI_BLOCK_SIZE; ++block_col) {
+ m[block_row * mis + block_col].mbmi.sb_type = bsize;
+ }
+ }
+ } else {
+ // Else this is a partial SB64.
+ int bh = num_8x8_blocks_high_lookup[bsize];
+ int bw = num_8x8_blocks_wide_lookup[bsize];
+ int sub_block_row;
+ int sub_block_col;
+ int row_index;
+ int col_index;
+
+ for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
+ for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
+ // Find a partition size that fits
+ bsize = find_partition_size(cpi->sf.always_this_block_size,
+ (row8x8_remaining - block_row),
+ (col8x8_remaining - block_col), &bh, &bw);
+
+ // Set the mi entries for all 8x8 blocks within the selected size
+ for (sub_block_row = 0; sub_block_row < bh; ++sub_block_row) {
+ for (sub_block_col = 0; sub_block_col < bw; ++sub_block_col) {
+ row_index = block_row + sub_block_row;
+ col_index = block_col + sub_block_col;
+ m[row_index * mis + col_index].mbmi.sb_type = bsize;
+ }
+ }
+ }
}
}
}
cpi->mb.source_variance = UINT_MAX;
if (cpi->sf.use_one_partition_size_always) {
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
- set_partitioning(cpi, m, cpi->sf.always_this_block_size);
+ set_partitioning(cpi, m, mi_row, mi_col);
rd_use_partition(cpi, m, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1);
} else if (cpi->sf.partition_by_variance) {