#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_idct.h"
-#if CONFIG_EMULATE_HARDWARE
-// When CONFIG_EMULATE_HARDWARE is 1 the transform performs a
-// non-normative method to handle overflows. A stream that causes
-// overflows in the inverse transform is considered invalid in VP9,
-// and a hardware implementer is free to choose any reasonable
-// method to handle overflows. However to aid in hardware
-// verification they can use a specific implementation of the
-// WRAPLOW() macro below that is identical to their intended
-// hardware implementation (and also use configure options to trigger
-// the C-implementation of the transform).
-//
-// The particular WRAPLOW implementation below performs strict
-// overflow wrapping to match common hardware implementations.
-// bd of 8 uses trans_low with 16bits, need to remove 16bits
-// bd of 10 uses trans_low with 18bits, need to remove 14bits
-// bd of 12 uses trans_low with 20bits, need to remove 12bits
-// bd of x uses trans_low with 8+x bits, need to remove 24-x bits
-#define WRAPLOW(x, bd) ((((int32_t)(x)) << (24 - bd)) >> (24 - bd))
-#else
-#define WRAPLOW(x, bd) (x)
-#endif // CONFIG_EMULATE_HARDWARE
-
-#if CONFIG_VP9_HIGHBITDEPTH
-static INLINE uint16_t highbd_clip_pixel_add(uint16_t dest, tran_high_t trans,
- int bd) {
- trans = WRAPLOW(trans, bd);
- return clip_pixel_highbd(WRAPLOW(dest + trans, bd), bd);
-}
-#endif // CONFIG_VP9_HIGHBITDEPTH
-
static INLINE uint8_t clip_pixel_add(uint8_t dest, tran_high_t trans) {
trans = WRAPLOW(trans, 8);
return clip_pixel(WRAPLOW(dest + trans, 8));
}
}
-static void highbd_idct4(const tran_low_t *input, tran_low_t *output, int bd) {
+void vp9_highbd_idct4(const tran_low_t *input, tran_low_t *output, int bd) {
tran_low_t step[4];
tran_high_t temp1, temp2;
(void) bd;
// Rows
for (i = 0; i < 4; ++i) {
- highbd_idct4(input, outptr, bd);
+ vp9_highbd_idct4(input, outptr, bd);
input += 4;
outptr += 4;
}
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j * 4 + i];
- highbd_idct4(temp_in, temp_out, bd);
+ vp9_highbd_idct4(temp_in, temp_out, bd);
for (j = 0; j < 4; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4), bd);
}
}
-static void highbd_idct8(const tran_low_t *input, tran_low_t *output, int bd) {
+void vp9_highbd_idct8(const tran_low_t *input, tran_low_t *output, int bd) {
tran_low_t step1[8], step2[8];
tran_high_t temp1, temp2;
// stage 1
step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd);
// stage 2 & stage 3 - even half
- highbd_idct4(step1, step1, bd);
+ vp9_highbd_idct4(step1, step1, bd);
// stage 2 - odd half
step2[4] = WRAPLOW(step1[4] + step1[5], bd);
// First transform rows.
for (i = 0; i < 8; ++i) {
- highbd_idct8(input, outptr, bd);
+ vp9_highbd_idct8(input, outptr, bd);
input += 8;
outptr += 8;
}
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
- highbd_idct8(temp_in, temp_out, bd);
+ vp9_highbd_idct8(temp_in, temp_out, bd);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd);
void vp9_highbd_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
const highbd_transform_2d IHT_4[] = {
- { highbd_idct4, highbd_idct4 }, // DCT_DCT = 0
- { highbd_iadst4, highbd_idct4 }, // ADST_DCT = 1
- { highbd_idct4, highbd_iadst4 }, // DCT_ADST = 2
+ { vp9_highbd_idct4, vp9_highbd_idct4 }, // DCT_DCT = 0
+ { highbd_iadst4, vp9_highbd_idct4 }, // ADST_DCT = 1
+ { vp9_highbd_idct4, highbd_iadst4 }, // DCT_ADST = 2
{ highbd_iadst4, highbd_iadst4 } // ADST_ADST = 3
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
}
static const highbd_transform_2d HIGH_IHT_8[] = {
- { highbd_idct8, highbd_idct8 }, // DCT_DCT = 0
- { highbd_iadst8, highbd_idct8 }, // ADST_DCT = 1
- { highbd_idct8, highbd_iadst8 }, // DCT_ADST = 2
+ { vp9_highbd_idct8, vp9_highbd_idct8 }, // DCT_DCT = 0
+ { highbd_iadst8, vp9_highbd_idct8 }, // ADST_DCT = 1
+ { vp9_highbd_idct8, highbd_iadst8 }, // DCT_ADST = 2
{ highbd_iadst8, highbd_iadst8 } // ADST_ADST = 3
};
// First transform rows.
// Only first 4 row has non-zero coefs.
for (i = 0; i < 4; ++i) {
- highbd_idct8(input, outptr, bd);
+ vp9_highbd_idct8(input, outptr, bd);
input += 8;
outptr += 8;
}
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
- highbd_idct8(temp_in, temp_out, bd);
+ vp9_highbd_idct8(temp_in, temp_out, bd);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd);
}
}
-static void highbd_idct16(const tran_low_t *input, tran_low_t *output, int bd) {
+void vp9_highbd_idct16(const tran_low_t *input, tran_low_t *output, int bd) {
tran_low_t step1[16], step2[16];
tran_high_t temp1, temp2;
(void) bd;
// First transform rows.
for (i = 0; i < 16; ++i) {
- highbd_idct16(input, outptr, bd);
+ vp9_highbd_idct16(input, outptr, bd);
input += 16;
outptr += 16;
}
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j * 16 + i];
- highbd_idct16(temp_in, temp_out, bd);
+ vp9_highbd_idct16(temp_in, temp_out, bd);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
}
static const highbd_transform_2d HIGH_IHT_16[] = {
- { highbd_idct16, highbd_idct16 }, // DCT_DCT = 0
- { highbd_iadst16, highbd_idct16 }, // ADST_DCT = 1
- { highbd_idct16, highbd_iadst16 }, // DCT_ADST = 2
+ { vp9_highbd_idct16, vp9_highbd_idct16 }, // DCT_DCT = 0
+ { highbd_iadst16, vp9_highbd_idct16 }, // ADST_DCT = 1
+ { vp9_highbd_idct16, highbd_iadst16 }, // DCT_ADST = 2
{ highbd_iadst16, highbd_iadst16 } // ADST_ADST = 3
};
// First transform rows. Since all non-zero dct coefficients are in
// upper-left 4x4 area, we only need to calculate first 4 rows here.
for (i = 0; i < 4; ++i) {
- highbd_idct16(input, outptr, bd);
+ vp9_highbd_idct16(input, outptr, bd);
input += 16;
outptr += 16;
}
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j*16 + i];
- highbd_idct16(temp_in, temp_out, bd);
+ vp9_highbd_idct16(temp_in, temp_out, bd);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
} highbd_transform_2d;
#endif // CONFIG_VP9_HIGHBITDEPTH
+#if CONFIG_EMULATE_HARDWARE
+// When CONFIG_EMULATE_HARDWARE is 1 the transform performs a
+// non-normative method to handle overflows. A stream that causes
+// overflows in the inverse transform is considered invalid in VP9,
+// and a hardware implementer is free to choose any reasonable
+// method to handle overflows. However to aid in hardware
+// verification they can use a specific implementation of the
+// WRAPLOW() macro below that is identical to their intended
+// hardware implementation (and also use configure options to trigger
+// the C-implementation of the transform).
+//
+// The particular WRAPLOW implementation below performs strict
+// overflow wrapping to match common hardware implementations.
+// bd of 8 uses trans_low with 16bits, need to remove 16bits
+// bd of 10 uses trans_low with 18bits, need to remove 14bits
+// bd of 12 uses trans_low with 20bits, need to remove 12bits
+// bd of x uses trans_low with 8+x bits, need to remove 24-x bits
+#define WRAPLOW(x, bd) ((((int32_t)(x)) << (24 - bd)) >> (24 - bd))
+#else
+#define WRAPLOW(x, bd) (x)
+#endif // CONFIG_EMULATE_HARDWARE
+
void vp9_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob);
void vp9_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int stride, int eob);
#if CONFIG_VP9_HIGHBITDEPTH
+void vp9_highbd_idct4(const tran_low_t *input, tran_low_t *output, int bd);
+void vp9_highbd_idct8(const tran_low_t *input, tran_low_t *output, int bd);
+void vp9_highbd_idct16(const tran_low_t *input, tran_low_t *output, int bd);
void vp9_highbd_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd);
void vp9_highbd_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
uint8_t *dest, int stride, int eob, int bd);
void vp9_highbd_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input,
uint8_t *dest, int stride, int eob, int bd);
+static INLINE uint16_t highbd_clip_pixel_add(uint16_t dest, tran_high_t trans,
+ int bd) {
+ trans = WRAPLOW(trans, bd);
+ return clip_pixel_highbd(WRAPLOW(dest + trans, bd), bd);
+}
#endif // CONFIG_VP9_HIGHBITDEPTH
#ifdef __cplusplus
} // extern "C"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_systemdependent.h"
+#include "vp9/encoder/vp9_dct.h"
static INLINE tran_high_t fdct_round_shift(tran_high_t input) {
tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
return rv;
}
-static void fdct4(const tran_low_t *input, tran_low_t *output) {
+void vp9_fdct4(const tran_low_t *input, tran_low_t *output) {
tran_high_t step[4];
tran_high_t temp1, temp2;
}
}
-static void fadst4(const tran_low_t *input, tran_low_t *output) {
+void vp9_fadst4(const tran_low_t *input, tran_low_t *output) {
tran_high_t x0, x1, x2, x3;
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
output[3] = fdct_round_shift(s3);
}
-static const transform_2d FHT_4[] = {
- { fdct4, fdct4 }, // DCT_DCT = 0
- { fadst4, fdct4 }, // ADST_DCT = 1
- { fdct4, fadst4 }, // DCT_ADST = 2
- { fadst4, fadst4 } // ADST_ADST = 3
-};
-
void vp9_fht4x4_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
if (tx_type == DCT_DCT) {
}
}
-static void fdct8(const tran_low_t *input, tran_low_t *output) {
+void vp9_fdct8(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
tran_high_t t0, t1, t2, t3; // needs32
tran_high_t x0, x1, x2, x3; // canbe16
// Rows
for (i = 0; i < 8; ++i) {
- fdct8(&intermediate[i * 8], &final_output[i * 8]);
+ vp9_fdct8(&intermediate[i * 8], &final_output[i * 8]);
for (j = 0; j < 8; ++j)
final_output[j + i * 8] /= 2;
}
}
}
-static void fadst8(const tran_low_t *input, tran_low_t *output) {
+void vp9_fadst8(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
tran_high_t x0 = input[7];
output[7] = - x1;
}
-static const transform_2d FHT_8[] = {
- { fdct8, fdct8 }, // DCT_DCT = 0
- { fadst8, fdct8 }, // ADST_DCT = 1
- { fdct8, fadst8 }, // DCT_ADST = 2
- { fadst8, fadst8 } // ADST_ADST = 3
-};
-
void vp9_fht8x8_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
if (tx_type == DCT_DCT) {
}
// Rewrote to use same algorithm as others.
-static void fdct16(const tran_low_t in[16], tran_low_t out[16]) {
+void vp9_fdct16(const tran_low_t in[16], tran_low_t out[16]) {
tran_high_t step1[8]; // canbe16
tran_high_t step2[8]; // canbe16
tran_high_t step3[8]; // canbe16
out[15] = fdct_round_shift(temp2);
}
-static void fadst16(const tran_low_t *input, tran_low_t *output) {
+void vp9_fadst16(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8;
tran_high_t s9, s10, s11, s12, s13, s14, s15;
output[15] = - x1;
}
-static const transform_2d FHT_16[] = {
- { fdct16, fdct16 }, // DCT_DCT = 0
- { fadst16, fdct16 }, // ADST_DCT = 1
- { fdct16, fadst16 }, // DCT_ADST = 2
- { fadst16, fadst16 } // ADST_ADST = 3
-};
-
void vp9_fht16x16_c(const int16_t *input, tran_low_t *output,
int stride, int tx_type) {
if (tx_type == DCT_DCT) {
return rv;
}
-static void fdct32(const tran_high_t *input, tran_high_t *output, int round) {
+void vp9_fdct32(const tran_high_t *input, tran_high_t *output, int round) {
tran_high_t step[32];
// Stage 1
step[0] = input[0] + input[(32 - 1)];
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = input[j * stride + i] * 4;
- fdct32(temp_in, temp_out, 0);
+ vp9_fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
}
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = output[j + i * 32];
- fdct32(temp_in, temp_out, 0);
+ vp9_fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
out[j + i * 32] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
}
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = input[j * stride + i] * 4;
- fdct32(temp_in, temp_out, 0);
+ vp9_fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
// TODO(cd): see quality impact of only doing
// output[j * 32 + i] = (temp_out[j] + 1) >> 2;
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = output[j + i * 32];
- fdct32(temp_in, temp_out, 1);
+ vp9_fdct32(temp_in, temp_out, 1);
for (j = 0; j < 32; ++j)
out[j + i * 32] = temp_out[j];
}
--- /dev/null
+/*
+ * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VP9_ENCODER_VP9_DCT_H_
+#define VP9_ENCODER_VP9_DCT_H_
+
+#include "vp9/common/vp9_idct.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void vp9_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride);
+void vp9_highbd_fdct8x8_c(const int16_t *input, tran_low_t *output, int stride);
+void vp9_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
+ int stride);
+void vp9_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride);
+void vp9_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out,
+ int stride);
+
+void vp9_fdct4(const tran_low_t *input, tran_low_t *output);
+void vp9_fadst4(const tran_low_t *input, tran_low_t *output);
+void vp9_fdct8(const tran_low_t *input, tran_low_t *output);
+void vp9_fadst8(const tran_low_t *input, tran_low_t *output);
+void vp9_fdct16(const tran_low_t in[16], tran_low_t out[16]);
+void vp9_fadst16(const tran_low_t *input, tran_low_t *output);
+void vp9_fdct32(const tran_high_t *input, tran_high_t *output, int round);
+
+static const transform_2d FHT_4[] = {
+ { vp9_fdct4, vp9_fdct4 }, // DCT_DCT = 0
+ { vp9_fadst4, vp9_fdct4 }, // ADST_DCT = 1
+ { vp9_fdct4, vp9_fadst4 }, // DCT_ADST = 2
+ { vp9_fadst4, vp9_fadst4 } // ADST_ADST = 3
+};
+
+static const transform_2d FHT_8[] = {
+ { vp9_fdct8, vp9_fdct8 }, // DCT_DCT = 0
+ { vp9_fadst8, vp9_fdct8 }, // ADST_DCT = 1
+ { vp9_fdct8, vp9_fadst8 }, // DCT_ADST = 2
+ { vp9_fadst8, vp9_fadst8 } // ADST_ADST = 3
+};
+
+static const transform_2d FHT_16[] = {
+ { vp9_fdct16, vp9_fdct16 }, // DCT_DCT = 0
+ { vp9_fadst16, vp9_fdct16 }, // ADST_DCT = 1
+ { vp9_fdct16, vp9_fadst16 }, // DCT_ADST = 2
+ { vp9_fadst16, vp9_fadst16 } // ADST_ADST = 3
+};
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // VP9_ENCODER_VP9_DCT_H_
VP9_CX_SRCS-yes += encoder/vp9_cost.h
VP9_CX_SRCS-yes += encoder/vp9_cost.c
VP9_CX_SRCS-yes += encoder/vp9_dct.c
+VP9_CX_SRCS-yes += encoder/vp9_dct.h
VP9_CX_SRCS-$(CONFIG_VP9_TEMPORAL_DENOISING) += encoder/vp9_denoiser.c
VP9_CX_SRCS-$(CONFIG_VP9_TEMPORAL_DENOISING) += encoder/vp9_denoiser.h
VP9_CX_SRCS-yes += encoder/vp9_encodeframe.c