/// EvalStatus is a struct with detailed info about an evaluation in progress.
struct EvalStatus {
- /// HasSideEffects - Whether the evaluated expression has side effects.
+ /// \brief Whether the evaluated expression has side effects.
/// For example, (f() && 0) can be folded, but it still has side effects.
bool HasSideEffects;
+ /// \brief Whether the evaluation hit undefined behavior.
+ /// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
+ /// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
+ bool HasUndefinedBehavior;
+
/// Diag - If this is non-null, it will be filled in with a stack of notes
/// indicating why evaluation failed (or why it failed to produce a constant
/// expression).
/// expression *is* a constant expression, no notes will be produced.
SmallVectorImpl<PartialDiagnosticAt> *Diag;
- EvalStatus() : HasSideEffects(false), Diag(nullptr) {}
+ EvalStatus()
+ : HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
// hasSideEffects - Return true if the evaluated expression has
// side effects.
/// side-effects.
bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
- enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
+ enum SideEffectsKind {
+ SE_NoSideEffects, ///< Strictly evaluate the expression.
+ SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
+ ///< arbitrary unmodeled side effects.
+ SE_AllowSideEffects ///< Allow any unmodeled side effect.
+ };
/// EvaluateAsInt - Return true if this is a constant which we can fold and
/// convert to an integer, using any crazy technique that we want to.
/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
/// constant folded without side-effects, but discard the result.
- bool isEvaluatable(const ASTContext &Ctx) const;
+ bool isEvaluatable(const ASTContext &Ctx,
+ SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
/// HasSideEffects - This routine returns true for all those expressions
/// which have any effect other than producing a value. Example is a function
return cast<CXXDefaultInitExpr>(this)->getExpr()
->isConstantInitializer(Ctx, false, Culprit);
}
- if (isEvaluatable(Ctx))
+ // Allow certain forms of UB in constant initializers: signed integer
+ // overflow and floating-point division by zero. We'll give a warning on
+ // these, but they're common enough that we have to accept them.
+ if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
return true;
if (Culprit)
*Culprit = this;
return keepEvaluatingAfterSideEffect();
}
+ /// Should we continue evaluation after encountering undefined behavior?
+ bool keepEvaluatingAfterUndefinedBehavior() {
+ switch (EvalMode) {
+ case EM_EvaluateForOverflow:
+ case EM_IgnoreSideEffects:
+ case EM_ConstantFold:
+ case EM_DesignatorFold:
+ return true;
+
+ case EM_PotentialConstantExpression:
+ case EM_PotentialConstantExpressionUnevaluated:
+ case EM_ConstantExpression:
+ case EM_ConstantExpressionUnevaluated:
+ return false;
+ }
+ llvm_unreachable("Missed EvalMode case");
+ }
+
+ /// Note that we hit something that was technically undefined behavior, but
+ /// that we can evaluate past it (such as signed overflow or floating-point
+ /// division by zero.)
+ bool noteUndefinedBehavior() {
+ EvalStatus.HasUndefinedBehavior = true;
+ return keepEvaluatingAfterUndefinedBehavior();
+ }
+
/// Should we continue evaluation as much as possible after encountering a
/// construct which can't be reduced to a value?
bool keepEvaluatingAfterFailure() {
const T &SrcValue, QualType DestType) {
Info.CCEDiag(E, diag::note_constexpr_overflow)
<< SrcValue << DestType;
- return Info.noteSideEffect();
+ return Info.noteUndefinedBehavior();
}
static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
if (LHS.isInfinity() || LHS.isNaN()) {
Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
- // Undefined behavior is a side-effect.
- return Info.noteSideEffect();
+ return Info.noteUndefinedBehavior();
}
return true;
}
HandleConversionToBool(Scratch.Val, Result);
}
+static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
+ Expr::SideEffectsKind SEK) {
+ return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
+ (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
+}
+
bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
SideEffectsKind AllowSideEffects) const {
if (!getType()->isIntegralOrEnumerationType())
EvalResult ExprResult;
if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
- (!AllowSideEffects && ExprResult.HasSideEffects))
+ hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
return false;
Result = ExprResult.Val.getInt();
/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
/// constant folded, but discard the result.
-bool Expr::isEvaluatable(const ASTContext &Ctx) const {
+bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
EvalResult Result;
- return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
+ return EvaluateAsRValue(Result, Ctx) &&
+ !hasUnacceptableSideEffect(Result, SEK);
}
APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
// of a complex number individually using an initialization list. (There is a
// extensive description and test in test/Sema/complex-init-list.c.)
-_Complex float x = { 1.0f, -1.0f };
-// CHECK: @x = global { float, float } { float 1.000000e+00, float -1.000000e+00 }, align 4
+_Complex float x = { 1.0f, 1.0f/0.0f };
+// CHECK: @x = global { float, float } { float 1.000000e+00, float 0x7FF0000000000000 }, align 4
_Complex float f(float x, float y) { _Complex float z = { x, y }; return z; }
// CHECK-LABEL: define <2 x float> @f
double bar = 1.0E300;
// CHECK: double bar = 1.0000000000000001E+300;
-float wibble = 2.0E38;
-// CHECK: float wibble = 2.0E+38;
+float wibble = 1.0E40;
+// CHECK: float wibble = 1.0E+40;
EVAL_EXPR(50, &Test50 < (struct Test50S*)((unsigned)&Test50 + 10)) // expected-error {{must have a constant size}}
// <rdar://problem/11874571>
-EVAL_EXPR(51, 0 != (float)1e38)
+EVAL_EXPR(51, 0 != (float)1e99)
// PR21945
void PR21945() { int i = (({}), 0l); }
uint64_t f2(uint64_t, ...);
static const uint64_t overflow = 1 * 4608 * 1024 * 1024; // expected-warning {{overflow in expression; result is 536870912 with type 'int'}}
-// expected-error@-1 {{not a compile-time constant}}
uint64_t check_integer_overflows(int i) {
// expected-warning@+1 {{overflow in expression; result is 536870912 with type 'int'}}
// rdar://18405357
unsigned long long l = 65536 * 65536; // expected-warning {{overflow in expression; result is 0 with type 'int'}}
-#ifndef __cplusplus
-// expected-error@-2 {{not a compile-time constant}}
-#endif
unsigned long long l2 = 65536 * (unsigned)65536;
unsigned long long l3 = 65536 * 65536ULL;
// RUN: %clang_cc1 -fsyntax-only -pedantic -std=c++98 -verify -triple x86_64-apple-darwin %s
+// RUN: %clang_cc1 -fsyntax-only -pedantic -std=c++11 -verify -triple x86_64-apple-darwin %s
enum E { // expected-note{{previous definition is here}}
Val1,
Val2
// PR7921
enum PR7921E {
- PR7921V = (PR7921E)(123) // expected-error {{expression is not an integral constant expression}}
+ PR7921V = (PR7921E)(123)
+#if __cplusplus < 201103L
+// expected-error@-2 {{expression is not an integral constant expression}}
+#else
+// expected-error@-4 {{must have integral or unscoped enumeration type}}
+// FIXME: The above diagnostic isn't very good; we should instead complain about the type being incomplete.
+#endif
};
void PR8089() {
enum E; // expected-error{{ISO C++ forbids forward references to 'enum' types}}
int a = (E)3; // expected-error{{cannot initialize a variable of type 'int' with an rvalue of type 'E'}}
}
+
+// This is accepted as a GNU extension. In C++98, there was no provision for
+// expressions with UB to be non-constant.
+enum { overflow = 123456 * 234567 };
+#if __cplusplus >= 201103L
+// expected-warning@-2 {{not an integral constant expression}}
+// expected-note@-3 {{value 28958703552 is outside the range of representable values}}
+#endif