return nullptr;
}
-/// dyn_castZExtVal - Checks if V is a zext or constant that can
-/// be truncated to Ty without losing bits.
-static Value *dyn_castZExtVal(Value *V, Type *Ty) {
- if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
- if (Z->getSrcTy() == Ty)
- return Z->getOperand(0);
- } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
- if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
- return ConstantExpr::getTrunc(C, Ty);
- }
- return nullptr;
-}
-
namespace {
const unsigned MaxDepth = 6;
typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
return 0;
}
+/// If we have zero-extended operands of an unsigned div or rem, we may be able
+/// to narrow the operation (sink the zext below the math).
+static Instruction *narrowUDivURem(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ Instruction::BinaryOps Opcode = I.getOpcode();
+ Value *N = I.getOperand(0);
+ Value *D = I.getOperand(1);
+ Type *Ty = I.getType();
+ Value *X, *Y;
+ if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
+ X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
+ // udiv (zext X), (zext Y) --> zext (udiv X, Y)
+ // urem (zext X), (zext Y) --> zext (urem X, Y)
+ Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
+ return new ZExtInst(NarrowOp, Ty);
+ }
+
+ Constant *C;
+ if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
+ (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
+ // If the constant is the same in the smaller type, use the narrow version.
+ Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
+ if (ConstantExpr::getZExt(TruncC, Ty) != C)
+ return nullptr;
+
+ // udiv (zext X), C --> zext (udiv X, C')
+ // urem (zext X), C --> zext (urem X, C')
+ // udiv C, (zext X) --> zext (udiv C', X)
+ // urem C, (zext X) --> zext (urem C', X)
+ Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
+ : Builder.CreateBinOp(Opcode, TruncC, X);
+ return new ZExtInst(NarrowOp, Ty);
+ }
+
+ return nullptr;
+}
+
Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
}
}
- // (zext A) udiv (zext B) --> zext (A udiv B)
- if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
- if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
- return new ZExtInst(
- Builder.CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", I.isExact()),
- I.getType());
+ if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
+ return NarrowDiv;
// (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
SmallVector<UDivFoldAction, 6> UDivActions;
if (Instruction *common = commonIRemTransforms(I))
return common;
- // (zext A) urem (zext B) --> zext (A urem B)
- if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
- if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
- return new ZExtInst(Builder.CreateURem(ZOp0->getOperand(0), ZOp1),
- I.getType());
+ if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
+ return NarrowRem;
// X urem Y -> X and Y-1, where Y is a power of 2,
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
; CHECK-LABEL: @udiv_i32_multiuse(
; CHECK-NEXT: [[ZA:%.*]] = zext i8 %a to i32
; CHECK-NEXT: [[ZB:%.*]] = zext i8 %b to i32
-; CHECK-NEXT: [[DIV:%.*]] = udiv i8 %a, %b
-; CHECK-NEXT: [[UDIV:%.*]] = zext i8 [[DIV]] to i32
+; CHECK-NEXT: [[UDIV:%.*]] = udiv i32 [[ZA]], [[ZB]]
; CHECK-NEXT: [[EXTRA_USES:%.*]] = add nuw nsw i32 [[ZA]], [[ZB]]
-; CHECK-NEXT: [[R:%.*]] = mul nuw nsw i32 [[EXTRA_USES]], [[UDIV]]
+; CHECK-NEXT: [[R:%.*]] = mul nuw nsw i32 [[UDIV]], [[EXTRA_USES]]
; CHECK-NEXT: ret i32 [[R]]
;
%za = zext i8 %a to i32
; CHECK-LABEL: @urem_i32_multiuse(
; CHECK-NEXT: [[ZA:%.*]] = zext i8 %a to i32
; CHECK-NEXT: [[ZB:%.*]] = zext i8 %b to i32
-; CHECK-NEXT: [[TMP1:%.*]] = urem i8 %a, %b
-; CHECK-NEXT: [[UREM:%.*]] = zext i8 [[TMP1]] to i32
+; CHECK-NEXT: [[UREM:%.*]] = urem i32 [[ZA]], [[ZB]]
; CHECK-NEXT: [[EXTRA_USES:%.*]] = add nuw nsw i32 [[ZA]], [[ZB]]
-; CHECK-NEXT: [[R:%.*]] = mul nuw nsw i32 [[EXTRA_USES]], [[UREM]]
+; CHECK-NEXT: [[R:%.*]] = mul nuw nsw i32 [[UREM]], [[EXTRA_USES]]
; CHECK-NEXT: ret i32 [[R]]
;
%za = zext i8 %a to i32
define <2 x i32> @udiv_i32_c_vec(<2 x i8> %a) {
; CHECK-LABEL: @udiv_i32_c_vec(
-; CHECK-NEXT: [[ZA:%.*]] = zext <2 x i8> %a to <2 x i32>
-; CHECK-NEXT: [[UDIV:%.*]] = udiv <2 x i32> [[ZA]], <i32 10, i32 17>
+; CHECK-NEXT: [[TMP1:%.*]] = udiv <2 x i8> %a, <i8 10, i8 17>
+; CHECK-NEXT: [[UDIV:%.*]] = zext <2 x i8> [[TMP1]] to <2 x i32>
; CHECK-NEXT: ret <2 x i32> [[UDIV]]
;
%za = zext <2 x i8> %a to <2 x i32>
define i32 @udiv_i32_c_multiuse(i8 %a) {
; CHECK-LABEL: @udiv_i32_c_multiuse(
; CHECK-NEXT: [[ZA:%.*]] = zext i8 %a to i32
-; CHECK-NEXT: [[DIV:%.*]] = udiv i8 %a, 10
-; CHECK-NEXT: [[UDIV:%.*]] = zext i8 [[DIV]] to i32
-; CHECK-NEXT: [[EXTRA_USE:%.*]] = add nuw nsw i32 [[ZA]], [[UDIV]]
+; CHECK-NEXT: [[UDIV:%.*]] = udiv i32 [[ZA]], 10
+; CHECK-NEXT: [[EXTRA_USE:%.*]] = add nuw nsw i32 [[UDIV]], [[ZA]]
; CHECK-NEXT: ret i32 [[EXTRA_USE]]
;
%za = zext i8 %a to i32
define <2 x i32> @urem_i32_c_vec(<2 x i8> %a) {
; CHECK-LABEL: @urem_i32_c_vec(
-; CHECK-NEXT: [[ZA:%.*]] = zext <2 x i8> %a to <2 x i32>
-; CHECK-NEXT: [[UREM:%.*]] = urem <2 x i32> [[ZA]], <i32 10, i32 17>
+; CHECK-NEXT: [[TMP1:%.*]] = urem <2 x i8> %a, <i8 10, i8 17>
+; CHECK-NEXT: [[UREM:%.*]] = zext <2 x i8> [[TMP1]] to <2 x i32>
; CHECK-NEXT: ret <2 x i32> [[UREM]]
;
%za = zext <2 x i8> %a to <2 x i32>
define i32 @urem_i32_c_multiuse(i8 %a) {
; CHECK-LABEL: @urem_i32_c_multiuse(
; CHECK-NEXT: [[ZA:%.*]] = zext i8 %a to i32
-; CHECK-NEXT: [[TMP1:%.*]] = urem i8 %a, 10
-; CHECK-NEXT: [[UREM:%.*]] = zext i8 [[TMP1]] to i32
-; CHECK-NEXT: [[EXTRA_USE:%.*]] = add nuw nsw i32 [[ZA]], [[UREM]]
+; CHECK-NEXT: [[UREM:%.*]] = urem i32 [[ZA]], 10
+; CHECK-NEXT: [[EXTRA_USE:%.*]] = add nuw nsw i32 [[UREM]], [[ZA]]
; CHECK-NEXT: ret i32 [[EXTRA_USE]]
;
%za = zext i8 %a to i32
define i32 @udiv_c_i32(i8 %a) {
; CHECK-LABEL: @udiv_c_i32(
-; CHECK-NEXT: [[ZA:%.*]] = zext i8 %a to i32
-; CHECK-NEXT: [[UDIV:%.*]] = udiv i32 10, [[ZA]]
+; CHECK-NEXT: [[TMP1:%.*]] = udiv i8 10, %a
+; CHECK-NEXT: [[UDIV:%.*]] = zext i8 [[TMP1]] to i32
; CHECK-NEXT: ret i32 [[UDIV]]
;
%za = zext i8 %a to i32
define i32 @urem_c_i32(i8 %a) {
; CHECK-LABEL: @urem_c_i32(
-; CHECK-NEXT: [[ZA:%.*]] = zext i8 %a to i32
-; CHECK-NEXT: [[UREM:%.*]] = urem i32 10, [[ZA]]
+; CHECK-NEXT: [[TMP1:%.*]] = urem i8 10, %a
+; CHECK-NEXT: [[UREM:%.*]] = zext i8 [[TMP1]] to i32
; CHECK-NEXT: ret i32 [[UREM]]
;
%za = zext i8 %a to i32
ret i32 %urem
}
+; Make sure constexpr is handled.
+
+@b = external global [1 x i8]
+
+define i32 @udiv_constexpr(i8 %a) {
+; CHECK-LABEL: @udiv_constexpr(
+; CHECK-NEXT: [[TMP1:%.*]] = udiv i8 %a, ptrtoint ([1 x i8]* @b to i8)
+; CHECK-NEXT: [[D:%.*]] = zext i8 [[TMP1]] to i32
+; CHECK-NEXT: ret i32 [[D]]
+;
+ %za = zext i8 %a to i32
+ %d = udiv i32 %za, zext (i8 ptrtoint ([1 x i8]* @b to i8) to i32)
+ ret i32 %d
+}
+