__int__ = __trunc__
- def __floor__(a):
- """Will be math.floor(a) in 3.0."""
- return a.numerator // a.denominator
-
- def __ceil__(a):
- """Will be math.ceil(a) in 3.0."""
- # The negations cleverly convince floordiv to return the ceiling.
- return -(-a.numerator // a.denominator)
-
- def __round__(self, ndigits=None):
- """Will be round(self, ndigits) in 3.0.
-
- Rounds half toward even.
- """
- if ndigits is None:
- floor, remainder = divmod(self.numerator, self.denominator)
- if remainder * 2 < self.denominator:
- return floor
- elif remainder * 2 > self.denominator:
- return floor + 1
- # Deal with the half case:
- elif floor % 2 == 0:
- return floor
- else:
- return floor + 1
- shift = 10**abs(ndigits)
- # See _operator_fallbacks.forward to check that the results of
- # these operations will always be Rational and therefore have
- # __round__().
- if ndigits > 0:
- return Rational((self * shift).__round__(), shift)
- else:
- return Rational((self / shift).__round__() * shift)
-
def __hash__(self):
"""hash(self)
def testConversions(self):
self.assertTypedEquals(-1, trunc(R(-11, 10)))
self.assertTypedEquals(-1, int(R(-11, 10)))
- self.assertTypedEquals(-2, R(-11, 10).__floor__())
- self.assertTypedEquals(-1, R(-11, 10).__ceil__())
- self.assertTypedEquals(-1, R(-10, 10).__ceil__())
-
- self.assertTypedEquals(0, R(-1, 10).__round__())
- self.assertTypedEquals(0, R(-5, 10).__round__())
- self.assertTypedEquals(-2, R(-15, 10).__round__())
- self.assertTypedEquals(-1, R(-7, 10).__round__())
self.assertEquals(False, bool(R(0, 1)))
self.assertEquals(True, bool(R(3, 2)))
self.assertTypedEquals(0.1+0j, complex(R(1,10)))
- def testRound(self):
- self.assertTypedEquals(R(-200), R(-150).__round__(-2))
- self.assertTypedEquals(R(-200), R(-250).__round__(-2))
- self.assertTypedEquals(R(30), R(26).__round__(-1))
- self.assertTypedEquals(R(-2, 10), R(-15, 100).__round__(1))
- self.assertTypedEquals(R(-2, 10), R(-25, 100).__round__(1))
-
def testArithmetic(self):
self.assertEquals(R(1, 2), R(1, 10) + R(2, 5))