* return value is the number of bytes successfully copied to arg_buf.
*/
static int
-dmu_req_copy(void *arg_buf, int size, struct request *req, size_t req_offset)
+dmu_bio_copy(void *arg_buf, int size, struct bio *bio, size_t bio_offset)
{
- struct bio_vec bv, *bvp;
- struct req_iterator iter;
+ struct bio_vec bv, *bvp = &bv;
+ bvec_iterator_t iter;
char *bv_buf;
int tocpy, bv_len, bv_offset;
int offset = 0;
- rq_for_each_segment4(bv, bvp, req, iter) {
+ bio_for_each_segment4(bv, bvp, bio, iter) {
+
/*
* Fully consumed the passed arg_buf. We use goto here because
* rq_for_each_segment is a double loop
if (size == offset)
goto out;
- /* Skip already copied bv */
- if (req_offset >= bv.bv_len) {
- req_offset -= bv.bv_len;
+ /* Skip already copied bvp */
+ if (bio_offset >= bvp->bv_len) {
+ bio_offset -= bvp->bv_len;
continue;
}
- bv_len = bv.bv_len - req_offset;
- bv_offset = bv.bv_offset + req_offset;
- req_offset = 0;
+ bv_len = bvp->bv_len - bio_offset;
+ bv_offset = bvp->bv_offset + bio_offset;
+ bio_offset = 0;
tocpy = MIN(bv_len, size - offset);
ASSERT3S(tocpy, >=, 0);
- bv_buf = page_address(bv.bv_page) + bv_offset;
+ bv_buf = page_address(bvp->bv_page) + bv_offset;
ASSERT3P(bv_buf, !=, NULL);
- if (rq_data_dir(req) == WRITE)
+ if (bio_data_dir(bio) == WRITE)
memcpy(arg_buf + offset, bv_buf, tocpy);
else
memcpy(bv_buf, arg_buf + offset, tocpy);
}
int
-dmu_read_req(objset_t *os, uint64_t object, struct request *req)
+dmu_read_bio(objset_t *os, uint64_t object, struct bio *bio)
{
- uint64_t size = blk_rq_bytes(req);
- uint64_t offset = blk_rq_pos(req) << 9;
+ uint64_t offset = BIO_BI_SECTOR(bio) << 9;
+ uint64_t size = BIO_BI_SIZE(bio);
dmu_buf_t **dbp;
int numbufs, i, err;
- size_t req_offset;
+ size_t bio_offset;
/*
* NB: we could do this block-at-a-time, but it's nice
if (err)
return (err);
- req_offset = 0;
+ bio_offset = 0;
for (i = 0; i < numbufs; i++) {
uint64_t tocpy;
int64_t bufoff;
if (tocpy == 0)
break;
- didcpy = dmu_req_copy(db->db_data + bufoff, tocpy, req,
- req_offset);
+ didcpy = dmu_bio_copy(db->db_data + bufoff, tocpy, bio,
+ bio_offset);
if (didcpy < tocpy)
err = EIO;
size -= tocpy;
offset += didcpy;
- req_offset += didcpy;
+ bio_offset += didcpy;
err = 0;
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
}
int
-dmu_write_req(objset_t *os, uint64_t object, struct request *req, dmu_tx_t *tx)
+dmu_write_bio(objset_t *os, uint64_t object, struct bio *bio, dmu_tx_t *tx)
{
- uint64_t size = blk_rq_bytes(req);
- uint64_t offset = blk_rq_pos(req) << 9;
+ uint64_t offset = BIO_BI_SECTOR(bio) << 9;
+ uint64_t size = BIO_BI_SIZE(bio);
dmu_buf_t **dbp;
int numbufs, i, err;
- size_t req_offset;
+ size_t bio_offset;
if (size == 0)
return (0);
if (err)
return (err);
- req_offset = 0;
+ bio_offset = 0;
for (i = 0; i < numbufs; i++) {
uint64_t tocpy;
int64_t bufoff;
else
dmu_buf_will_dirty(db, tx);
- didcpy = dmu_req_copy(db->db_data + bufoff, tocpy, req,
- req_offset);
+ didcpy = dmu_bio_copy(db->db_data + bufoff, tocpy, bio,
+ bio_offset);
if (tocpy == db->db_size)
dmu_buf_fill_done(db, tx);
size -= tocpy;
offset += didcpy;
- req_offset += didcpy;
+ bio_offset += didcpy;
err = 0;
}
unsigned int zvol_inhibit_dev = 0;
unsigned int zvol_major = ZVOL_MAJOR;
-unsigned int zvol_threads = 32;
unsigned long zvol_max_discard_blocks = 16384;
-static taskq_t *zvol_taskq;
static kmutex_t zvol_state_lock;
static list_t zvol_state_list;
static char *zvol_tag = "zvol_tag";
}
}
-/*
- * Common write path running under the zvol taskq context. This function
- * is responsible for copying the request structure data in to the DMU and
- * signaling the request queue with the result of the copy.
- */
-static void
-zvol_write(void *arg)
+static int
+zvol_write(struct bio *bio)
{
- struct request *req = (struct request *)arg;
- struct request_queue *q = req->q;
- zvol_state_t *zv = q->queuedata;
- fstrans_cookie_t cookie = spl_fstrans_mark();
- uint64_t offset = blk_rq_pos(req) << 9;
- uint64_t size = blk_rq_bytes(req);
+ zvol_state_t *zv = bio->bi_bdev->bd_disk->private_data;
+ uint64_t offset = BIO_BI_SECTOR(bio) << 9;
+ uint64_t size = BIO_BI_SIZE(bio);
int error = 0;
dmu_tx_t *tx;
rl_t *rl;
- if (req->cmd_flags & VDEV_REQ_FLUSH)
+ if (bio->bi_rw & VDEV_REQ_FLUSH)
zil_commit(zv->zv_zilog, ZVOL_OBJ);
/*
* Some requests are just for flush and nothing else.
*/
- if (size == 0) {
- error = 0;
+ if (size == 0)
goto out;
- }
rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_WRITER);
goto out;
}
- error = dmu_write_req(zv->zv_objset, ZVOL_OBJ, req, tx);
+ error = dmu_write_bio(zv->zv_objset, ZVOL_OBJ, bio, tx);
if (error == 0)
zvol_log_write(zv, tx, offset, size,
- req->cmd_flags & VDEV_REQ_FUA);
+ !!(bio->bi_rw & VDEV_REQ_FUA));
dmu_tx_commit(tx);
zfs_range_unlock(rl);
- if ((req->cmd_flags & VDEV_REQ_FUA) ||
+ if ((bio->bi_rw & VDEV_REQ_FUA) ||
zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zv->zv_zilog, ZVOL_OBJ);
out:
- blk_end_request(req, -error, size);
- spl_fstrans_unmark(cookie);
+ return (error);
}
-#ifdef HAVE_BLK_QUEUE_DISCARD
-static void
-zvol_discard(void *arg)
+static int
+zvol_discard(struct bio *bio)
{
- struct request *req = (struct request *)arg;
- struct request_queue *q = req->q;
- zvol_state_t *zv = q->queuedata;
- fstrans_cookie_t cookie = spl_fstrans_mark();
- uint64_t start = blk_rq_pos(req) << 9;
- uint64_t end = start + blk_rq_bytes(req);
+ zvol_state_t *zv = bio->bi_bdev->bd_disk->private_data;
+ uint64_t start = BIO_BI_SECTOR(bio) << 9;
+ uint64_t size = BIO_BI_SIZE(bio);
+ uint64_t end = start + size;
int error;
rl_t *rl;
- if (end > zv->zv_volsize) {
- error = EIO;
- goto out;
- }
+ if (end > zv->zv_volsize)
+ return (SET_ERROR(EIO));
/*
* Align the request to volume block boundaries. If we don't,
* then this will force dnode_free_range() to zero out the
* unaligned parts, which is slow (read-modify-write) and
* useless since we are not freeing any space by doing so.
+ * XXX: We should handle secure discard by zeroing out unaligned parts.
*/
start = P2ROUNDUP(start, zv->zv_volblocksize);
end = P2ALIGN(end, zv->zv_volblocksize);
- if (start >= end) {
- error = 0;
- goto out;
- }
+ if (start >= end)
+ return (0);
- rl = zfs_range_lock(&zv->zv_znode, start, end - start, RL_WRITER);
+ rl = zfs_range_lock(&zv->zv_znode, start, size, RL_WRITER);
- error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, start, end-start);
+ error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, start, size);
/*
* TODO: maybe we should add the operation to the log.
*/
zfs_range_unlock(rl);
-out:
- blk_end_request(req, -error, blk_rq_bytes(req));
- spl_fstrans_unmark(cookie);
+
+ return (error);
}
-#endif /* HAVE_BLK_QUEUE_DISCARD */
-/*
- * Common read path running under the zvol taskq context. This function
- * is responsible for copying the requested data out of the DMU and in to
- * a linux request structure. It then must signal the request queue with
- * an error code describing the result of the copy.
- */
-static void
-zvol_read(void *arg)
+static int
+zvol_read(struct bio *bio)
{
- struct request *req = (struct request *)arg;
- struct request_queue *q = req->q;
- zvol_state_t *zv = q->queuedata;
- fstrans_cookie_t cookie = spl_fstrans_mark();
- uint64_t offset = blk_rq_pos(req) << 9;
- uint64_t size = blk_rq_bytes(req);
+ zvol_state_t *zv = bio->bi_bdev->bd_disk->private_data;
+ uint64_t offset = BIO_BI_SECTOR(bio) << 9;
+ uint64_t len = BIO_BI_SIZE(bio);
int error;
rl_t *rl;
- if (size == 0) {
- error = 0;
- goto out;
- }
+ if (len == 0)
+ return (0);
+
- rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
+ rl = zfs_range_lock(&zv->zv_znode, offset, len, RL_READER);
- error = dmu_read_req(zv->zv_objset, ZVOL_OBJ, req);
+ error = dmu_read_bio(zv->zv_objset, ZVOL_OBJ, bio);
zfs_range_unlock(rl);
if (error == ECKSUM)
error = SET_ERROR(EIO);
-out:
- blk_end_request(req, -error, size);
- spl_fstrans_unmark(cookie);
-}
-
-/*
- * Request will be added back to the request queue and retried if
- * it cannot be immediately dispatched to the taskq for handling
- */
-static inline void
-zvol_dispatch(task_func_t func, struct request *req)
-{
- if (!taskq_dispatch(zvol_taskq, func, (void *)req, TQ_NOSLEEP))
- blk_requeue_request(req->q, req);
+ return (error);
}
-/*
- * Common request path. Rather than registering a custom make_request()
- * function we use the generic Linux version. This is done because it allows
- * us to easily merge read requests which would otherwise we performed
- * synchronously by the DMU. This is less critical in write case where the
- * DMU will perform the correct merging within a transaction group. Using
- * the generic make_request() also let's use leverage the fact that the
- * elevator with ensure correct ordering in regards to barrior IOs. On
- * the downside it means that in the write case we end up doing request
- * merging twice once in the elevator and once in the DMU.
- *
- * The request handler is called under a spin lock so all the real work
- * is handed off to be done in the context of the zvol taskq. This function
- * simply performs basic request sanity checking and hands off the request.
- */
-static void
-zvol_request(struct request_queue *q)
+static MAKE_REQUEST_FN_RET
+zvol_request(struct request_queue *q, struct bio *bio)
{
zvol_state_t *zv = q->queuedata;
- struct request *req;
- unsigned int size;
-
- while ((req = blk_fetch_request(q)) != NULL) {
- size = blk_rq_bytes(req);
-
- if (size != 0 && blk_rq_pos(req) + blk_rq_sectors(req) >
- get_capacity(zv->zv_disk)) {
- printk(KERN_INFO
- "%s: bad access: block=%llu, count=%lu\n",
- req->rq_disk->disk_name,
- (long long unsigned)blk_rq_pos(req),
- (long unsigned)blk_rq_sectors(req));
- __blk_end_request(req, -EIO, size);
- continue;
- }
+ fstrans_cookie_t cookie = spl_fstrans_mark();
+ uint64_t offset = BIO_BI_SECTOR(bio);
+ unsigned int sectors = bio_sectors(bio);
+ int error = 0;
- if (!blk_fs_request(req)) {
- printk(KERN_INFO "%s: non-fs cmd\n",
- req->rq_disk->disk_name);
- __blk_end_request(req, -EIO, size);
- continue;
+ if (bio_has_data(bio) && offset + sectors >
+ get_capacity(zv->zv_disk)) {
+ printk(KERN_INFO
+ "%s: bad access: block=%llu, count=%lu\n",
+ zv->zv_disk->disk_name,
+ (long long unsigned)offset,
+ (long unsigned)sectors);
+ error = SET_ERROR(EIO);
+ goto out;
+ }
+
+ if (bio_data_dir(bio) == WRITE) {
+ if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
+ error = SET_ERROR(EROFS);
+ goto out;
}
- switch ((int)rq_data_dir(req)) {
- case READ:
- zvol_dispatch(zvol_read, req);
- break;
- case WRITE:
- if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
- __blk_end_request(req, -EROFS, size);
- break;
- }
+ if (bio->bi_rw & VDEV_REQ_DISCARD) {
+ error = zvol_discard(bio);
+ goto out;
+ }
-#ifdef HAVE_BLK_QUEUE_DISCARD
- if (req->cmd_flags & VDEV_REQ_DISCARD) {
- zvol_dispatch(zvol_discard, req);
- break;
- }
-#endif /* HAVE_BLK_QUEUE_DISCARD */
+ error = zvol_write(bio);
+ } else
+ error = zvol_read(bio);
- zvol_dispatch(zvol_write, req);
- break;
- default:
- printk(KERN_INFO "%s: unknown cmd: %d\n",
- req->rq_disk->disk_name, (int)rq_data_dir(req));
- __blk_end_request(req, -EIO, size);
- break;
- }
- }
+out:
+ bio_endio(bio, -error);
+ spl_fstrans_unmark(cookie);
+#ifdef HAVE_MAKE_REQUEST_FN_RET_INT
+ return (0);
+#endif
}
static void
zvol_alloc(dev_t dev, const char *name)
{
zvol_state_t *zv;
- int error = 0;
zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
spin_lock_init(&zv->zv_lock);
list_link_init(&zv->zv_next);
- zv->zv_queue = blk_init_queue(zvol_request, &zv->zv_lock);
+ zv->zv_queue = blk_alloc_queue(GFP_ATOMIC);
if (zv->zv_queue == NULL)
goto out_kmem;
-#ifdef HAVE_ELEVATOR_CHANGE
- error = elevator_change(zv->zv_queue, "noop");
-#endif /* HAVE_ELEVATOR_CHANGE */
- if (error) {
- printk("ZFS: Unable to set \"%s\" scheduler for zvol %s: %d\n",
- "noop", name, error);
- goto out_queue;
- }
+ blk_queue_make_request(zv->zv_queue, zvol_request);
#ifdef HAVE_BLK_QUEUE_FLUSH
blk_queue_flush(zv->zv_queue, VDEV_REQ_FLUSH | VDEV_REQ_FUA);
blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
-#ifdef HAVE_BLK_QUEUE_DISCARD
blk_queue_max_discard_sectors(zv->zv_queue,
(zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize);
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zv->zv_queue);
-#endif
-#ifdef HAVE_BLK_QUEUE_NONROT
+#ifdef QUEUE_FLAG_NONROT
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zv->zv_queue);
#endif
#ifdef QUEUE_FLAG_ADD_RANDOM
int
zvol_init(void)
{
- int threads = MIN(MAX(zvol_threads, 1), 1024);
int error;
list_create(&zvol_state_list, sizeof (zvol_state_t),
mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
- zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri,
- threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
- if (zvol_taskq == NULL) {
- printk(KERN_INFO "ZFS: taskq_create() failed\n");
- error = -ENOMEM;
- goto out1;
- }
-
error = register_blkdev(zvol_major, ZVOL_DRIVER);
if (error) {
printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
- goto out2;
+ goto out;
}
blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
return (0);
-out2:
- taskq_destroy(zvol_taskq);
-out1:
+out:
mutex_destroy(&zvol_state_lock);
list_destroy(&zvol_state_list);
zvol_remove_minors(NULL);
blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
unregister_blkdev(zvol_major, ZVOL_DRIVER);
- taskq_destroy(zvol_taskq);
mutex_destroy(&zvol_state_lock);
list_destroy(&zvol_state_list);
}
module_param(zvol_major, uint, 0444);
MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
-module_param(zvol_threads, uint, 0444);
-MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests");
-
module_param(zvol_max_discard_blocks, ulong, 0444);
MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");