#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueLattice.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
+STATISTIC(IPNumRangeInfoUsed, "Number of times constant range info was used by"
+ "IPSCCP");
namespace {
/// LatticeVal class - This class represents the different lattice values that
Val.setInt(forcedconstant);
Val.setPointer(V);
}
+
+ ValueLatticeElement toValueLattice() const {
+ if (isOverdefined())
+ return ValueLatticeElement::getOverdefined();
+ if (isConstant())
+ return ValueLatticeElement::get(getConstant());
+ return ValueLatticeElement();
+ }
};
} // end anonymous namespace.
const TargetLibraryInfo *TLI;
SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
DenseMap<Value*, LatticeVal> ValueState; // The state each value is in.
+ // The state each parameter is in.
+ DenseMap<Value *, ValueLatticeElement> ParamState;
/// StructValueState - This maintains ValueState for values that have
/// StructType, for example for formal arguments, calls, insertelement, etc.
return StructValues;
}
- LatticeVal getLatticeValueFor(Value *V) const {
- DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
- assert(I != ValueState.end() && "V is not in valuemap!");
- return I->second;
+ ValueLatticeElement getLatticeValueFor(Value *V) {
+ if (ParamState.count(V) == 0) {
+ DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V);
+ assert(I != ValueState.end() &&
+ "V not found in ValueState nor Paramstate map!");
+ ParamState[V] = I->second.toValueLattice();
+ }
+
+ return ParamState[V];
}
/// getTrackedRetVals - Get the inferred return value map.
return LV;
}
+ ValueLatticeElement &getParamState(Value *V) {
+ assert(!V->getType()->isStructTy() && "Should use getStructValueState");
+
+ if (ParamState.count(V) == 0)
+ ParamState[V] = getValueState(V).toValueLattice();
+
+ return ParamState[V];
+ }
+
/// getStructValueState - Return the LatticeVal object that corresponds to the
/// value/field pair. This function handles the case when the value hasn't
/// been seen yet by properly seeding constants etc.
mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
}
} else {
+ // Most other parts of the Solver still only use the simpler value
+ // lattice, so we propagate changes for parameters to both lattices.
+ getParamState(&*AI).mergeIn(getValueState(*CAI).toValueLattice(), DL);
mergeInValue(&*AI, getValueState(*CAI));
}
}
return false;
}
+static bool tryToReplaceWithConstantRange(SCCPSolver &Solver, Value *V) {
+ bool Changed = false;
+ if (!V->getType()->isIntegerTy())
+ return false;
+
+ const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
+ if (IV.isOverdefined())
+ return false;
+
+ // Currently we only use range information for integer values.
+ if (!(V->getType()->isIntegerTy() && IV.isConstantRange()))
+ return false;
+
+ for (auto &Use : V->uses()) {
+ auto *Icmp = dyn_cast<ICmpInst>(Use.getUser());
+ if (!Icmp)
+ continue;
+
+ auto A = Solver.getLatticeValueFor(Icmp->getOperand(0));
+ auto B = Solver.getLatticeValueFor(Icmp->getOperand(1));
+ Constant *C = nullptr;
+ if (A.satisfiesPredicate(Icmp->getPredicate(), B))
+ C = ConstantInt::getTrue(Icmp->getType());
+ else if (A.satisfiesPredicate(Icmp->getInversePredicate(), B))
+ C = ConstantInt::getFalse(Icmp->getType());
+
+ if (C) {
+ Icmp->replaceAllUsesWith(C);
+ DEBUG(dbgs() << "Replacing " << *Icmp << " with " << *C
+ << ", because of range information " << A << " " << B
+ << "\n");
+ Icmp->eraseFromParent();
+ Changed = true;
+ }
+ }
+ return Changed;
+}
+
static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
Constant *Const = nullptr;
if (V->getType()->isStructTy()) {
}
Const = ConstantStruct::get(ST, ConstVals);
} else {
- LatticeVal IV = Solver.getLatticeValueFor(V);
+ const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
if (IV.isOverdefined())
return false;
- Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
+
+ if (IV.isConstantRange()) {
+ if (IV.getConstantRange().isSingleElement())
+ Const =
+ ConstantInt::get(V->getType(), IV.asConstantInteger().getValue());
+ else
+ return false;
+ } else
+ Const =
+ IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
}
assert(Const && "Constant is nullptr here!");
DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
if (F.isDeclaration())
continue;
- if (Solver.isBlockExecutable(&F.front()))
+ if (Solver.isBlockExecutable(&F.front())) {
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
- ++AI)
+ ++AI) {
if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI))
++IPNumArgsElimed;
+ if (!AI->use_empty() && tryToReplaceWithConstantRange(Solver, &*AI))
+ ++IPNumRangeInfoUsed;
+ }
+ }
+
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (!Solver.isBlockExecutable(&*BB)) {
DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
--- /dev/null
+; RUN: opt < %s -ipsccp -S | FileCheck %s
+
+; Constant range for %a is [1, 48) and for %b is [301, 1000)
+; CHECK-LABEL: f1
+; CHECK-NOT: icmp
+; CHECK: %a.1 = select i1 false, i32 1, i32 2
+; CHECK: %b.1 = select i1 true, i32 1, i32 2
+; CHECK: %a.2 = select i1 false, i32 1, i32 2
+; CHECK: %b.2 = select i1 true, i32 1, i32 2
+define internal i32 @f1(i32 %a, i32 %b) {
+entry:
+ %cmp.a = icmp sgt i32 %a, 300
+ %cmp.b = icmp sgt i32 %b, 300
+ %cmp.a2 = icmp ugt i32 %a, 300
+ %cmp.b2 = icmp ugt i32 %b, 300
+
+ %a.1 = select i1 %cmp.a, i32 1, i32 2
+ %b.1 = select i1 %cmp.b, i32 1, i32 2
+ %a.2 = select i1 %cmp.a2, i32 1, i32 2
+ %b.2 = select i1 %cmp.b2, i32 1, i32 2
+ %res1 = add i32 %a.1, %b.1
+ %res2 = add i32 %a.2, %b.2
+ %res3 = add i32 %res1, %res2
+ ret i32 %res3
+}
+
+; Constant range for %x is [47, 302)
+; CHECK-LABEL: f2
+; CHECK: %cmp = icmp sgt i32 %x, 300
+; CHECK: %res1 = select i1 %cmp, i32 1, i32 2
+; CHECK-NEXT: %res2 = select i1 true, i32 3, i32 4
+; CHECK-NEXT: %res3 = select i1 true, i32 5, i32 6
+; CHECK-NEXT: %res4 = select i1 %cmp4, i32 3, i32 4
+; CHECK-NEXT: %res5 = select i1 true, i32 5, i32 6
+define internal i32 @f2(i32 %x) {
+entry:
+ %cmp = icmp sgt i32 %x, 300
+ %cmp2 = icmp ne i32 %x, 10
+ %cmp3 = icmp sge i32 %x, 47
+ %cmp4 = icmp ugt i32 %x, 300
+ %cmp5 = icmp uge i32 %x, 47
+ %res1 = select i1 %cmp, i32 1, i32 2
+ %res2 = select i1 %cmp2, i32 3, i32 4
+ %res3 = select i1 %cmp3, i32 5, i32 6
+ %res4 = select i1 %cmp4, i32 3, i32 4
+ %res5 = select i1 %cmp5, i32 5, i32 6
+
+ %res6 = add i32 %res1, %res2
+ %res7 = add i32 %res3, %res4
+ %res = add i32 %res6, %res5
+ ret i32 %res
+}
+
+define i32 @caller1() {
+entry:
+ %call1 = tail call i32 @f1(i32 1, i32 301)
+ %call2 = tail call i32 @f1(i32 47, i32 999)
+ %call3 = tail call i32 @f2(i32 47)
+ %call4 = tail call i32 @f2(i32 301)
+ %res = add nsw i32 %call1, %call2
+ %res.1 = add nsw i32 %res, %call3
+ %res.2 = add nsw i32 %res.1, %call4
+ ret i32 %res.2
+}
+
+; x is overdefined, because constant ranges are only used for parameter
+; values.
+; CHECK-LABEL: f3
+; CHECK: %cmp = icmp sgt i32 %x, 300
+; CHECK: %res = select i1 %cmp, i32 1, i32 2
+; CHECK: ret i32 %res
+define internal i32 @f3(i32 %x) {
+entry:
+ %cmp = icmp sgt i32 %x, 300
+ %res = select i1 %cmp, i32 1, i32 2
+ ret i32 %res
+}
+
+; The phi node could be converted in a ConstantRange.
+define i32 @caller2(i1 %cmp) {
+entry:
+ br i1 %cmp, label %if.true, label %end
+
+if.true:
+ br label %end
+
+end:
+ %res = phi i32 [ 0, %entry], [ 1, %if.true ]
+ %call1 = tail call i32 @f3(i32 %res)
+ ret i32 %call1
+}
+
+; CHECK-LABEL: f4
+; CHECK: %cmp = icmp sgt i32 %x, 300
+; CHECK: %res = select i1 %cmp, i32 1, i32 2
+; CHECK: ret i32 %res
+define internal i32 @f4(i32 %x) {
+entry:
+ %cmp = icmp sgt i32 %x, 300
+ %res = select i1 %cmp, i32 1, i32 2
+ ret i32 %res
+}
+
+; ICmp could introduce bounds on ConstantRanges.
+define i32 @caller3(i32 %x) {
+entry:
+ %cmp = icmp sgt i32 %x, 300
+ br i1 %cmp, label %if.true, label %end
+
+if.true:
+ %x.1 = tail call i32 @f4(i32 %x)
+ br label %end
+
+end:
+ %res = phi i32 [ 0, %entry], [ %x.1, %if.true ]
+ ret i32 %res
+}