#include "MagickCore/matrix.h"
#include "MagickCore/matrix-private.h"
#include "MagickCore/memory_.h"
-#include "MagickCore/utility.h"
\f
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% double coefficents[8];
% ...
% GaussJordanElimination(matrix, &coefficents, 8UL, 1UL);
-%
+%
% However by specifing more 'columns' (as an 'array of vector columns'),
% you can use this function to solve multiple sets of 'separable' equations.
%
%
% You can also use the 'vectors' to generate an inverse of the given 'matrix'
% though as a 'column first array' rather than a 'row first array' (matrix
-% is transposed). For details see
-% http://en.wikipedia.org/wiki/Gauss-Jordan_elimination.
+% is transposed). For details see
+% http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
%
*/
MagickPrivate MagickBooleanType GaussJordanElimination(double **matrix,
rows[i]=row;
columns[i]=column;
if (matrix[column][column] == 0.0)
- return(MagickFalse); /* sigularity */
+ return(MagickFalse); /* singularity */
scale=1.0/matrix[column][column];
matrix[column][column]=1.0;
for (j=0; j < (ssize_t) rank; j++)