return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1);
case Instruction::Call:
- Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
+ const auto *CI = cast<CallInst>(I);
+ Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
switch (IID) {
default:
break;
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::fabs:
- case Intrinsic::sqrt:
return true;
+
+ case Intrinsic::sqrt:
+ // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
+ if (!SignBitOnly)
+ return true;
+ return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
+ CannotBeNegativeZero(CI->getOperand(0), TLI));
+
case Intrinsic::powi:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
// powi(x,n) is non-negative if n is even.
- if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
+ if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
return true;
}
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
}
declare float @llvm.fabs.f32(float)
+declare float @llvm.sqrt.f32(float)
; CHECK-LABEL: @fabs_select_positive_constants(
; CHECK: %select = select i1 %cmp, float 1.000000e+00, float 2.000000e+00
%fabs = call float @llvm.fabs.f32(float %select)
ret float %fabs
}
+
+; CHECK-LABEL: @fabs_sqrt
+; CHECK: call float @llvm.sqrt.f32
+; CHECK: call float @llvm.fabs.f32
+define float @fabs_sqrt(float %a) {
+; The fabs can't be eliminated because llvm.sqrt.f32 may return -0 or NaN with
+; an arbitrary sign bit.
+ %sqrt = call float @llvm.sqrt.f32(float %a)
+ %fabs = call float @llvm.fabs.f32(float %sqrt)
+ ret float %fabs
+}
+
+; CHECK-LABEL: @fabs_sqrt_nnan
+; CHECK: call nnan float @llvm.sqrt.f32
+; CHECK: call float @llvm.fabs.f32
+define float @fabs_sqrt_nnan(float %a) {
+; The fabs can't be eliminated because the nnan sqrt may still return -0.
+ %sqrt = call nnan float @llvm.sqrt.f32(float %a)
+ %fabs = call float @llvm.fabs.f32(float %sqrt)
+ ret float %fabs
+}
+
+; CHECK-LABEL: @fabs_sqrt_nsz
+; CHECK: call nsz float @llvm.sqrt.f32
+; CHECK: call float @llvm.fabs.f32
+define float @fabs_sqrt_nsz(float %a) {
+; The fabs can't be eliminated because the nsz sqrt may still return NaN.
+ %sqrt = call nsz float @llvm.sqrt.f32(float %a)
+ %fabs = call float @llvm.fabs.f32(float %sqrt)
+ ret float %fabs
+}
+
+; CHECK-LABEL: @fabs_sqrt_nnan_nsz
+; CHECK: call nnan nsz float @llvm.sqrt.f32
+; CHECK-NOT: call float @llvm.fabs.f32
+define float @fabs_sqrt_nnan_nsz(float %a) {
+; The fabs can be eliminated because we're nsz and nnan.
+ %sqrt = call nnan nsz float @llvm.sqrt.f32(float %a)
+ %fabs = call float @llvm.fabs.f32(float %sqrt)
+ ret float %fabs
+}
+
+; CHECK-LABEL: @fabs_sqrt_nnan_fabs
+; CHECK: call float @llvm.fabs.f32
+; CHECK: call nnan float @llvm.sqrt.f32
+; CHECK-NOT: call float @llvm.fabs.f32
+define float @fabs_sqrt_nnan_fabs(float %a) {
+; The second fabs can be eliminated because the operand to sqrt cannot be -0.
+ %b = call float @llvm.fabs.f32(float %a)
+ %sqrt = call nnan float @llvm.sqrt.f32(float %b)
+ %fabs = call float @llvm.fabs.f32(float %sqrt)
+ ret float %fabs
+}