if (Instruction *I = canonicalizeSelectToShuffle(SI))
return I;
+ // Canonicalize a one-use integer compare with a non-canonical predicate by
+ // inverting the predicate and swapping the select operands. This matches a
+ // compare canonicalization for conditional branches.
+ // TODO: Should we do the same for FP compares?
+ CmpInst::Predicate Pred;
+ if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
+ !isCanonicalPredicate(Pred)) {
+ // Swap true/false values and condition.
+ CmpInst *Cond = cast<CmpInst>(CondVal);
+ Cond->setPredicate(CmpInst::getInversePredicate(Pred));
+ SI.setOperand(1, FalseVal);
+ SI.setOperand(2, TrueVal);
+ SI.swapProfMetadata();
+ Worklist.Add(Cond);
+ return &SI;
+ }
+
if (SelType->getScalarType()->isIntegerTy(1) &&
TrueVal->getType() == CondVal->getType()) {
if (match(TrueVal, m_One())) {
; ALL-LABEL: @test_simplify13(
; ALL-NEXT: [[CTTZ:%.*]] = call i32 @llvm.cttz.i32(i32 %x, i1 true)
; ALL-NEXT: [[TMP1:%.*]] = add nuw nsw i32 [[CTTZ]], 1
-; ALL-NEXT: [[TMP2:%.*]] = icmp ne i32 %x, 0
-; ALL-NEXT: [[TMP3:%.*]] = select i1 [[TMP2]], i32 [[TMP1]], i32 0
+; ALL-NEXT: [[TMP2:%.*]] = icmp eq i32 %x, 0
+; ALL-NEXT: [[TMP3:%.*]] = select i1 [[TMP2]], i32 0, i32 [[TMP1]]
; ALL-NEXT: ret i32 [[TMP3]]
;
%ret = call i32 @ffs(i32 %x)
; TARGET-LABEL: @test_simplify14(
; TARGET-NEXT: [[CTTZ:%.*]] = call i32 @llvm.cttz.i32(i32 %x, i1 true)
; TARGET-NEXT: [[TMP1:%.*]] = add nuw nsw i32 [[CTTZ]], 1
-; TARGET-NEXT: [[TMP2:%.*]] = icmp ne i32 %x, 0
-; TARGET-NEXT: [[TMP3:%.*]] = select i1 [[TMP2]], i32 [[TMP1]], i32 0
+; TARGET-NEXT: [[TMP2:%.*]] = icmp eq i32 %x, 0
+; TARGET-NEXT: [[TMP3:%.*]] = select i1 [[TMP2]], i32 0, i32 [[TMP1]]
; TARGET-NEXT: ret i32 [[TMP3]]
;
%ret = call i32 @ffsl(i32 %x)
; TARGET-NEXT: [[CTTZ:%.*]] = call i64 @llvm.cttz.i64(i64 %x, i1 true)
; TARGET-NEXT: [[TMP1:%.*]] = add nuw nsw i64 [[CTTZ]], 1
; TARGET-NEXT: [[TMP2:%.*]] = trunc i64 [[TMP1]] to i32
-; TARGET-NEXT: [[TMP3:%.*]] = icmp ne i64 %x, 0
-; TARGET-NEXT: [[TMP4:%.*]] = select i1 [[TMP3]], i32 [[TMP2]], i32 0
+; TARGET-NEXT: [[TMP3:%.*]] = icmp eq i64 %x, 0
+; TARGET-NEXT: [[TMP4:%.*]] = select i1 [[TMP3]], i32 0, i32 [[TMP2]]
; TARGET-NEXT: ret i32 [[TMP4]]
;
%ret = call i32 @ffsll(i64 %x)
; CHECK-LABEL: @f7(
; CHECK-NEXT: [[CMP_UNSHIFTED:%.*]] = xor i32 %a, %b
; CHECK-NEXT: [[CMP_MASK:%.*]] = and i32 [[CMP_UNSHIFTED]], 511
-; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[CMP:%.*]].mask, 0
-; CHECK-NEXT: [[S:%.*]] = select i1 [[CMP]], i32 10000, i32 0
+; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[CMP_MASK]], 0
+; CHECK-NEXT: [[S:%.*]] = select i1 [[CMP]], i32 0, i32 10000
; CHECK-NEXT: ret i32 [[S]]
;
%sext = shl i32 %a, 23
ret i32 %t3
}
-; TODO: For the next 4 tests, are there potential canonicalizations and/or folds for these
-; in InstCombine? Independent of that, tests like this that may not show any transforms
-; still have value because they can help identify conflicting canonicalization rules that
-; lead to infinite looping.
-
; PR32791 - https://bugs.llvm.org//show_bug.cgi?id=32791
-; Fold two selects with inverted predicates and zero operands.
+; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
+
define i32 @fold_inverted_icmp_preds(i32 %a, i32 %b, i32 %c, i32 %d) {
; CHECK-LABEL: @fold_inverted_icmp_preds(
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 %a, %b
; CHECK-NEXT: [[SEL1:%.*]] = select i1 [[CMP1]], i32 %c, i32 0
-; CHECK-NEXT: [[CMP2:%.*]] = icmp sge i32 %a, %b
-; CHECK-NEXT: [[SEL2:%.*]] = select i1 [[CMP2]], i32 %d, i32 0
+; CHECK-NEXT: [[CMP2:%.*]] = icmp slt i32 %a, %b
+; CHECK-NEXT: [[SEL2:%.*]] = select i1 [[CMP2]], i32 0, i32 %d
; CHECK-NEXT: [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
; CHECK-NEXT: ret i32 [[OR]]
;
ret i32 %or
}
+; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
+
define i32 @fold_inverted_icmp_preds_reverse(i32 %a, i32 %b, i32 %c, i32 %d) {
; CHECK-LABEL: @fold_inverted_icmp_preds_reverse(
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 %a, %b
; CHECK-NEXT: [[SEL1:%.*]] = select i1 [[CMP1]], i32 0, i32 %c
-; CHECK-NEXT: [[CMP2:%.*]] = icmp sge i32 %a, %b
-; CHECK-NEXT: [[SEL2:%.*]] = select i1 [[CMP2]], i32 0, i32 %d
+; CHECK-NEXT: [[CMP2:%.*]] = icmp slt i32 %a, %b
+; CHECK-NEXT: [[SEL2:%.*]] = select i1 [[CMP2]], i32 %d, i32 0
; CHECK-NEXT: [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
; CHECK-NEXT: ret i32 [[OR]]
;
ret i32 %or
}
+; TODO: Should fcmp have the same sort of predicate canonicalization as icmp?
+
define i32 @fold_inverted_fcmp_preds(float %a, float %b, i32 %c, i32 %d) {
; CHECK-LABEL: @fold_inverted_fcmp_preds(
; CHECK-NEXT: [[CMP1:%.*]] = fcmp olt float %a, %b
ret i32 %or
}
+; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
+
define <2 x i32> @fold_inverted_icmp_vector_preds(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c, <2 x i32> %d) {
; CHECK-LABEL: @fold_inverted_icmp_vector_preds(
-; CHECK-NEXT: [[CMP1:%.*]] = icmp ne <2 x i32> %a, %b
-; CHECK-NEXT: [[SEL1:%.*]] = select <2 x i1> [[CMP1]], <2 x i32> %c, <2 x i32> zeroinitializer
+; CHECK-NEXT: [[CMP1:%.*]] = icmp eq <2 x i32> %a, %b
+; CHECK-NEXT: [[SEL1:%.*]] = select <2 x i1> [[CMP1]], <2 x i32> zeroinitializer, <2 x i32> %c
; CHECK-NEXT: [[CMP2:%.*]] = icmp eq <2 x i32> %a, %b
; CHECK-NEXT: [[SEL2:%.*]] = select <2 x i1> [[CMP2]], <2 x i32> %d, <2 x i32> zeroinitializer
; CHECK-NEXT: [[OR:%.*]] = or <2 x i32> [[SEL1]], [[SEL2]]
; negative test case (i.e. can not simplify) : ABS(MIN(NOT x,y))
define i32 @abs_of_min_of_not(i32 %x, i32 %y) {
; CHECK-LABEL: @abs_of_min_of_not(
-; CHECK-NEXT: xor
-; CHECK-NEXT: add
-; CHECK-NEXT: icmp sge
-; CHECK-NEXT: select
-; CHECK-NEXT: icmp sgt
-; CHECK-NEXT: sub
-; CHECK-NEXT: select
-; CHECK-NEXT: ret
+; CHECK-NEXT: [[XORD:%.*]] = xor i32 %x, -1
+; CHECK-NEXT: [[YADD:%.*]] = add i32 %y, 2
+; CHECK-NEXT: [[COND_I:%.*]] = icmp slt i32 [[YADD]], [[XORD]]
+; CHECK-NEXT: [[MIN:%.*]] = select i1 [[COND_I]], i32 [[YADD]], i32 [[XORD]]
+; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[MIN]], -1
+; CHECK-NEXT: [[SUB:%.*]] = sub i32 0, [[MIN]]
+; CHECK-NEXT: [[ABS:%.*]] = select i1 [[CMP2]], i32 [[MIN]], i32 [[SUB]]
+; CHECK-NEXT: ret i32 [[ABS]]
+;
%xord = xor i32 %x, -1
%yadd = add i32 %y, 2
define i8 @select_icmp_ne_0_and_1073741824_or_8(i32 %x, i8 %y) {
; CHECK-LABEL: @select_icmp_ne_0_and_1073741824_or_8(
-; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 1073741824
-; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[AND]], 0
-; CHECK-NEXT: [[OR:%.*]] = or i8 [[Y:%.*]], 8
-; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], i8 [[Y]], i8 [[OR]]
+; CHECK-NEXT: [[AND:%.*]] = and i32 %x, 1073741824
+; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[AND]], 0
+; CHECK-NEXT: [[OR:%.*]] = or i8 %y, 8
+; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], i8 [[OR]], i8 %y
; CHECK-NEXT: ret i8 [[SELECT]]
;
%and = and i32 %x, 1073741824
define i32 @select_icmp_ne_0_and_8_or_1073741824(i8 %x, i32 %y) {
; CHECK-LABEL: @select_icmp_ne_0_and_8_or_1073741824(
-; CHECK-NEXT: [[AND:%.*]] = and i8 [[X:%.*]], 8
-; CHECK-NEXT: [[CMP:%.*]] = icmp ne i8 [[AND]], 0
-; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 1073741824
-; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], i32 [[Y]], i32 [[OR]]
+; CHECK-NEXT: [[AND:%.*]] = and i8 %x, 8
+; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8 [[AND]], 0
+; CHECK-NEXT: [[OR:%.*]] = or i32 %y, 1073741824
+; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], i32 [[OR]], i32 %y
; CHECK-NEXT: ret i32 [[SELECT]]
;
%and = and i8 %x, 8
define i32 @test66(i64 %x) {
; CHECK-LABEL: @test66(
; CHECK-NEXT: [[TMP1:%.*]] = and i64 %x, 4294967296
-; CHECK-NEXT: [[TMP2:%.*]] = icmp ne i64 [[TMP1]], 0
-; CHECK-NEXT: [[TMP3:%.*]] = select i1 [[TMP2]], i32 40, i32 42
+; CHECK-NEXT: [[TMP2:%.*]] = icmp eq i64 [[TMP1]], 0
+; CHECK-NEXT: [[TMP3:%.*]] = select i1 [[TMP2]], i32 42, i32 40
; CHECK-NEXT: ret i32 [[TMP3]]
;
%1 = and i64 %x, 4294967296
define i32 @shift_xor_multiuse_or(i32 %x, i32 %y) {
; CHECK-LABEL: @shift_xor_multiuse_or(
-; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 4096
-; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[AND]], 0
-; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 2048
-; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], i32 [[Y]], i32 [[OR]]
+; CHECK-NEXT: [[AND:%.*]] = and i32 %x, 4096
+; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[AND]], 0
+; CHECK-NEXT: [[OR:%.*]] = or i32 %y, 2048
+; CHECK-NEXT: [[SELECT:%.*]] = select i1 [[CMP]], i32 [[OR]], i32 %y
; CHECK-NEXT: [[RES:%.*]] = mul i32 [[SELECT]], [[OR]]
; CHECK-NEXT: ret i32 [[RES]]
;
define i32 @no_shift_xor_multiuse_cmp(i32 %x, i32 %y, i32 %z, i32 %w) {
; CHECK-LABEL: @no_shift_xor_multiuse_cmp(
-; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 4096
-; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[AND]], 0
+; CHECK-NEXT: [[AND:%.*]] = and i32 %x, 4096
+; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[AND]], 0
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[AND]], 4096
-; CHECK-NEXT: [[TMP2:%.*]] = or i32 [[TMP1]], [[Y:%.*]]
-; CHECK-NEXT: [[SELECT2:%.*]] = select i1 [[CMP]], i32 [[Z:%.*]], i32 [[W:%.*]]
+; CHECK-NEXT: [[TMP2:%.*]] = or i32 [[TMP1]], %y
+; CHECK-NEXT: [[SELECT2:%.*]] = select i1 [[CMP]], i32 %w, i32 %z
; CHECK-NEXT: [[RES:%.*]] = mul i32 [[TMP2]], [[SELECT2]]
; CHECK-NEXT: ret i32 [[RES]]
;
}
define i32 @test_select_select0(i32 %a, i32 %r0, i32 %r1, i32 %v1, i32 %v2) {
- ; CHECK-LABEL: @test_select_select0(
- ; CHECK: %[[C0:.*]] = icmp sge i32 %a, %v1
- ; CHECK-NEXT: %[[C1:.*]] = icmp slt i32 %a, %v2
- ; CHECK-NEXT: %[[C:.*]] = and i1 %[[C1]], %[[C0]]
- ; CHECK-NEXT: %[[SEL:.*]] = select i1 %[[C]], i32 %r0, i32 %r1
- ; CHECK-NEXT: ret i32 %[[SEL]]
+; CHECK-LABEL: @test_select_select0(
+; CHECK-NEXT: [[C0:%.*]] = icmp slt i32 %a, %v1
+; CHECK-NEXT: [[S0:%.*]] = select i1 [[C0]], i32 %r1, i32 %r0
+; CHECK-NEXT: [[C1:%.*]] = icmp slt i32 %a, %v2
+; CHECK-NEXT: [[S1:%.*]] = select i1 [[C1]], i32 [[S0]], i32 %r1
+; CHECK-NEXT: ret i32 [[S1]]
+;
%c0 = icmp sge i32 %a, %v1
%s0 = select i1 %c0, i32 %r0, i32 %r1
%c1 = icmp slt i32 %a, %v2
}
define i32 @test_select_select1(i32 %a, i32 %r0, i32 %r1, i32 %v1, i32 %v2) {
- ; CHECK-LABEL: @test_select_select1(
- ; CHECK: %[[C0:.*]] = icmp sge i32 %a, %v1
- ; CHECK-NEXT: %[[C1:.*]] = icmp slt i32 %a, %v2
- ; CHECK-NEXT: %[[C:.*]] = or i1 %[[C1]], %[[C0]]
- ; CHECK-NEXT: %[[SEL:.*]] = select i1 %[[C]], i32 %r0, i32 %r1
- ; CHECK-NEXT: ret i32 %[[SEL]]
+; CHECK-LABEL: @test_select_select1(
+; CHECK-NEXT: [[C0:%.*]] = icmp slt i32 %a, %v1
+; CHECK-NEXT: [[S0:%.*]] = select i1 [[C0]], i32 %r1, i32 %r0
+; CHECK-NEXT: [[C1:%.*]] = icmp slt i32 %a, %v2
+; CHECK-NEXT: [[S1:%.*]] = select i1 [[C1]], i32 %r0, i32 [[S0]]
+; CHECK-NEXT: ret i32 [[S1]]
+;
%c0 = icmp sge i32 %a, %v1
%s0 = select i1 %c0, i32 %r0, i32 %r1
%c1 = icmp slt i32 %a, %v2
;CHECK-LABEL: @function0(
;CHECK: load <4 x i32>
-;CHECK: icmp sle <4 x i32>
+;CHECK: icmp sgt <4 x i32>
;CHECK: mul <4 x i32>
;CHECK: add <4 x i32>
;CHECK: select <4 x i1>
; SGE -> SLT
; Turn this into a min reduction (select inputs are reversed).
; CHECK-LABEL: @sge_min_red(
-; CHECK: icmp sge <2 x i32>
+; CHECK: icmp slt <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp slt <2 x i32>
; SLE -> SGT
; Turn this into a max reduction (select inputs are reversed).
; CHECK-LABEL: @sle_min_red(
-; CHECK: icmp sle <2 x i32>
+; CHECK: icmp sgt <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp sgt <2 x i32>
; UGE -> ULT
; Turn this into a min reduction (select inputs are reversed).
; CHECK-LABEL: @uge_min_red(
-; CHECK: icmp uge <2 x i32>
+; CHECK: icmp ult <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp ult <2 x i32>
; ULE -> UGT
; Turn this into a max reduction (select inputs are reversed).
; CHECK-LABEL: @ule_min_red(
-; CHECK: icmp ule <2 x i32>
+; CHECK: icmp ugt <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp ugt <2 x i32>