.. versionadded:: 3.2
+.. decorator:: lfu_cache(maxsize)
+
+ Decorator to wrap a function with a memoizing callable that saves up to the
+ *maxsize* most frequent calls. It can save time when an expensive or I/O
+ bound function is periodically called with the same arguments.
+
+ The *maxsize* parameter defaults to 100. Since a dictionary is used to cache
+ results, the positional and keyword arguments to the function must be
+ hashable.
+
+ The wrapped function is instrumented with two attributes, :attr:`hits`
+ and :attr:`misses` which count the number of successful or unsuccessful
+ cache lookups. These statistics are helpful for tuning the *maxsize*
+ parameter and for measuring the cache's effectiveness.
+
+ The wrapped function also has a :attr:`clear` attribute which can be
+ called (with no arguments) to clear the cache.
+
+ A `LFU (least frequently used) cache
+ <http://en.wikipedia.org/wiki/Cache_algorithms#Least-Frequently_Used>`_
+ is indicated when the pattern of calls does not change over time, when
+ more the most common calls already seen are the best predictors of the
+ most common upcoming calls.
+
+ .. versionadded:: 3.2
+
+.. decorator:: lru_cache(maxsize)
+
+ Decorator to wrap a function with a memoizing callable that saves up to the
+ *maxsize* most recent calls. It can save time when an expensive or I/O bound
+ function is periodically called with the same arguments.
+
+ The *maxsize* parameter defaults to 100. Since a dictionary is used to cache
+ results, the positional and keyword arguments to the function must be
+ hashable.
+
+ The wrapped function is instrumented with two attributes, :attr:`hits`
+ and :attr:`misses` which count the number of successful or unsuccessful
+ cache lookups. These statistics are helpful for tuning the *maxsize*
+ parameter and for measuring the cache's effectiveness.
+
+ The wrapped function also has a :attr:`clear` attribute which can be
+ called (with no arguments) to clear the cache.
+
+ A `LRU (least recently used) cache
+ <http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used>`_
+ is indicated when the pattern of calls changes over time, such as
+ when more recent calls are the best predictors of upcoming calls.
+
+ .. versionadded:: 3.2
+
.. decorator:: total_ordering
Given a class defining one or more rich comparison ordering methods, this
# to allow utilities written in Python to be added
# to the functools module.
# Written by Nick Coghlan <ncoghlan at gmail.com>
-# Copyright (C) 2006 Python Software Foundation.
+# and Raymond Hettinger <python at rcn.com>
+# Copyright (C) 2006-2010 Python Software Foundation.
# See C source code for _functools credits/copyright
+__all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
+ 'total_ordering', 'cmp_to_key', 'lfu_cache', 'lru_cache']
+
from _functools import partial, reduce
+from collections import OrderedDict, Counter
+from heapq import nsmallest
+from operator import itemgetter
# update_wrapper() and wraps() are tools to help write
# wrapper functions that can handle naive introspection
def __hash__(self):
raise TypeError('hash not implemented')
return K
+
+def lfu_cache(maxsize=100):
+ '''Least-frequently-used cache decorator.
+
+ Arguments to the cached function must be hashable.
+ Cache performance statistics stored in f.hits and f.misses.
+ Clear the cache using f.clear().
+ http://en.wikipedia.org/wiki/Cache_algorithms#Least-Frequently_Used
+
+ '''
+ def decorating_function(user_function):
+ cache = {} # mapping of args to results
+ use_count = Counter() # times each key has been accessed
+ kwd_mark = object() # separate positional and keyword args
+
+ @wraps(user_function)
+ def wrapper(*args, **kwds):
+ key = args
+ if kwds:
+ key += (kwd_mark,) + tuple(sorted(kwds.items()))
+ use_count[key] += 1 # count a use of this key
+ try:
+ result = cache[key]
+ wrapper.hits += 1
+ except KeyError:
+ result = user_function(*args, **kwds)
+ cache[key] = result
+ wrapper.misses += 1
+ if len(cache) > maxsize:
+ # purge the 10% least frequently used entries
+ for key, _ in nsmallest(maxsize // 10,
+ use_count.items(),
+ key=itemgetter(1)):
+ del cache[key], use_count[key]
+ return result
+
+ def clear():
+ 'Clear the cache and cache statistics'
+ cache.clear()
+ use_count.clear()
+ wrapper.hits = wrapper.misses = 0
+
+ wrapper.hits = wrapper.misses = 0
+ wrapper.clear = clear
+ return wrapper
+ return decorating_function
+
+def lru_cache(maxsize=100):
+ '''Least-recently-used cache decorator.
+
+ Arguments to the cached function must be hashable.
+ Cache performance statistics stored in f.hits and f.misses.
+ Clear the cache using f.clear().
+ http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
+
+ '''
+ def decorating_function(user_function):
+ cache = OrderedDict() # ordered least recent to most recent
+ kwd_mark = object() # separate positional and keyword args
+
+ @wraps(user_function)
+ def wrapper(*args, **kwds):
+ key = args
+ if kwds:
+ key += (kwd_mark,) + tuple(sorted(kwds.items()))
+ try:
+ result = cache.pop(key)
+ wrapper.hits += 1
+ except KeyError:
+ result = user_function(*args, **kwds)
+ wrapper.misses += 1
+ if len(cache) >= maxsize:
+ cache.popitem(0) # purge least recently used cache entry
+ cache[key] = result # record recent use of this key
+ return result
+
+ def clear():
+ 'Clear the cache and cache statistics'
+ cache.clear()
+ wrapper.hits = wrapper.misses = 0
+
+ wrapper.hits = wrapper.misses = 0
+ wrapper.clear = clear
+ return wrapper
+ return decorating_function
from test import support
from weakref import proxy
import pickle
+from random import choice
@staticmethod
def PythonPartial(func, *args, **keywords):
class A:
pass
+class TestLRU(unittest.TestCase):
+
+ def test_lru(self):
+ def orig(x, y):
+ return 3*x+y
+ f = functools.lru_cache(maxsize=20)(orig)
+
+ domain = range(5)
+ for i in range(1000):
+ x, y = choice(domain), choice(domain)
+ actual = f(x, y)
+ expected = orig(x, y)
+ self.assertEquals(actual, expected)
+ self.assert_(f.hits > f.misses)
+ self.assertEquals(f.hits + f.misses, 1000)
+
+ f.clear() # test clearing
+ self.assertEqual(f.hits, 0)
+ self.assertEqual(f.misses, 0)
+ f(x, y)
+ self.assertEqual(f.hits, 0)
+ self.assertEqual(f.misses, 1)
+
+ def test_lfu(self):
+ def orig(x, y):
+ return 3*x+y
+ f = functools.lfu_cache(maxsize=20)(orig)
+
+ domain = range(5)
+ for i in range(1000):
+ x, y = choice(domain), choice(domain)
+ actual = f(x, y)
+ expected = orig(x, y)
+ self.assertEquals(actual, expected)
+ self.assert_(f.hits > f.misses)
+ self.assertEquals(f.hits + f.misses, 1000)
+
+ f.clear() # test clearing
+ self.assertEqual(f.hits, 0)
+ self.assertEqual(f.misses, 0)
+ f(x, y)
+ self.assertEqual(f.hits, 0)
+ self.assertEqual(f.misses, 1)
+
def test_main(verbose=None):
test_classes = (
TestPartial,
TestPythonPartial,
TestUpdateWrapper,
TestWraps,
- TestReduce
+ TestReduce,
+ TestLRU,
)
support.run_unittest(*test_classes)
- Issue #4179: In pdb, allow "list ." as a command to return to the currently
debugged line.
+- Add lfu_cache() and lru_cache() decorators to the functools module.
+
- Issue #4108: In urllib.robotparser, if there are multiple 'User-agent: *'
entries, consider the first one.