and !=) to support mixed complex and real operand types.
This requires removing an assert from SemaChecking, and adding support
both to the constant evaluator and the code generator to synthesize the
imaginary part when needed. This seemed somewhat cleaner than having
just the comparison operators force real-to-complex conversions.
I've added test cases for these operations. I'm really terrified that
there were *no* tests in-tree which exercised this.
This turned up when trying to build R after my change to the complex
type lowering.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@219570
91177308-0d34-0410-b5e6-
96231b3b80d8
QualType LHSTy = E->getLHS()->getType();
QualType RHSTy = E->getRHS()->getType();
- if (LHSTy->isAnyComplexType()) {
- assert(RHSTy->isAnyComplexType() && "Invalid comparison");
+ if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
ComplexValue LHS, RHS;
-
- bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
+ bool LHSOK;
+ if (E->getLHS()->getType()->isRealFloatingType()) {
+ LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
+ if (LHSOK) {
+ LHS.makeComplexFloat();
+ LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
+ }
+ } else {
+ LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
+ }
if (!LHSOK && !Info.keepEvaluatingAfterFailure())
return false;
- if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
+ if (E->getRHS()->getType()->isRealFloatingType()) {
+ if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
+ return false;
+ RHS.makeComplexFloat();
+ RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
+ } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
return false;
if (LHS.isComplexFloat()) {
TestAndClearIgnoreResultAssign();
Value *Result;
QualType LHSTy = E->getLHS()->getType();
+ QualType RHSTy = E->getRHS()->getType();
if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
assert(E->getOpcode() == BO_EQ ||
E->getOpcode() == BO_NE);
Value *RHS = CGF.EmitScalarExpr(E->getRHS());
Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
- } else if (!LHSTy->isAnyComplexType()) {
+ } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
Value *LHS = Visit(E->getLHS());
Value *RHS = Visit(E->getRHS());
} else {
// Complex Comparison: can only be an equality comparison.
- CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
- CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
-
- QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
+ CodeGenFunction::ComplexPairTy LHS, RHS;
+ QualType CETy;
+ if (auto *CTy = LHSTy->getAs<ComplexType>()) {
+ LHS = CGF.EmitComplexExpr(E->getLHS());
+ CETy = CTy->getElementType();
+ } else {
+ LHS.first = Visit(E->getLHS());
+ LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
+ CETy = LHSTy;
+ }
+ if (auto *CTy = RHSTy->getAs<ComplexType>()) {
+ RHS = CGF.EmitComplexExpr(E->getRHS());
+ assert(CGF.getContext().hasSameUnqualifiedType(CETy,
+ CTy->getElementType()) &&
+ "The element types must always match.");
+ } else {
+ RHS.first = Visit(E->getRHS());
+ RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
+ assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
+ "The element types must always match.");
+ }
Value *ResultR, *ResultI;
if (CETy->isRealFloatingType()) {
static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
// The type the comparison is being performed in.
QualType T = E->getLHS()->getType();
- assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
- && "comparison with mismatched types");
+
+ // Only analyze comparison operators where both sides have been converted to
+ // the same type.
+ if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
+ return AnalyzeImpConvsInComparison(S, E);
+
+ // Don't analyze value-dependent comparisons directly.
if (E->isValueDependent())
return AnalyzeImpConvsInComparison(S, E);
// X86: ret
return a / b;
}
+
+// Comparison operators don't rely on library calls or have interseting math
+// properties, but test that mixed types work correctly here.
+_Bool eq_float_cr(float _Complex a, float b) {
+ // X86-LABEL: @eq_float_cr(
+ // X86: fcmp oeq
+ // X86: fcmp oeq
+ // X86: and i1
+ // X86: ret
+ return a == b;
+}
+_Bool eq_float_rc(float a, float _Complex b) {
+ // X86-LABEL: @eq_float_rc(
+ // X86: fcmp oeq
+ // X86: fcmp oeq
+ // X86: and i1
+ // X86: ret
+ return a == b;
+}
+_Bool eq_float_cc(float _Complex a, float _Complex b) {
+ // X86-LABEL: @eq_float_cc(
+ // X86: fcmp oeq
+ // X86: fcmp oeq
+ // X86: and i1
+ // X86: ret
+ return a == b;
+}
+_Bool ne_float_cr(float _Complex a, float b) {
+ // X86-LABEL: @ne_float_cr(
+ // X86: fcmp une
+ // X86: fcmp une
+ // X86: or i1
+ // X86: ret
+ return a != b;
+}
+_Bool ne_float_rc(float a, float _Complex b) {
+ // X86-LABEL: @ne_float_rc(
+ // X86: fcmp une
+ // X86: fcmp une
+ // X86: or i1
+ // X86: ret
+ return a != b;
+}
+_Bool ne_float_cc(float _Complex a, float _Complex b) {
+ // X86-LABEL: @ne_float_cc(
+ // X86: fcmp une
+ // X86: fcmp une
+ // X86: or i1
+ // X86: ret
+ return a != b;
+}
// Test the constant folding of builtin complex numbers.
static_assert((0.0 + 0.0j) == (0.0 + 0.0j));
+static_assert((0.0 + 0.0j) != (0.0 + 0.0j)); // expected-error {{static_assert}}
+
+static_assert((0.0 + 0.0j) == 0.0);
+static_assert(0.0 == (0.0 + 0.0j));
+static_assert(0.0 == 0.0j);
+static_assert((0.0 + 1.0j) != 0.0);
+static_assert(1.0 != (0.0 + 0.0j));
+static_assert(0.0 != 1.0j);
// Walk around the complex plane stepping between angular differences and
// equality.