override CFLAGS += -DUSE_STATS
endif
-SA_OBJS=box2d.o ptarray.o lwgeom_api.o lwgeom.o lwpoint.o lwline.o lwpoly.o lwmpoint.o lwmline.o lwmpoly.o lwcollection.o $(GEOS_WRAPPER) wktunparse.o lwgparse.o wktparse.tab.o lex.yy.o
+SA_OBJS=misures.o box2d.o ptarray.o lwgeom_api.o lwgeom.o lwpoint.o lwline.o lwpoly.o lwmpoint.o lwmline.o lwmpoly.o lwcollection.o $(GEOS_WRAPPER) wktunparse.o lwgparse.o wktparse.tab.o lex.yy.o
OBJS=$(SA_OBJS) liblwgeom.o lwgeom_pg.o lwgeom_debug.o lwgeom_spheroid.o lwgeom_ogc.o lwgeom_functions_analytic.o lwgeom_geos.o lwgeom_inout.o lwgeom_estimate.o lwgeom_functions_basic.o lwgeom_gist.o lwgeom_btree.o lwgeom_transform.o stringBuffer.o lwgeom_box.o lwgeom_box3d.o lwgeom_box2dfloat4.o lwgeom_chip.o lwgeom_svg.o lwgeom_gml.o
OTHERS=y.output lex.yy.c wktparse.tab.c wktparse.tab.h lwpostgis.sql
test: liblwgeom_sa.so liblwgeom_sa.a test.c
#$(CC) -o test -L. -llwgeom_sa $(SHLIB_LINK) test.c
- $(CC) -Wall -g -o test test.c liblwgeom_sa.a
+ $(CC) -Wall -lm -g -o test test.c liblwgeom_sa.a
Datum LWGEOM_zmflag(PG_FUNCTION_ARGS);
-/*------------------------------------------------------------------*/
-
-// pt_in_ring_2d(): crossing number test for a point in a polygon
-// input: p = a point,
-// pa = vertex points of a ring V[n+1] with V[n]=V[0]
-// returns: 0 = outside, 1 = inside
-//
-// Our polygons have first and last point the same,
-//
-int pt_in_ring_2d(POINT2D *p, POINTARRAY *ring)
-{
- int cn = 0; // the crossing number counter
- int i;
- POINT2D *v1;
-
-#ifdef DEBUG
- elog(NOTICE, "pt_in_ring_2d called");
-#endif
-
- // loop through all edges of the polygon
- v1 = (POINT2D *)getPoint(ring, 0);
- for (i=0; i<ring->npoints-2; i++)
- {
- double vt;
- POINT2D *v2 = (POINT2D *)getPoint(ring, i+1);
-
- // edge from vertex i to vertex i+1
- if
- (
- // an upward crossing
- ((v1->y <= p->y) && (v2->y > p->y))
- // a downward crossing
- || ((v1->y > p->y) && (v2->y <= p->y))
- )
- {
-
- vt = (double)(p->y - v1->y) / (v2->y - v1->y);
-
- // P.x <intersect
- if (p->x < v1->x + vt * (v2->x - v1->x))
- {
- // a valid crossing of y=p.y right of p.x
- ++cn;
- }
- }
- v1 = v2;
- }
-#ifdef DEBUG
- elog(NOTICE, "pt_in_ring_2d returning %d", cn&1);
-#endif
- return (cn&1); // 0 if even (out), and 1 if odd (in)
-}
-
-// true if point is in poly (and not in its holes)
-int pt_in_poly_2d(POINT2D *p, LWPOLY *poly)
-{
- int i;
-
- // Not in outer ring
- if ( ! pt_in_ring_2d(p, poly->rings[0]) ) return 0;
-
- // Check holes
- for (i=1; i<poly->nrings; i++)
- {
- // Inside a hole
- if ( pt_in_ring_2d(p, poly->rings[i]) ) return 0;
- }
-
- return 1; // In outer ring, not in holes
-}
-
-double distance2d_pt_pt(POINT2D *p1, POINT2D *p2)
-{
- return sqrt(
- (p2->x-p1->x) * (p2->x-p1->x) + (p2->y-p1->y) * (p2->y-p1->y)
- );
-}
-
-//distance2d from p to line A->B
-double distance2d_pt_seg(POINT2D *p, POINT2D *A, POINT2D *B)
-{
- double r,s;
-
- //if start==end, then use pt distance
- if ( ( A->x == B->x) && (A->y == B->y) )
- return distance2d_pt_pt(p,A);
-
- //otherwise, we use comp.graphics.algorithms Frequently Asked Questions method
-
- /*(1) AC dot AB
- r = ---------
- ||AB||^2
- r has the following meaning:
- r=0 P = A
- r=1 P = B
- r<0 P is on the backward extension of AB
- r>1 P is on the forward extension of AB
- 0<r<1 P is interior to AB
- */
-
- r = ( (p->x-A->x) * (B->x-A->x) + (p->y-A->y) * (B->y-A->y) )/( (B->x-A->x)*(B->x-A->x) +(B->y-A->y)*(B->y-A->y) );
-
- if (r<0) return distance2d_pt_pt(p,A);
- if (r>1) return distance2d_pt_pt(p,B);
-
-
- /*(2)
- (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
- s = -----------------------------
- L^2
-
- Then the distance from C to P = |s|*L.
-
- */
-
- s = ( (A->y-p->y)*(B->x-A->x)- (A->x-p->x)*(B->y-A->y) ) /
- ( (B->x-A->x)*(B->x-A->x) +(B->y-A->y)*(B->y-A->y) );
-
- return abs(s) * sqrt(
- (B->x-A->x)*(B->x-A->x) + (B->y-A->y)*(B->y-A->y)
- );
-}
-
-// find the minimum 2d distance from AB to CD
-double distance2d_seg_seg(POINT2D *A, POINT2D *B, POINT2D *C, POINT2D *D)
-{
-
- double s_top, s_bot,s;
- double r_top, r_bot,r;
-
-#ifdef DEBUG
- elog(NOTICE, "distance2d_seg_seg [%g,%g]->[%g,%g] by [%g,%g]->[%g,%g]",
- A->x,A->y,B->x,B->y, C->x,C->y, D->x, D->y);
-#endif
-
-
- //A and B are the same point
- if ( ( A->x == B->x) && (A->y == B->y) )
- return distance2d_pt_seg(A,C,D);
-
- //U and V are the same point
-
- if ( ( C->x == D->x) && (C->y == D->y) )
- return distance2d_pt_seg(D,A,B);
-
- // AB and CD are line segments
- /* from comp.graphics.algo
-
- Solving the above for r and s yields
- (Ay-Cy)(Dx-Cx)-(Ax-Cx)(Dy-Cy)
- r = ----------------------------- (eqn 1)
- (Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)
-
- (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
- s = ----------------------------- (eqn 2)
- (Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)
- Let P be the position vector of the intersection point, then
- P=A+r(B-A) or
- Px=Ax+r(Bx-Ax)
- Py=Ay+r(By-Ay)
- By examining the values of r & s, you can also determine some other limiting conditions:
- If 0<=r<=1 & 0<=s<=1, intersection exists
- r<0 or r>1 or s<0 or s>1 line segments do not intersect
- If the denominator in eqn 1 is zero, AB & CD are parallel
- If the numerator in eqn 1 is also zero, AB & CD are collinear.
-
- */
- r_top = (A->y-C->y)*(D->x-C->x) - (A->x-C->x)*(D->y-C->y) ;
- r_bot = (B->x-A->x)*(D->y-C->y) - (B->y-A->y)*(D->x-C->x) ;
-
- s_top = (A->y-C->y)*(B->x-A->x) - (A->x-C->x)*(B->y-A->y);
- s_bot = (B->x-A->x)*(D->y-C->y) - (B->y-A->y)*(D->x-C->x);
-
- if ( (r_bot==0) || (s_bot == 0) )
- {
- return (
- min(distance2d_pt_seg(A,C,D),
- min(distance2d_pt_seg(B,C,D),
- min(distance2d_pt_seg(C,A,B),
- distance2d_pt_seg(D,A,B))
- )
- )
- );
- }
- s = s_top/s_bot;
- r= r_top/r_bot;
-
- if ((r<0) || (r>1) || (s<0) || (s>1) )
- {
- //no intersection
- return (
- min(distance2d_pt_seg(A,C,D),
- min(distance2d_pt_seg(B,C,D),
- min(distance2d_pt_seg(C,A,B),
- distance2d_pt_seg(D,A,B))
- )
- )
- );
-
- }
- else
- return -0; //intersection exists
-
-}
-
-//search all the segments of pointarray to see which one is closest to p1
-//Returns minimum distance between point and pointarray
-double distance2d_pt_ptarray(POINT2D *p, POINTARRAY *pa)
-{
- double result = 0;
- int t;
- POINT2D *start, *end;
-
- start = (POINT2D *)getPoint(pa, 0);
-
- for (t=1; t<pa->npoints; t++)
- {
- double dist;
- end = (POINT2D *)getPoint(pa, t);
- dist = distance2d_pt_seg(p, start, end);
- if (t==1) result = dist;
- else result = min(result, dist);
-
- if ( result == 0 ) return 0;
-
- start = end;
- }
-
- return result;
-}
-
-// test each segment of l1 against each segment of l2. Return min
-double distance2d_ptarray_ptarray(POINTARRAY *l1, POINTARRAY *l2)
-{
- double result = 99999999999.9;
- bool result_okay = FALSE; //result is a valid min
- int t,u;
- POINT2D *start,*end;
- POINT2D *start2,*end2;
-
-#ifdef DEBUG
- elog(NOTICE, "distance2d_ptarray_ptarray called (points: %d-%d)",
- l1->npoints, l2->npoints);
-#endif
-
- start = (POINT2D *)getPoint(l1, 0);
- for (t=1; t<l1->npoints; t++) //for each segment in L1
- {
- end = (POINT2D *)getPoint(l1, t);
-
- start2 = (POINT2D *)getPoint(l2, 0);
- for (u=1; u<l2->npoints; u++) //for each segment in L2
- {
- double dist;
-
- end2 = (POINT2D *)getPoint(l2, u);
-
- dist = distance2d_seg_seg(start, end, start2, end2);
-//printf("line_line; seg %i * seg %i, dist = %g\n",t,u,dist_this);
-
- if (result_okay)
- result = min(result,dist);
- else
- {
- result_okay = TRUE;
- result = dist;
- }
-
-#ifdef DEBUG
- elog(NOTICE, " seg%d-seg%d dist: %f, mindist: %f",
- t, u, dist, result);
-#endif
-
- if (result <= 0) return 0; //intersection
-
- start2 = end2;
- }
- start = end;
- }
-
- return result;
-}
-
-// Brute force.
-// Test line-ring distance against each ring.
-// If there's an intersection (distance==0) then return 0 (crosses boundary).
-// Otherwise, test to see if any point is inside outer rings of polygon,
-// but not in inner rings.
-// If so, return 0 (line inside polygon),
-// otherwise return min distance to a ring (could be outside
-// polygon or inside a hole)
-double distance2d_ptarray_poly(POINTARRAY *pa, LWPOLY *poly)
-{
- POINT2D *pt;
- int i;
- double mindist = 0;
-
-#ifdef DEBUG
- elog(NOTICE, "distance2d_ptarray_poly called (%d rings)", poly->nrings);
-#endif
-
- for (i=0; i<poly->nrings; i++)
- {
- double dist = distance2d_ptarray_ptarray(pa, poly->rings[i]);
- if (i) mindist = min(mindist, dist);
- else mindist = dist;
-#ifdef DEBUG
- elog(NOTICE, " distance from ring %d: %f, mindist: %f",
- i, dist, mindist);
-#endif
-
- if ( mindist <= 0 ) return 0.0; // intersection
- }
-
- // No intersection, have to check if a point is
- // inside polygon
- pt = (POINT2D *)getPoint(pa, 0);
-
- // Outside outer ring, so min distance to a ring
- // is the actual min distance
- if ( ! pt_in_ring_2d(pt, poly->rings[0]) ) return mindist;
-
- // Its in the outer ring.
- // Have to check if its inside a hole
- for (i=1; i<poly->nrings; i++)
- {
- if ( pt_in_ring_2d(pt, poly->rings[i]) )
- {
- // Its inside a hole, then the actual
- // distance is the min ring distance
- return mindist;
- }
- }
-
- return 0.0; // Not in hole, so inside polygon
-}
-
-double distance2d_point_point(LWPOINT *point1, LWPOINT *point2)
-{
- POINT2D *p1 = (POINT2D *)getPoint(point1->point, 0);
- POINT2D *p2 = (POINT2D *)getPoint(point2->point, 0);
- return distance2d_pt_pt(p1, p2);
-}
-
-double distance2d_point_line(LWPOINT *point, LWLINE *line)
-{
- POINT2D *p = (POINT2D *)getPoint(point->point, 0);
- POINTARRAY *pa = line->points;
- return distance2d_pt_ptarray(p, pa);
-}
-
-double distance2d_line_line(LWLINE *line1, LWLINE *line2)
-{
- POINTARRAY *pa1 = line1->points;
- POINTARRAY *pa2 = line2->points;
- return distance2d_ptarray_ptarray(pa1, pa2);
-}
-
-// 1. see if pt in outer boundary. if no, then treat the outer ring like a line
-// 2. if in the boundary, test to see if its in a hole.
-// if so, then return dist to hole, else return 0 (point in polygon)
-double distance2d_point_poly(LWPOINT *point, LWPOLY *poly)
-{
- POINT2D *p = (POINT2D *)getPoint(point->point, 0);
- int i;
-
-#ifdef DEBUG
- elog(NOTICE, "distance2d_point_poly called");
-#endif
-
- // Return distance to outer ring if not inside it
- if ( ! pt_in_ring_2d(p, poly->rings[0]) )
- {
-#ifdef DEBUG
- elog(NOTICE, " not inside outer-ring");
-#endif
- return distance2d_pt_ptarray(p, poly->rings[0]);
- }
-
- // Inside the outer ring.
- // Scan though each of the inner rings looking to
- // see if its inside. If not, distance==0.
- // Otherwise, distance = pt to ring distance
- for (i=1; i<poly->nrings; i++)
- {
- // Inside a hole. Distance = pt -> ring
- if ( pt_in_ring_2d(p, poly->rings[i]) )
- {
-#ifdef DEBUG
- elog(NOTICE, " inside an hole");
-#endif
- return distance2d_pt_ptarray(p, poly->rings[i]);
- }
- }
-
-#ifdef DEBUG
- elog(NOTICE, " inside the polygon");
-#endif
- return 0.0; // Is inside the polygon
-}
-
-// Brute force.
-// Test to see if any rings intersect.
-// If yes, dist=0.
-// Test to see if one inside the other and if they are inside holes.
-// Find min distance ring-to-ring.
-double distance2d_poly_poly(LWPOLY *poly1, LWPOLY *poly2)
-{
- POINT2D *pt;
- double mindist = 0;
- int i;
-
-#ifdef DEBUG
- elog(NOTICE, "distance2d_poly_poly called");
-#endif
-
- // if poly1 inside poly2 return 0
- pt = (POINT2D *)getPoint(poly1->rings[0], 0);
- if ( pt_in_poly_2d(pt, poly2) ) return 0.0;
-
- // if poly2 inside poly1 return 0
- pt = (POINT2D *)getPoint(poly2->rings[0], 0);
- if ( pt_in_poly_2d(pt, poly1) ) return 0.0;
-
-#ifdef DEBUG
- elog(NOTICE, " polys not inside each other");
-#endif
-
- //foreach ring in Poly1
- // foreach ring in Poly2
- // if intersect, return 0
- for (i=0; i<poly1->nrings; i++)
- {
- double dist = distance2d_ptarray_poly(poly1->rings[i], poly2);
- if (i) mindist = min(mindist, dist);
- else mindist = dist;
-
-#ifdef DEBUG
- elog(NOTICE, " ring%d dist: %f, mindist: %f", i, dist, mindist);
-#endif
-
- if ( mindist <= 0 ) return 0.0; // intersection
- }
-
- // otherwise return closest approach of rings (no intersection)
- return mindist;
-
-}
-
-double distance2d_line_poly(LWLINE *line, LWPOLY *poly)
-{
- return distance2d_ptarray_poly(line->points, poly);
-}
-
-
-//find the 2d length of the given POINTARRAY (even if it's 3d)
-double lwgeom_pointarray_length2d(POINTARRAY *pts)
-{
- double dist = 0.0;
- int i;
-
- if ( pts->npoints < 2 ) return 0.0;
- for (i=0; i<pts->npoints-1;i++)
- {
- POINT2D *frm = (POINT2D *)getPoint(pts, i);
- POINT2D *to = (POINT2D *)getPoint(pts, i+1);
- dist += sqrt( ( (frm->x - to->x)*(frm->x - to->x) ) +
- ((frm->y - to->y)*(frm->y - to->y) ) );
- }
- return dist;
-}
-
-//find the 3d/2d length of the given POINTARRAY (depending on its dimensions)
-double
-lwgeom_pointarray_length(POINTARRAY *pts)
-{
- double dist = 0.0;
- int i;
-
- if ( pts->npoints < 2 ) return 0.0;
-
- // compute 2d length if 3d is not available
- if ( ! TYPE_HASZ(pts->dims) ) return lwgeom_pointarray_length2d(pts);
-
- for (i=0; i<pts->npoints-1;i++)
- {
- POINT3DZ *frm = (POINT3DZ *)getPoint(pts, i);
- POINT3DZ *to = (POINT3DZ *)getPoint(pts, i+1);
- dist += sqrt( ( (frm->x - to->x)*(frm->x - to->x) ) +
- ((frm->y - to->y)*(frm->y - to->y) ) +
- ((frm->z - to->z)*(frm->z - to->z) ) );
- }
-
- return dist;
-}
-
-//find the area of the outer ring - sum (area of inner rings)
-// Could use a more numerically stable calculator...
-double lwgeom_polygon_area(LWPOLY *poly)
-{
- double poly_area=0.0;
- int i;
-
-//elog(NOTICE,"in lwgeom_polygon_area (%d rings)", poly->nrings);
-
- for (i=0; i<poly->nrings; i++)
- {
- int j;
- POINTARRAY *ring = poly->rings[i];
- double ringarea = 0.0;
-
-//elog(NOTICE," rings %d has %d points", i, ring->npoints);
- for (j=0; j<ring->npoints-1; j++)
- {
- POINT2D *p1 = (POINT2D *)getPoint(ring, j);
- POINT2D *p2 = (POINT2D *)getPoint(ring, j+1);
- ringarea += ( p1->x * p2->y ) - ( p1->y * p2->x );
- }
-
- ringarea /= 2.0;
-//elog(NOTICE," ring 1 has area %lf",ringarea);
- ringarea = fabs(ringarea );
- if (i != 0) //outer
- ringarea = -1.0*ringarea ; // its a hole
-
- poly_area += ringarea;
- }
-
- return poly_area;
-}
-
-// Compute the sum of polygon rings length.
-// Could use a more numerically stable calculator...
-double lwgeom_polygon_perimeter(LWPOLY *poly)
-{
- double result=0.0;
- int i;
-
-//elog(NOTICE,"in lwgeom_polygon_perimeter (%d rings)", poly->nrings);
-
- for (i=0; i<poly->nrings; i++)
- result += lwgeom_pointarray_length(poly->rings[i]);
-
- return result;
-}
-
-// Compute the sum of polygon rings length (forcing 2d computation).
-// Could use a more numerically stable calculator...
-double lwgeom_polygon_perimeter2d(LWPOLY *poly)
-{
- double result=0.0;
- int i;
-
-//elog(NOTICE,"in lwgeom_polygon_perimeter (%d rings)", poly->nrings);
-
- for (i=0; i<poly->nrings; i++)
- result += lwgeom_pointarray_length2d(poly->rings[i]);
-
- return result;
-}
-
-double
-lwgeom_mindistance2d_recursive(char *lw1, char *lw2)
-{
- LWGEOM_INSPECTED *in1, *in2;
- int i, j;
- double mindist = -1;
-
- in1 = lwgeom_inspect(lw1);
- in2 = lwgeom_inspect(lw2);
-
- for (i=0; i<in1->ngeometries; i++)
- {
- char *g1 = lwgeom_getsubgeometry_inspected(in1, i);
- int t1 = lwgeom_getType(g1[0]);
- double dist=0;
-
- // it's a multitype... recurse
- if ( t1 >= 4 )
- {
- dist = lwgeom_mindistance2d_recursive(g1, lw2);
- if ( dist == 0 ) return 0.0; // can't be closer
- if ( mindist == -1 ) mindist = dist;
- else mindist = min(dist, mindist);
- continue;
- }
-
- for (j=0; j<in2->ngeometries; j++)
- {
- char *g2 = lwgeom_getsubgeometry_inspected(in2, j);
- int t2 = lwgeom_getType(g2[0]);
-
- if ( t1 == POINTTYPE )
- {
- if ( t2 == POINTTYPE )
- {
- dist = distance2d_point_point(
- lwpoint_deserialize(g1),
- lwpoint_deserialize(g2)
- );
- }
- else if ( t2 == LINETYPE )
- {
- dist = distance2d_point_line(
- lwpoint_deserialize(g1),
- lwline_deserialize(g2)
- );
- }
- else if ( t2 == POLYGONTYPE )
- {
- dist = distance2d_point_poly(
- lwpoint_deserialize(g1),
- lwpoly_deserialize(g2)
- );
- }
- }
- else if ( t1 == LINETYPE )
- {
- if ( t2 == POINTTYPE )
- {
- dist = distance2d_point_line(
- lwpoint_deserialize(g2),
- lwline_deserialize(g1)
- );
- }
- else if ( t2 == LINETYPE )
- {
- dist = distance2d_line_line(
- lwline_deserialize(g1),
- lwline_deserialize(g2)
- );
- }
- else if ( t2 == POLYGONTYPE )
- {
- dist = distance2d_line_poly(
- lwline_deserialize(g1),
- lwpoly_deserialize(g2)
- );
- }
- }
- else if ( t1 == POLYGONTYPE )
- {
- if ( t2 == POLYGONTYPE )
- {
- dist = distance2d_poly_poly(
- lwpoly_deserialize(g2),
- lwpoly_deserialize(g1)
- );
- }
- else if ( t2 == POINTTYPE )
- {
- dist = distance2d_point_poly(
- lwpoint_deserialize(g2),
- lwpoly_deserialize(g1)
- );
- }
- else if ( t2 == LINETYPE )
- {
- dist = distance2d_line_poly(
- lwline_deserialize(g2),
- lwpoly_deserialize(g1)
- );
- }
- }
- else // it's a multitype... recurse
- {
- dist = lwgeom_mindistance2d_recursive(g1, g2);
- }
-
- if (mindist == -1 ) mindist = dist;
- else mindist = min(dist, mindist);
-
-#ifdef DEBUG
- elog(NOTICE, "dist %d-%d: %f - mindist: %f",
- t1, t2, dist, mindist);
-#endif
-
-
- if (mindist <= 0.0) return 0.0; // can't be closer
-
- }
-
- }
-
- if (mindist<0) mindist = 0;
-
- return mindist;
-}
-
-int
-lwgeom_pt_inside_circle(POINT2D *p, double cx, double cy, double rad)
-{
- POINT2D center;
-
- center.x = cx;
- center.y = cy;
-
- if ( distance2d_pt_pt(p, ¢er) < rad ) return 1;
- else return 0;
-
-}
-
/*------------------------------------------------------------------*/
//find the size of geometry
--- /dev/null
+#include <math.h>
+
+#include "liblwgeom.h"
+
+// pt_in_ring_2d(): crossing number test for a point in a polygon
+// input: p = a point,
+// pa = vertex points of a ring V[n+1] with V[n]=V[0]
+// returns: 0 = outside, 1 = inside
+//
+// Our polygons have first and last point the same,
+//
+int pt_in_ring_2d(POINT2D *p, POINTARRAY *ring)
+{
+ int cn = 0; // the crossing number counter
+ int i;
+ POINT2D *v1;
+
+#ifdef DEBUG
+ elog(NOTICE, "pt_in_ring_2d called");
+#endif
+
+ // loop through all edges of the polygon
+ v1 = (POINT2D *)getPoint(ring, 0);
+ for (i=0; i<ring->npoints-2; i++)
+ {
+ double vt;
+ POINT2D *v2 = (POINT2D *)getPoint(ring, i+1);
+
+ // edge from vertex i to vertex i+1
+ if
+ (
+ // an upward crossing
+ ((v1->y <= p->y) && (v2->y > p->y))
+ // a downward crossing
+ || ((v1->y > p->y) && (v2->y <= p->y))
+ )
+ {
+
+ vt = (double)(p->y - v1->y) / (v2->y - v1->y);
+
+ // P.x <intersect
+ if (p->x < v1->x + vt * (v2->x - v1->x))
+ {
+ // a valid crossing of y=p.y right of p.x
+ ++cn;
+ }
+ }
+ v1 = v2;
+ }
+#ifdef DEBUG
+ elog(NOTICE, "pt_in_ring_2d returning %d", cn&1);
+#endif
+ return (cn&1); // 0 if even (out), and 1 if odd (in)
+}
+
+double distance2d_pt_pt(POINT2D *p1, POINT2D *p2)
+{
+ return sqrt(
+ (p2->x-p1->x) * (p2->x-p1->x) + (p2->y-p1->y) * (p2->y-p1->y)
+ );
+}
+
+//distance2d from p to line A->B
+double distance2d_pt_seg(POINT2D *p, POINT2D *A, POINT2D *B)
+{
+ double r,s;
+
+ //if start==end, then use pt distance
+ if ( ( A->x == B->x) && (A->y == B->y) )
+ return distance2d_pt_pt(p,A);
+
+ //otherwise, we use comp.graphics.algorithms Frequently Asked Questions method
+
+ /*(1) AC dot AB
+ r = ---------
+ ||AB||^2
+ r has the following meaning:
+ r=0 P = A
+ r=1 P = B
+ r<0 P is on the backward extension of AB
+ r>1 P is on the forward extension of AB
+ 0<r<1 P is interior to AB
+ */
+
+ r = ( (p->x-A->x) * (B->x-A->x) + (p->y-A->y) * (B->y-A->y) )/( (B->x-A->x)*(B->x-A->x) +(B->y-A->y)*(B->y-A->y) );
+
+ if (r<0) return distance2d_pt_pt(p,A);
+ if (r>1) return distance2d_pt_pt(p,B);
+
+
+ /*(2)
+ (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
+ s = -----------------------------
+ L^2
+
+ Then the distance from C to P = |s|*L.
+
+ */
+
+ s = ( (A->y-p->y)*(B->x-A->x)- (A->x-p->x)*(B->y-A->y) ) /
+ ( (B->x-A->x)*(B->x-A->x) +(B->y-A->y)*(B->y-A->y) );
+
+ return abs(s) * sqrt(
+ (B->x-A->x)*(B->x-A->x) + (B->y-A->y)*(B->y-A->y)
+ );
+}
+
+// find the minimum 2d distance from AB to CD
+double distance2d_seg_seg(POINT2D *A, POINT2D *B, POINT2D *C, POINT2D *D)
+{
+
+ double s_top, s_bot,s;
+ double r_top, r_bot,r;
+
+#ifdef DEBUG
+ elog(NOTICE, "distance2d_seg_seg [%g,%g]->[%g,%g] by [%g,%g]->[%g,%g]",
+ A->x,A->y,B->x,B->y, C->x,C->y, D->x, D->y);
+#endif
+
+
+ //A and B are the same point
+ if ( ( A->x == B->x) && (A->y == B->y) )
+ return distance2d_pt_seg(A,C,D);
+
+ //U and V are the same point
+
+ if ( ( C->x == D->x) && (C->y == D->y) )
+ return distance2d_pt_seg(D,A,B);
+
+ // AB and CD are line segments
+ /* from comp.graphics.algo
+
+ Solving the above for r and s yields
+ (Ay-Cy)(Dx-Cx)-(Ax-Cx)(Dy-Cy)
+ r = ----------------------------- (eqn 1)
+ (Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)
+
+ (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
+ s = ----------------------------- (eqn 2)
+ (Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)
+ Let P be the position vector of the intersection point, then
+ P=A+r(B-A) or
+ Px=Ax+r(Bx-Ax)
+ Py=Ay+r(By-Ay)
+ By examining the values of r & s, you can also determine some other limiting conditions:
+ If 0<=r<=1 & 0<=s<=1, intersection exists
+ r<0 or r>1 or s<0 or s>1 line segments do not intersect
+ If the denominator in eqn 1 is zero, AB & CD are parallel
+ If the numerator in eqn 1 is also zero, AB & CD are collinear.
+
+ */
+ r_top = (A->y-C->y)*(D->x-C->x) - (A->x-C->x)*(D->y-C->y) ;
+ r_bot = (B->x-A->x)*(D->y-C->y) - (B->y-A->y)*(D->x-C->x) ;
+
+ s_top = (A->y-C->y)*(B->x-A->x) - (A->x-C->x)*(B->y-A->y);
+ s_bot = (B->x-A->x)*(D->y-C->y) - (B->y-A->y)*(D->x-C->x);
+
+ if ( (r_bot==0) || (s_bot == 0) )
+ {
+ return (
+ min(distance2d_pt_seg(A,C,D),
+ min(distance2d_pt_seg(B,C,D),
+ min(distance2d_pt_seg(C,A,B),
+ distance2d_pt_seg(D,A,B))
+ )
+ )
+ );
+ }
+ s = s_top/s_bot;
+ r= r_top/r_bot;
+
+ if ((r<0) || (r>1) || (s<0) || (s>1) )
+ {
+ //no intersection
+ return (
+ min(distance2d_pt_seg(A,C,D),
+ min(distance2d_pt_seg(B,C,D),
+ min(distance2d_pt_seg(C,A,B),
+ distance2d_pt_seg(D,A,B))
+ )
+ )
+ );
+
+ }
+ else
+ return -0; //intersection exists
+
+}
+
+//search all the segments of pointarray to see which one is closest to p1
+//Returns minimum distance between point and pointarray
+double distance2d_pt_ptarray(POINT2D *p, POINTARRAY *pa)
+{
+ double result = 0;
+ int t;
+ POINT2D *start, *end;
+
+ start = (POINT2D *)getPoint(pa, 0);
+
+ for (t=1; t<pa->npoints; t++)
+ {
+ double dist;
+ end = (POINT2D *)getPoint(pa, t);
+ dist = distance2d_pt_seg(p, start, end);
+ if (t==1) result = dist;
+ else result = min(result, dist);
+
+ if ( result == 0 ) return 0;
+
+ start = end;
+ }
+
+ return result;
+}
+
+// test each segment of l1 against each segment of l2. Return min
+double distance2d_ptarray_ptarray(POINTARRAY *l1, POINTARRAY *l2)
+{
+ double result = 99999999999.9;
+ char result_okay = 0; //result is a valid min
+ int t,u;
+ POINT2D *start,*end;
+ POINT2D *start2,*end2;
+
+#ifdef DEBUG
+ elog(NOTICE, "distance2d_ptarray_ptarray called (points: %d-%d)",
+ l1->npoints, l2->npoints);
+#endif
+
+ start = (POINT2D *)getPoint(l1, 0);
+ for (t=1; t<l1->npoints; t++) //for each segment in L1
+ {
+ end = (POINT2D *)getPoint(l1, t);
+
+ start2 = (POINT2D *)getPoint(l2, 0);
+ for (u=1; u<l2->npoints; u++) //for each segment in L2
+ {
+ double dist;
+
+ end2 = (POINT2D *)getPoint(l2, u);
+
+ dist = distance2d_seg_seg(start, end, start2, end2);
+//printf("line_line; seg %i * seg %i, dist = %g\n",t,u,dist_this);
+
+ if (result_okay)
+ result = min(result,dist);
+ else
+ {
+ result_okay = 1;
+ result = dist;
+ }
+
+#ifdef DEBUG
+ elog(NOTICE, " seg%d-seg%d dist: %f, mindist: %f",
+ t, u, dist, result);
+#endif
+
+ if (result <= 0) return 0; //intersection
+
+ start2 = end2;
+ }
+ start = end;
+ }
+
+ return result;
+}
+
+// true if point is in poly (and not in its holes)
+int pt_in_poly_2d(POINT2D *p, LWPOLY *poly)
+{
+ int i;
+
+ // Not in outer ring
+ if ( ! pt_in_ring_2d(p, poly->rings[0]) ) return 0;
+
+ // Check holes
+ for (i=1; i<poly->nrings; i++)
+ {
+ // Inside a hole
+ if ( pt_in_ring_2d(p, poly->rings[i]) ) return 0;
+ }
+
+ return 1; // In outer ring, not in holes
+}
+
+// Brute force.
+// Test line-ring distance against each ring.
+// If there's an intersection (distance==0) then return 0 (crosses boundary).
+// Otherwise, test to see if any point is inside outer rings of polygon,
+// but not in inner rings.
+// If so, return 0 (line inside polygon),
+// otherwise return min distance to a ring (could be outside
+// polygon or inside a hole)
+double distance2d_ptarray_poly(POINTARRAY *pa, LWPOLY *poly)
+{
+ POINT2D *pt;
+ int i;
+ double mindist = 0;
+
+#ifdef DEBUG
+ elog(NOTICE, "distance2d_ptarray_poly called (%d rings)", poly->nrings);
+#endif
+
+ for (i=0; i<poly->nrings; i++)
+ {
+ double dist = distance2d_ptarray_ptarray(pa, poly->rings[i]);
+ if (i) mindist = min(mindist, dist);
+ else mindist = dist;
+#ifdef DEBUG
+ elog(NOTICE, " distance from ring %d: %f, mindist: %f",
+ i, dist, mindist);
+#endif
+
+ if ( mindist <= 0 ) return 0.0; // intersection
+ }
+
+ // No intersection, have to check if a point is
+ // inside polygon
+ pt = (POINT2D *)getPoint(pa, 0);
+
+ // Outside outer ring, so min distance to a ring
+ // is the actual min distance
+ if ( ! pt_in_ring_2d(pt, poly->rings[0]) ) return mindist;
+
+ // Its in the outer ring.
+ // Have to check if its inside a hole
+ for (i=1; i<poly->nrings; i++)
+ {
+ if ( pt_in_ring_2d(pt, poly->rings[i]) )
+ {
+ // Its inside a hole, then the actual
+ // distance is the min ring distance
+ return mindist;
+ }
+ }
+
+ return 0.0; // Not in hole, so inside polygon
+}
+
+double distance2d_point_point(LWPOINT *point1, LWPOINT *point2)
+{
+ POINT2D *p1 = (POINT2D *)getPoint(point1->point, 0);
+ POINT2D *p2 = (POINT2D *)getPoint(point2->point, 0);
+ return distance2d_pt_pt(p1, p2);
+}
+
+double distance2d_point_line(LWPOINT *point, LWLINE *line)
+{
+ POINT2D *p = (POINT2D *)getPoint(point->point, 0);
+ POINTARRAY *pa = line->points;
+ return distance2d_pt_ptarray(p, pa);
+}
+
+double distance2d_line_line(LWLINE *line1, LWLINE *line2)
+{
+ POINTARRAY *pa1 = line1->points;
+ POINTARRAY *pa2 = line2->points;
+ return distance2d_ptarray_ptarray(pa1, pa2);
+}
+
+// 1. see if pt in outer boundary. if no, then treat the outer ring like a line
+// 2. if in the boundary, test to see if its in a hole.
+// if so, then return dist to hole, else return 0 (point in polygon)
+double distance2d_point_poly(LWPOINT *point, LWPOLY *poly)
+{
+ POINT2D *p = (POINT2D *)getPoint(point->point, 0);
+ int i;
+
+#ifdef DEBUG
+ elog(NOTICE, "distance2d_point_poly called");
+#endif
+
+ // Return distance to outer ring if not inside it
+ if ( ! pt_in_ring_2d(p, poly->rings[0]) )
+ {
+#ifdef DEBUG
+ elog(NOTICE, " not inside outer-ring");
+#endif
+ return distance2d_pt_ptarray(p, poly->rings[0]);
+ }
+
+ // Inside the outer ring.
+ // Scan though each of the inner rings looking to
+ // see if its inside. If not, distance==0.
+ // Otherwise, distance = pt to ring distance
+ for (i=1; i<poly->nrings; i++)
+ {
+ // Inside a hole. Distance = pt -> ring
+ if ( pt_in_ring_2d(p, poly->rings[i]) )
+ {
+#ifdef DEBUG
+ elog(NOTICE, " inside an hole");
+#endif
+ return distance2d_pt_ptarray(p, poly->rings[i]);
+ }
+ }
+
+#ifdef DEBUG
+ elog(NOTICE, " inside the polygon");
+#endif
+ return 0.0; // Is inside the polygon
+}
+
+// Brute force.
+// Test to see if any rings intersect.
+// If yes, dist=0.
+// Test to see if one inside the other and if they are inside holes.
+// Find min distance ring-to-ring.
+double distance2d_poly_poly(LWPOLY *poly1, LWPOLY *poly2)
+{
+ POINT2D *pt;
+ double mindist = 0;
+ int i;
+
+#ifdef DEBUG
+ elog(NOTICE, "distance2d_poly_poly called");
+#endif
+
+ // if poly1 inside poly2 return 0
+ pt = (POINT2D *)getPoint(poly1->rings[0], 0);
+ if ( pt_in_poly_2d(pt, poly2) ) return 0.0;
+
+ // if poly2 inside poly1 return 0
+ pt = (POINT2D *)getPoint(poly2->rings[0], 0);
+ if ( pt_in_poly_2d(pt, poly1) ) return 0.0;
+
+#ifdef DEBUG
+ elog(NOTICE, " polys not inside each other");
+#endif
+
+ //foreach ring in Poly1
+ // foreach ring in Poly2
+ // if intersect, return 0
+ for (i=0; i<poly1->nrings; i++)
+ {
+ double dist = distance2d_ptarray_poly(poly1->rings[i], poly2);
+ if (i) mindist = min(mindist, dist);
+ else mindist = dist;
+
+#ifdef DEBUG
+ elog(NOTICE, " ring%d dist: %f, mindist: %f", i, dist, mindist);
+#endif
+
+ if ( mindist <= 0 ) return 0.0; // intersection
+ }
+
+ // otherwise return closest approach of rings (no intersection)
+ return mindist;
+
+}
+
+double distance2d_line_poly(LWLINE *line, LWPOLY *poly)
+{
+ return distance2d_ptarray_poly(line->points, poly);
+}
+
+
+//find the 2d length of the given POINTARRAY (even if it's 3d)
+double lwgeom_pointarray_length2d(POINTARRAY *pts)
+{
+ double dist = 0.0;
+ int i;
+
+ if ( pts->npoints < 2 ) return 0.0;
+ for (i=0; i<pts->npoints-1;i++)
+ {
+ POINT2D *frm = (POINT2D *)getPoint(pts, i);
+ POINT2D *to = (POINT2D *)getPoint(pts, i+1);
+ dist += sqrt( ( (frm->x - to->x)*(frm->x - to->x) ) +
+ ((frm->y - to->y)*(frm->y - to->y) ) );
+ }
+ return dist;
+}
+
+//find the 3d/2d length of the given POINTARRAY (depending on its dimensions)
+double
+lwgeom_pointarray_length(POINTARRAY *pts)
+{
+ double dist = 0.0;
+ int i;
+
+ if ( pts->npoints < 2 ) return 0.0;
+
+ // compute 2d length if 3d is not available
+ if ( ! TYPE_HASZ(pts->dims) ) return lwgeom_pointarray_length2d(pts);
+
+ for (i=0; i<pts->npoints-1;i++)
+ {
+ POINT3DZ *frm = (POINT3DZ *)getPoint(pts, i);
+ POINT3DZ *to = (POINT3DZ *)getPoint(pts, i+1);
+ dist += sqrt( ( (frm->x - to->x)*(frm->x - to->x) ) +
+ ((frm->y - to->y)*(frm->y - to->y) ) +
+ ((frm->z - to->z)*(frm->z - to->z) ) );
+ }
+
+ return dist;
+}
+
+//find the area of the outer ring - sum (area of inner rings)
+// Could use a more numerically stable calculator...
+double lwgeom_polygon_area(LWPOLY *poly)
+{
+ double poly_area=0.0;
+ int i;
+
+//elog(NOTICE,"in lwgeom_polygon_area (%d rings)", poly->nrings);
+
+ for (i=0; i<poly->nrings; i++)
+ {
+ int j;
+ POINTARRAY *ring = poly->rings[i];
+ double ringarea = 0.0;
+
+//elog(NOTICE," rings %d has %d points", i, ring->npoints);
+ for (j=0; j<ring->npoints-1; j++)
+ {
+ POINT2D *p1 = (POINT2D *)getPoint(ring, j);
+ POINT2D *p2 = (POINT2D *)getPoint(ring, j+1);
+ ringarea += ( p1->x * p2->y ) - ( p1->y * p2->x );
+ }
+
+ ringarea /= 2.0;
+//elog(NOTICE," ring 1 has area %lf",ringarea);
+ ringarea = fabs(ringarea );
+ if (i != 0) //outer
+ ringarea = -1.0*ringarea ; // its a hole
+
+ poly_area += ringarea;
+ }
+
+ return poly_area;
+}
+
+// Compute the sum of polygon rings length.
+// Could use a more numerically stable calculator...
+double lwgeom_polygon_perimeter(LWPOLY *poly)
+{
+ double result=0.0;
+ int i;
+
+//elog(NOTICE,"in lwgeom_polygon_perimeter (%d rings)", poly->nrings);
+
+ for (i=0; i<poly->nrings; i++)
+ result += lwgeom_pointarray_length(poly->rings[i]);
+
+ return result;
+}
+
+// Compute the sum of polygon rings length (forcing 2d computation).
+// Could use a more numerically stable calculator...
+double lwgeom_polygon_perimeter2d(LWPOLY *poly)
+{
+ double result=0.0;
+ int i;
+
+//elog(NOTICE,"in lwgeom_polygon_perimeter (%d rings)", poly->nrings);
+
+ for (i=0; i<poly->nrings; i++)
+ result += lwgeom_pointarray_length2d(poly->rings[i]);
+
+ return result;
+}
+
+double
+lwgeom_mindistance2d_recursive(char *lw1, char *lw2)
+{
+ LWGEOM_INSPECTED *in1, *in2;
+ int i, j;
+ double mindist = -1;
+
+ in1 = lwgeom_inspect(lw1);
+ in2 = lwgeom_inspect(lw2);
+
+ for (i=0; i<in1->ngeometries; i++)
+ {
+ char *g1 = lwgeom_getsubgeometry_inspected(in1, i);
+ int t1 = lwgeom_getType(g1[0]);
+ double dist=0;
+
+ // it's a multitype... recurse
+ if ( t1 >= 4 )
+ {
+ dist = lwgeom_mindistance2d_recursive(g1, lw2);
+ if ( dist == 0 ) return 0.0; // can't be closer
+ if ( mindist == -1 ) mindist = dist;
+ else mindist = min(dist, mindist);
+ continue;
+ }
+
+ for (j=0; j<in2->ngeometries; j++)
+ {
+ char *g2 = lwgeom_getsubgeometry_inspected(in2, j);
+ int t2 = lwgeom_getType(g2[0]);
+
+ if ( t1 == POINTTYPE )
+ {
+ if ( t2 == POINTTYPE )
+ {
+ dist = distance2d_point_point(
+ lwpoint_deserialize(g1),
+ lwpoint_deserialize(g2)
+ );
+ }
+ else if ( t2 == LINETYPE )
+ {
+ dist = distance2d_point_line(
+ lwpoint_deserialize(g1),
+ lwline_deserialize(g2)
+ );
+ }
+ else if ( t2 == POLYGONTYPE )
+ {
+ dist = distance2d_point_poly(
+ lwpoint_deserialize(g1),
+ lwpoly_deserialize(g2)
+ );
+ }
+ }
+ else if ( t1 == LINETYPE )
+ {
+ if ( t2 == POINTTYPE )
+ {
+ dist = distance2d_point_line(
+ lwpoint_deserialize(g2),
+ lwline_deserialize(g1)
+ );
+ }
+ else if ( t2 == LINETYPE )
+ {
+ dist = distance2d_line_line(
+ lwline_deserialize(g1),
+ lwline_deserialize(g2)
+ );
+ }
+ else if ( t2 == POLYGONTYPE )
+ {
+ dist = distance2d_line_poly(
+ lwline_deserialize(g1),
+ lwpoly_deserialize(g2)
+ );
+ }
+ }
+ else if ( t1 == POLYGONTYPE )
+ {
+ if ( t2 == POLYGONTYPE )
+ {
+ dist = distance2d_poly_poly(
+ lwpoly_deserialize(g2),
+ lwpoly_deserialize(g1)
+ );
+ }
+ else if ( t2 == POINTTYPE )
+ {
+ dist = distance2d_point_poly(
+ lwpoint_deserialize(g2),
+ lwpoly_deserialize(g1)
+ );
+ }
+ else if ( t2 == LINETYPE )
+ {
+ dist = distance2d_line_poly(
+ lwline_deserialize(g2),
+ lwpoly_deserialize(g1)
+ );
+ }
+ }
+ else // it's a multitype... recurse
+ {
+ dist = lwgeom_mindistance2d_recursive(g1, g2);
+ }
+
+ if (mindist == -1 ) mindist = dist;
+ else mindist = min(dist, mindist);
+
+#ifdef DEBUG
+ elog(NOTICE, "dist %d-%d: %f - mindist: %f",
+ t1, t2, dist, mindist);
+#endif
+
+
+ if (mindist <= 0.0) return 0.0; // can't be closer
+
+ }
+
+ }
+
+ if (mindist<0) mindist = 0;
+
+ return mindist;
+}
+
+int
+lwgeom_pt_inside_circle(POINT2D *p, double cx, double cy, double rad)
+{
+ POINT2D center;
+
+ center.x = cx;
+ center.y = cy;
+
+ if ( distance2d_pt_pt(p, ¢er) < rad ) return 1;
+ else return 0;
+
+}
+