references. There are several smallish fixes here:
- Make sure we look through template parameter scope when
determining whether we're parsing a nested class (or nested class
*template*). This makes sure that we delay parsing the bodies of
inline member functions until after we're out of the outermost
class (template) scope.
- Since the bodies of member functions are always parsed
"out-of-line", even when they were declared in-line, teach
unqualified name lookup to look into the (semantic) parents.
- Use the new InstantiateDeclRef to handle the instantiation of a
reference to a declaration (in DeclRefExpr), which drastically
simplifies template instantiation for DeclRefExprs.
- When we're instantiating a ParmVarDecl, it must be in the current
instantiation scope, so only look there.
Also, remove the #if 0's and FIXME's from the dynarray example, which
now compiles and executes thanks to Anders and Eli.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@72481
91177308-0d34-0410-b5e6-
96231b3b80d8
//
// FIXME: Only function bodies and constructor ctor-initializers are
// parsed correctly, fix the rest.
- if (!CurScope->getParent()->isClassScope()) {
+ if (!CurScope->getParent()->isClassScope() &&
+ !(CurScope->getParent()->isTemplateParamScope() &&
+ CurScope->getParent()->getParent()->isClassScope())) {
// We are not inside a nested class. This class and its nested classes
// are complete and we can parse the delayed portions of method
// declarations and the lexed inline method definitions.
if (R || RedeclarationOnly)
return std::make_pair(true, R);
}
- if (Ctx->getParent() != Ctx->getLexicalParent()) {
+ if (Ctx->getParent() != Ctx->getLexicalParent()
+ || isa<CXXMethodDecl>(Ctx)) {
// It is out of line defined C++ method or struct, we continue
// doing name lookup in parent context. Once we will find namespace
// or translation-unit we save it for possible checking
NamedDecl *
Sema::InstantiateDeclRef(NamedDecl *D, const TemplateArgumentList &TemplateArgs) {
DeclContext *ParentDC = D->getDeclContext();
+ if (isa<ParmVarDecl>(D) || ParentDC->isFunctionOrMethod()) {
+ // D is a local of some kind. Look into the map of local
+ // declarations to their instantiations.
+ return cast<NamedDecl>(CurrentInstantiationScope->getInstantiationOf(D));
+ }
- if (!ParentDC->isFileContext()) {
- NamedDecl *ParentDecl = cast<NamedDecl>(ParentDC);
+ if (NamedDecl *ParentDecl = dyn_cast<NamedDecl>(ParentDC)) {
ParentDecl = InstantiateDeclRef(ParentDecl, TemplateArgs);
if (!ParentDecl)
return 0;
ParentDC = cast<DeclContext>(ParentDecl);
}
- if (ParentDC->isFunctionOrMethod()) {
- // D is a local of some kind. Look into the map of local
- // variables to their instantiations.
- return cast<NamedDecl>(CurrentInstantiationScope->getInstantiationOf(D));
- }
-
if (ParentDC != D->getDeclContext()) {
// We performed some kind of instantiation in the parent context,
// so now we need to look into the instantiated parent context to
Sema::OwningExprResult
TemplateExprInstantiator::VisitDeclRefExpr(DeclRefExpr *E) {
// FIXME: Recast this in terms of Sema::InstantiateDeclRef.
- Decl *D = E->getDecl();
- ValueDecl *NewD = 0;
+ NamedDecl *D = E->getDecl();
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) {
assert(NTTP->getDepth() == 0 && "No nested templates yet");
const TemplateArgument &Arg = TemplateArgs[NTTP->getPosition()];
*Arg.getAsIntegral(),
T,
E->getSourceRange().getBegin()));
- } else if (ParmVarDecl *Parm = dyn_cast<ParmVarDecl>(D)) {
- NewD = SemaRef.CurrentInstantiationScope->getInstantiationOf(Parm);
- } else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
- if (Var->hasLocalStorage())
- NewD = SemaRef.CurrentInstantiationScope->getInstantiationOf(Var);
- else
- assert(false &&
- "FIXME: instantiation of non-local variable declarations");
- } else if (isa<FunctionDecl>(D)) {
- // FIXME: Instantiate decl!
- NewD = cast<ValueDecl>(D);
- } else if (isa<OverloadedFunctionDecl>(D)) {
- // FIXME: instantiate decls?
- return SemaRef.Owned(new (SemaRef.Context) DeclRefExpr(cast<NamedDecl>(D),
+ }
+
+ if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
+ // FIXME: instantiate each decl in the overload set
+ return SemaRef.Owned(new (SemaRef.Context) DeclRefExpr(Ovl,
SemaRef.Context.OverloadTy,
E->getLocation(),
false, false));
- } else
- assert(false && "FIXME: unhandled declaration reference kind");
+ }
+ ValueDecl *NewD
+ = dyn_cast_or_null<ValueDecl>(SemaRef.InstantiateDeclRef(D, TemplateArgs));
if (!NewD)
return SemaRef.ExprError();
+ // FIXME: Build QualifiedDeclRefExpr?
QualType T = NewD->getType();
return SemaRef.Owned(new (SemaRef.Context) DeclRefExpr(NewD,
T.getNonReferenceType(),
assert(di.size() == 4);
di.push_back(4);
-#if 0
- // FIXME: Copy construction via copy initialization
dynarray<int> di2 = di;
assert(di2.size() == 5);
assert(di.begin() != di2.begin());
I != IEnd; ++I)
assert(*I == I - di2.begin());
- // FIXME: Copy construction via direct initialization
dynarray<int> di3(di);
assert(di3.size() == 5);
assert(di.begin() != di3.begin());
I != IEnd; ++I)
assert(*I == I - di3.begin());
- // FIXME: assignment operator
dynarray<int> di4;
assert(di4.size() == 0);
di4 = di;
for (dynarray<int>::iterator I = di4.begin(), IEnd = di4.end();
I != IEnd; ++I)
assert(*I == I - di4.begin());
-#endif
return 0;
}
--- /dev/null
+// RUN: clang-cc -fsyntax-only %s
+
+namespace N {
+ struct Outer {
+ struct Inner {
+ template<typename T>
+ struct InnerTemplate {
+ struct VeryInner {
+ typedef T type;
+
+ static enum K1 { K1Val = sizeof(T) } Kind1;
+ // FIXME: Remove the name K2, below
+ static enum K2 { K2Val = sizeof(T)*2 } Kind2;
+
+ void foo() {
+ K1 k1 = K1Val;
+ Kind1 = K1Val;
+ Outer::Inner::InnerTemplate<type>::VeryInner::Kind2 = K2Val;
+ }
+ };
+ };
+ };
+ };
+}
+
+typedef int INT;
+template struct N::Outer::Inner::InnerTemplate<INT>::VeryInner;