self.assertRaises(ValueError, math.sqrt, NINF)
self.assert_(math.isnan(math.sqrt(NAN)))
+ def testSum(self):
+ # math.sum relies on exact rounding for correct operation.
+ # There's a known problem with IA32 floating-point that causes
+ # inexact rounding in some situations, and will cause the
+ # math.sum tests below to fail; see issue #2937. On non IEEE
+ # 754 platforms, and on IEEE 754 platforms that exhibit the
+ # problem described in issue #2937, we simply skip the whole
+ # test.
+
+ if not float.__getformat__("double").startswith("IEEE"):
+ return
+
+ # on IEEE 754 compliant machines, both of the expressions
+ # below should round to 10000000000000002.0.
+ if 1e16+2.999 != 1e16+2.9999:
+ return
+
+ # Python version of math.sum algorithm, for comparison
+ def msum(iterable):
+ """Full precision sum of values in iterable. Returns the value of
+ the sum, rounded to the nearest representable floating-point number
+ using the round-half-to-even rule.
+
+ """
+ # Stage 1: accumulate partials
+ partials = []
+ for x in iterable:
+ i = 0
+ for y in partials:
+ if abs(x) < abs(y):
+ x, y = y, x
+ hi = x + y
+ lo = y - (hi - x)
+ if lo:
+ partials[i] = lo
+ i += 1
+ x = hi
+ partials[i:] = [x] if x else []
+
+ # Stage 2: sum partials
+ if not partials:
+ return 0.0
+
+ # sum from the top, stopping as soon as the sum is inexact.
+ total = partials.pop()
+ while partials:
+ x = partials.pop()
+ old_total, total = total, total + x
+ error = x - (total - old_total)
+ if error != 0.0:
+ # adjust for correct rounding if necessary
+ if partials and (partials[-1] > 0.0) == (error > 0.0) and \
+ total + 2*error - total == 2*error:
+ total += 2*error
+ break
+ return total
+
+ from sys import float_info
+ maxfloat = float_info.max
+ twopow = 2.**(float_info.max_exp - 1)
+
+ test_values = [
+ ([], 0.0),
+ ([0.0], 0.0),
+ ([1e100, 1.0, -1e100, 1e-100, 1e50, -1.0, -1e50], 1e-100),
+ ([1e308, 1e308, -1e308], OverflowError),
+ ([-1e308, 1e308, 1e308], 1e308),
+ ([1e308, -1e308, 1e308], 1e308),
+ ([2.0**1023, 2.0**1023, -2.0**1000], OverflowError),
+ ([twopow, twopow, twopow, twopow, -twopow, -twopow, -twopow],
+ OverflowError),
+ ([2.0**53, -0.5, -2.0**-54], 2.0**53-1.0),
+ ([2.0**53, 1.0, 2.0**-100], 2.0**53+2.0),
+ ([2.0**53+10.0, 1.0, 2.0**-100], 2.0**53+12.0),
+
+ ([2.0**53-4.0, 0.5, 2.0**-54], 2.0**53-3.0),
+ ([2.0**1023-2.0**970, -1.0, 2.0**1023], OverflowError),
+ ([maxfloat, maxfloat*2.**-54], maxfloat),
+ ([maxfloat, maxfloat*2.**-53], OverflowError),
+ ([1./n for n in range(1, 1001)], 7.4854708605503451),
+ ([(-1.)**n/n for n in range(1, 1001)], -0.69264743055982025),
+ ([1.7**(i+1)-1.7**i for i in range(1000)] + [-1.7**1000], -1.0),
+ ([INF, -INF, NAN], ValueError),
+ ([NAN, INF, -INF], ValueError),
+ ([INF, NAN, INF], ValueError),
+
+ ([INF, INF], OverflowError),
+ ([INF, -INF], ValueError),
+ ([-INF, 1e308, 1e308, -INF], OverflowError),
+ ([2.0**1023-2.0**970, 0.0, 2.0**1023], OverflowError),
+ ([2.0**1023-2.0**970, 1.0, 2.0**1023], OverflowError),
+ ([2.0**1023, 2.0**1023], OverflowError),
+ ([2.0**1023, 2.0**1023, -1.0], OverflowError),
+ ([twopow, twopow, twopow, twopow, -twopow, -twopow],
+ OverflowError),
+ ([twopow, twopow, twopow, twopow, -twopow, twopow], OverflowError),
+ ([-twopow, -twopow, -twopow, -twopow], OverflowError),
+
+ ([2.**1023, 2.**1023, -2.**971], OverflowError),
+ ([2.**1023, 2.**1023, -2.**970], OverflowError),
+ ([-2.**970, 2.**1023, 2.**1023, -2.**-1074], OverflowError),
+ ([ 2.**1023, 2.**1023, -2.**970, 2.**-1074], OverflowError),
+ ([-2.**1023, 2.**971, -2.**1023], -maxfloat),
+ ([-2.**1023, -2.**1023, 2.**970], OverflowError),
+ ([-2.**1023, -2.**1023, 2.**970, 2.**-1074], OverflowError),
+ ([-2.**-1074, -2.**1023, -2.**1023, 2.**970], OverflowError),
+ ([2.**930, -2.**980, 2.**1023, 2.**1023, twopow, -twopow],
+ OverflowError),
+ ([2.**1023, 2.**1023, -1e307], OverflowError),
+ ([1e16, 1., 1e-16], 10000000000000002.0),
+ ([1e16-2., 1.-2.**53, -(1e16-2.), -(1.-2.**53)], 0.0),
+ ]
+
+ for i, (vals, s) in enumerate(test_values):
+ if isinstance(s, type) and issubclass(s, Exception):
+ try:
+ m = math.sum(vals)
+ except s:
+ pass
+ else:
+ self.fail("test %d failed: got %r, expected %r "
+ "for math.sum(%.100r)" %
+ (i, m, s.__name__, vals))
+ else:
+ try:
+ self.assertEqual(math.sum(vals), s)
+ except OverflowError:
+ self.fail("test %d failed: got OverflowError, expected %r "
+ "for math.sum(%.100r)" % (i, s, vals))
+ except ValueError:
+ self.fail("test %d failed: got ValueError, expected %r "
+ "for math.sum(%.100r)" % (i, s, vals))
+
+ # compare with output of msum above, but only when
+ # result isn't an IEEE special or an exception
+ if not math.isinf(s) and not math.isnan(s):
+ self.assertEqual(msum(vals), s)
+
+ from random import random, gauss, shuffle
+ for j in range(1000):
+ vals = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10
+ s = 0
+ for i in range(200):
+ v = gauss(0, random()) ** 7 - s
+ s += v
+ vals.append(v)
+ shuffle(vals)
+
+ s = msum(vals)
+ self.assertEqual(msum(vals), math.sum(vals))
+
+
def testTan(self):
self.assertRaises(TypeError, math.tan)
self.ftest('tan(0)', math.tan(0), 0)
message = (("Unexpected ValueError: %s\n " +
"in test %s:%s(%r)\n") % (exc.args[0], id, fn, ar))
self.fail(message)
+ except OverflowError:
+ message = ("Unexpected OverflowError in " +
+ "test %s:%s(%r)\n" % (id, fn, ar))
+ self.fail(message)
self.ftest("%s:%s(%r)" % (id, fn, ar), result, er)
def test_main():
FUNC1(tanh, tanh, 0,
"tanh(x)\n\nReturn the hyperbolic tangent of x.")
+/* Precision summation function as msum() by Raymond Hettinger in
+ <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
+ enhanced with the exact partials sum and roundoff from Mark
+ Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
+ See those links for more details, proofs and other references.
+
+ Note 1: IEEE 754R floating point semantics are assumed,
+ but the current implementation does not re-establish special
+ value semantics across iterations (i.e. handling -Inf + Inf).
+
+ Note 2: No provision is made for intermediate overflow handling;
+ therefore, sum([1e+308, 1e-308, 1e+308]) returns result 1e+308 while
+ sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
+ overflow of the first partial sum.
+
+ Note 3: Aggressively optimizing compilers can potentially eliminate the
+ residual values needed for accurate summation. For instance, the statements
+ "hi = x + y; lo = y - (hi - x);" could be mis-transformed to
+ "hi = x + y; lo = 0.0;" which defeats the computation of residuals.
+
+ Note 4: A similar implementation is in Modules/cmathmodule.c.
+ Be sure to update both when making changes.
+
+ Note 5: The signature of math.sum() differs from __builtin__.sum()
+ because the start argument doesn't make sense in the context of
+ accurate summation. Since the partials table is collapsed before
+ returning a result, sum(seq2, start=sum(seq1)) may not equal the
+ accurate result returned by sum(itertools.chain(seq1, seq2)).
+*/
+
+#define NUM_PARTIALS 32 /* initial partials array size, on stack */
+
+/* Extend the partials array p[] by doubling its size. */
+static int /* non-zero on error */
+_sum_realloc(double **p_ptr, Py_ssize_t n,
+ double *ps, Py_ssize_t *m_ptr)
+{
+ void *v = NULL;
+ Py_ssize_t m = *m_ptr;
+
+ m += m; /* double */
+ if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
+ double *p = *p_ptr;
+ if (p == ps) {
+ v = PyMem_Malloc(sizeof(double) * m);
+ if (v != NULL)
+ memcpy(v, ps, sizeof(double) * n);
+ }
+ else
+ v = PyMem_Realloc(p, sizeof(double) * m);
+ }
+ if (v == NULL) { /* size overflow or no memory */
+ PyErr_SetString(PyExc_MemoryError, "math sum partials");
+ return 1;
+ }
+ *p_ptr = (double*) v;
+ *m_ptr = m;
+ return 0;
+}
+
+/* Full precision summation of a sequence of floats.
+
+ def msum(iterable):
+ partials = [] # sorted, non-overlapping partial sums
+ for x in iterable:
+ i = 0
+ for y in partials:
+ if abs(x) < abs(y):
+ x, y = y, x
+ hi = x + y
+ lo = y - (hi - x)
+ if lo:
+ partials[i] = lo
+ i += 1
+ x = hi
+ partials[i:] = [x]
+ return sum_exact(partials)
+
+ Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
+ are exactly equal to x+y. The inner loop applies hi/lo summation to each
+ partial so that the list of partial sums remains exact.
+
+ Sum_exact() adds the partial sums exactly and correctly rounds the final
+ result (using the round-half-to-even rule). The items in partials remain
+ non-zero, non-special, non-overlapping and strictly increasing in
+ magnitude, but possibly not all having the same sign.
+
+ Depends on IEEE 754 arithmetic guarantees and half-even rounding.
+*/
+
+static PyObject*
+math_sum(PyObject *self, PyObject *seq)
+{
+ PyObject *item, *iter, *sum = NULL;
+ Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
+ double x, y, hi, lo=0.0, ps[NUM_PARTIALS], *p = ps;
+
+ iter = PyObject_GetIter(seq);
+ if (iter == NULL)
+ return NULL;
+
+ PyFPE_START_PROTECT("sum", Py_DECREF(iter); return NULL)
+
+ for(;;) { /* for x in iterable */
+ assert(0 <= n && n <= m);
+ assert((m == NUM_PARTIALS && p == ps) ||
+ (m > NUM_PARTIALS && p != NULL));
+
+ item = PyIter_Next(iter);
+ if (item == NULL) {
+ if (PyErr_Occurred())
+ goto _sum_error;
+ break;
+ }
+ x = PyFloat_AsDouble(item);
+ Py_DECREF(item);
+ if (PyErr_Occurred())
+ goto _sum_error;
+
+ for (i = j = 0; j < n; j++) { /* for y in partials */
+ y = p[j];
+ hi = x + y;
+ lo = fabs(x) < fabs(y)
+ ? x - (hi - y)
+ : y - (hi - x);
+ if (lo != 0.0)
+ p[i++] = lo;
+ x = hi;
+ }
+
+ n = i; /* ps[i:] = [x] */
+ if (x != 0.0) {
+ /* If non-finite, reset partials, effectively
+ adding subsequent items without roundoff
+ and yielding correct non-finite results,
+ provided IEEE 754 rules are observed */
+ if (! Py_IS_FINITE(x))
+ n = 0;
+ else if (n >= m && _sum_realloc(&p, n, ps, &m))
+ goto _sum_error;
+ p[n++] = x;
+ }
+ }
+
+ if (n > 0) {
+ hi = p[--n];
+ if (Py_IS_FINITE(hi)) {
+ /* sum_exact(ps, hi) from the top, stop when the sum becomes inexact. */
+ while (n > 0) {
+ x = p[--n];
+ y = hi;
+ hi = x + y;
+ assert(fabs(x) < fabs(y));
+ lo = x - (hi - y);
+ if (lo != 0.0)
+ break;
+ }
+ /* Little dance to allow half-even rounding across multiple partials.
+ Needed so that sum([1e-16, 1, 1e16]) will round-up to two instead
+ of down to zero (the 1e16 makes the 1 slightly closer to two). */
+ if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
+ (lo > 0.0 && p[n-1] > 0.0))) {
+ y = lo * 2.0;
+ x = hi + y;
+ if (y == (x - hi))
+ hi = x;
+ }
+ }
+ else { /* raise corresponding error */
+ errno = Py_IS_NAN(hi) ? EDOM : ERANGE;
+ if (is_error(hi))
+ goto _sum_error;
+ }
+ }
+ else /* default */
+ hi = 0.0;
+ sum = PyFloat_FromDouble(hi);
+
+_sum_error:
+ PyFPE_END_PROTECT(hi)
+ Py_DECREF(iter);
+ if (p != ps)
+ PyMem_Free(p);
+ return sum;
+}
+
+#undef NUM_PARTIALS
+
+PyDoc_STRVAR(math_sum_doc,
+"sum(iterable)\n\n\
+Return an accurate floating point sum of values in the iterable.\n\
+Assumes IEEE-754 floating point arithmetic.");
+
static PyObject *
math_trunc(PyObject *self, PyObject *number)
{
{"sin", math_sin, METH_O, math_sin_doc},
{"sinh", math_sinh, METH_O, math_sinh_doc},
{"sqrt", math_sqrt, METH_O, math_sqrt_doc},
+ {"sum", math_sum, METH_O, math_sum_doc},
{"tan", math_tan, METH_O, math_tan_doc},
{"tanh", math_tanh, METH_O, math_tanh_doc},
{"trunc", math_trunc, METH_O, math_trunc_doc},