\small{
\begin{scope}[xshift=0in, yshift=0in]
- \tikzstyle{every node}=[styleA, sibling distance = 0.4in]
+ \tikzstyle{every node}=[styleA, sibling distance = 0.5in]
- \begin{scope}[xshift=0in, yshift=0in]
- \node[xshift=0in, yshift=-1.25in, draw=none] {$s = T^1 (T^2 (\varnothing^0, T^0 (a^0, a^0)))$};
+ \begin{scope}[xshift=-0.5in, yshift=0in]
+ \node[xshift=0in, yshift=-1.2in, draw=none] {$s = T^1 (T^2 (\varnothing^0, T^0 (a^0, a^0)))$};
\graph [tree layout, grow=down, fresh nodes] {
s1/"${T}^{1}$" -- {
s11/"${T}^{2}$" -- {
-- ($(s1.east)$);
\end{scope}
- \begin{scope}[xshift=1.6in, yshift=0in]
+ \begin{scope}[xshift=1in, yshift=0in]
\node[xshift=0in, yshift=-0.9in, draw=none] {$t = T^1 (T^2 (a^0, \varnothing^0), T^2 (a^0, \varnothing^0))$};
\graph [tree layout, grow=down, fresh nodes] {
s1/"${T}^{1}$" -- {
-- ($(s1.east)$);
\end{scope}
- \begin{scope}[xshift=4.5in, yshift=-0.65in]
- \node (a) {{
+ \begin{scope}[xshift=2.7in, yshift=-0.2in]
+ \node (a) {
$\begin{aligned}
- &\begin{aligned}
\alpha = \Phi_0(s) &=
\overbracket {\Xl_1 \Xl_2 }
a
\overbracket { \Xr_1 \Xl_2 }
a
\overbracket { \Xr_1 \Xr_0 }
- \end{aligned}
- \\
- &traces (\alpha, \beta) =
- \left[\begin{aligned}
+ \end{aligned}$
+ };
+ \end{scope}
+
+ \begin{scope}[xshift=5in, yshift=-0.4in]
+ \node (a) {
+ $\begin{aligned}
+ tr&aces (\alpha, \beta) : \\[-0.4em]
+ &\left[\begin{aligned}
\rho_0 &= \rho'_0 = -1 \\[-0.4em]
\rho_1 &= min (lasth(\Xl_1 \Xl_2), minh (\epsilon)) = min (2, \infty) = 2 \\[-0.4em]
\rho'_1 &= min (lasth(\Xl_1 \Xl_2), minh (\Xr_1 \Xl_2)) = min (2, 1) = 1 \\[-0.4em]
\rho'_2 &= min (\rho'_1, minh (\Xr_1 \Xr_0)) = min (1, 0) = 0
\end{aligned}\right.
\end{aligned}$
- }};
+ };
+ \end{scope}
+
+ \begin{scope}[xshift=4in, yshift=-1.05in]
+ \node (a) {
+ $\begin{aligned}
+ &\rho_1 > \rho'_1 \;\wedge\; \rho_2 = \rho'_2
+ \;\Rightarrow\; \alpha \sqsubset \beta
+ \;\Rightarrow\; \alpha < \beta
+ \\[-0.3em]
+ \|s\|^{Sub}_1 = 2 &> 1 = \|t\|^{Sub}_1 \wedge \|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 1
+ \;\Rightarrow\; s <_1 t
+ \end{aligned}$
+ };
\end{scope}
\end{scope}
}
\normalsize{
\node (x1)
[ xshift=2.7in
- , yshift=-1.45in
+ , yshift=-1.4in
, draw=none
] {(a) -- Rule 1: longest precedence, RE $(a|aa)^{0,\infty}$ and string $aa$.
- Order on IPTs: $s <_1 t$ because $\|s\|^{Sub}_1 = 2 > 1 = \|t\|^{Sub}_1$
- };
-\node (x2)
- [ below of = x1
- , yshift=0.225in
- , draw=none
- ] {
- and $\|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 1$.
- Order on PEs: $\alpha < \beta$ because
- $\rho_1 > \rho'_1 \;\wedge\; \rho_2 = \rho'_2 \;\Rightarrow\; \alpha \sqsubset \beta$.
};
}
\small{
\begin{scope}[xshift=0in, yshift=-1.9in]
- \tikzstyle{every node}=[styleA]
+ \tikzstyle{every node}=[styleA, sibling distance = 0.5in]
- \begin{scope}[xshift=0in, yshift=0in]
+ \begin{scope}[xshift=-0.5in, yshift=0in]
\node[xshift=0in, yshift=-0.6in, draw=none] {$s = T^1 (a^2, \varnothing^3)$};
\graph [tree layout, grow=down, fresh nodes] {
r1/"${T}^{1}$" -- {
-- ($(r1.east)$);
\end{scope}
- \begin{scope}[xshift=1.6in, yshift=0in]
+ \begin{scope}[xshift=1in, yshift=0in]
\node[xshift=0in, yshift=-0.6in, draw=none] {$t = T^1 (\varnothing^2, a^3)$};
\graph [tree layout, grow=down, fresh nodes] {
t1/"${T}^{1}$" -- {
-- ($(t1.east)$);
\end{scope}
- \begin{scope}[xshift=4.5in, yshift=-0.4in]
- \node (a) {{
+ \begin{scope}[xshift=2.7in, yshift=-0.0in]
+ \node (a) {
$\begin{aligned}
- &\begin{aligned}
\alpha = \Phi_0(s) &=
\overbracket {\Xl_1 \Xl_2 }
a
\overbracket {\Xl_1 \Xm_1 \Xl_2 }
a
\overbracket { \Xr_1 \Xr_0 }
- \end{aligned}
- \\
- &traces (\alpha, \beta) =
- \left[\begin{aligned}
+ \end{aligned}$
+ };
+ \end{scope}
+
+ \begin{scope}[xshift=5in, yshift=-0.1in]
+ \node (a) {
+ $\begin{aligned}
+ tr&aces (\alpha, \beta) : \\[-0.4em]
+ &\left[\begin{aligned}
\rho_0 &= min (lasth (\Xl_1), minh (\Xl_2)) = min (1, 2) = 1 \\[-0.4em]
\rho'_0 &= min (lasth (\Xl_1), minh (\Xm_1 \Xl_2)) = min (1, 1) = 1 \\[-0.4em]
\rho_1 &= min (\rho_0, minh (\Xr_1 \Xm_1 \Xr_0)) = min (1, 0) = 0 \\[-0.4em]
\rho'_1 &= min (\rho'_0, minh (\Xr_1 \Xr_0)) = min (1, 0) = 0
\end{aligned}\right.
\end{aligned}$
- }};
+ };
\end{scope}
+ \begin{scope}[xshift=4in, yshift=-0.7in]
+ \node (a) {
+ $\begin{aligned}
+ \rho_i = \rho'_i &\;\forall i
+ \;\wedge\; first(\alpha \backslash \beta) = \Xl < \Xm = first(\beta \backslash \alpha)
+ \;\Rightarrow\; \alpha \sim \beta \;\wedge\; \alpha \subset \beta
+ \;\Rightarrow\; \alpha < \beta
+ \\[-0.3em]
+ &\|s\|^{Sub}_1 = 1 > -1 = \|t\|^{Sub}_1 \wedge \|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 1
+ \;\Rightarrow\; s <_1 t
+ \end{aligned}$
+ };
+ \end{scope}
\end{scope}
}
\normalsize{
\node (y1)
[ xshift=2.7in
- , yshift=-3.0in
+ , yshift=-2.95in
, draw=none
] {(b) -- Rule 2: leftmost precedence, RE $(a)|(a)$ and string $a$.
- Order on IPTs: $s <_1 t$ because
- $\|s\|^{Sub}_1 = 1 > -1 = \|t\|^{Sub}_1$
- };
-\node (y2)
- [ below of = y1
- , yshift=0.225in
- , draw=none
- ] {
- and $\|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 1$.
- Order on PEs: $\alpha < \beta$ because
- $\rho_i = \rho'_i \;\forall i \;\Rightarrow\; \alpha \sim \beta$
- and
- $first(\alpha \backslash \beta) = \Xl < \Xm = first(\beta \backslash \alpha)
- \;\Rightarrow\;
- \alpha \subset \beta$.
};
}
\small{
-\begin{scope}[xshift=0in, yshift=-3.4in]
- \tikzstyle{every node}=[styleA, sibling distance = 0.4in]
+\begin{scope}[xshift=0in, yshift=-3.3in]
+ \tikzstyle{every node}=[styleA, sibling distance = 0.5in]
+ \begin{scope}[xshift=-0.5in, yshift=0in]
\node[yshift=-0.9in, draw=none] {$s = T^1(T^2(a^0, \varnothing^0))$};
- \begin{scope}[xshift=0in, yshift=0in]
\graph [tree layout, grow=down, fresh nodes] {
s1/"${T}^{1}$" -- {
s11/"${T}^{2}$" -- {
-- ($(s1.east)$);
\end{scope}
- \begin{scope}[xshift=1.6in, yshift=0in]
+ \begin{scope}[xshift=1in, yshift=0in]
\node[xshift=0in, yshift=-0.9in, draw=none] {$t = T^1 (T^2 (a^0, \varnothing^0), T^2(\varnothing^0, \epsilon^0))$};
\graph [tree layout, grow=down, fresh nodes] {
s1/"${T}^{1}$" -- {
-- ($(s1.east)$);
\end{scope}
- \begin{scope}[xshift=4.5in, yshift=-0.45in]
- \node (a) {{
+ \begin{scope}[xshift=2.7in, yshift=-0.2in]
+ \node (a) {
$\begin{aligned}
- &\begin{aligned}
\alpha = \Phi_0(s) &=
\overbracket {\Xl_1 \Xl_2 }
a
\overbracket { \Xl_1 \Xl_2 }
a
\overbracket { \Xr_1 \Xl_2 \Xr_1 \Xr_0 }
- \end{aligned}
- \\
- &traces (\alpha, \beta) =
- \left[\begin{aligned}
+ \end{aligned}$
+ };
+ \end{scope}
+
+ \begin{scope}[xshift=5in, yshift=-0.2in]
+ \node (a) {
+ $\begin{aligned}
+ tr&aces (\alpha, \beta) :
+ \\[-0.4em]
+ &\left[\begin{aligned}
\rho_0 &= \rho'_0 = -1 \\[-0.4em]
\rho_1 &= min (lasth (\Xr_1), minh (\Xr_0)) = min (1, 0) = 0 \\[-0.4em]
\rho'_1 &= min (lasth (\Xr_1), minh (\Xl_2 \Xr_1 \Xr_0)) = min (1, 0) = 0
\end{aligned}\right.
\end{aligned}$
- }};
+ };
\end{scope}
+ \begin{scope}[xshift=4in, yshift=-0.75in]
+ \node (a) {
+ $\begin{aligned}
+ \rho_i = \rho'_i \;\forall i
+ &\;\wedge\; first(\alpha \backslash \beta) = \Xr < \Xl = first(\beta \backslash \alpha)
+ \;\Rightarrow\; \alpha \sim \beta \;\wedge\; \alpha \subset \beta
+ \;\Rightarrow\; \alpha < \beta
+ \\[-0.3em]
+ &\|s\|^{Sub}_2 = \infty > 0 = \|t\|^{Sub}_2 \wedge \|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 2
+ \;\Rightarrow\; s <_2 t
+ \end{aligned}$
+ };
+ \end{scope}
\end{scope}
}
\normalsize{
\node (z1)
[ xshift=2.7in
- , yshift=-4.5in
+ , yshift=-4.45in
, draw=none
] {(c) -- Rule 3: no optional empty repetitions,
RE $(a|\epsilon)^{0,\infty}$ and string $a$.
- Order on IPTs: $s <_2 t$ because
- $\|s\|^{Sub}_2 = \infty > 0 = \|t\|^{Sub}_2$
};
-\node (z2)
- [ below of = z1
- , yshift=0.225in
- , draw=none
- ] {
- and $\|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 2$.
- Order on PEs: $\alpha < \beta$ because
- $\rho_i = \rho'_i \;\forall i \;\Rightarrow\; \alpha \sim \beta$
- and
- $first(\alpha \backslash \beta) = \Xr < \Xl = first(\beta \backslash \alpha)
- \;\Rightarrow\;
- \alpha \subset \beta$.
- };
}
\small{
-\begin{scope}[xshift=0in, yshift=-4.9in]
- \tikzstyle{every node}=[styleA, sibling distance = 0.4in]
+\begin{scope}[xshift=0in, yshift=-4.85in]
+ \tikzstyle{every node}=[styleA, sibling distance = 0.5in]
+ \begin{scope}[xshift=-0.5in, yshift=0in]
\node[yshift=-0.6in, draw=none] {$s = T^1(\varnothing^2)$};
- \begin{scope}[xshift=0in, yshift=0in]
\graph [tree layout, grow=down, fresh nodes] {
s1/"${T}^{1}$" -- {
s11/"${\varnothing}^{2}$"
-- ($(s1.east)$);
\end{scope}
- \begin{scope}[xshift=1.6in, yshift=0in]
+ \begin{scope}[xshift=1in, yshift=0in]
\node[xshift=0in, yshift=-0.9in, draw=none] {$t = T^1(T^2(\epsilon^0))$};
\graph [tree layout, grow=down, fresh nodes] {
s1/"${T}^{1}$" -- {
-- ($(s1.east)$);
\end{scope}
- \begin{scope}[xshift=4.5in, yshift=-0.45in]
- \node (a) {{
+ \begin{scope}[xshift=2.7in, yshift=-0.2in]
+ \node (a) {
$\begin{aligned}
- &\begin{aligned}
\alpha = \Phi_0(s) &=
\overbracket {\Xl_1 \Xm_1 \Xr_0 }
\\[-0.4em]
\beta = \Phi_0(t) &=
\overbracket {\Xl_1 \Xl_2 \Xr_1 \Xr_0 }
- \end{aligned}
- \\
- &traces (\alpha, \beta) =
- \left[\begin{aligned}
+ \end{aligned}$
+ };
+ \end{scope}
+
+ \begin{scope}[xshift=5in, yshift=-0.2in]
+ \node (a) {
+ $\begin{aligned}
+ tr&aces (\alpha, \beta) :
+ \\[-0.4em]
+ &\left[\begin{aligned}
\rho_0 &= min (lasth (\Xl_1), minh (\Xm_1 \Xr_0)) = min (1, 0) = 0 \\[-0.4em]
\rho'_0 &= min (lasth (\Xl_1), minh (\Xl_2 \Xr_1 \Xr_0)) = min (1, 0) = 0
\end{aligned}\right.
\end{aligned}$
- }};
+ };
\end{scope}
+ \begin{scope}[xshift=4in, yshift=-0.7in]
+ \node (a) {
+ $\begin{aligned}
+ \rho_i = \rho'_i \;\forall i
+ &\;\wedge\; first(\alpha \backslash \beta) = \Xm > \Xl = first(\beta \backslash \alpha)
+ \;\Rightarrow\; \alpha \sim \beta \;\wedge\; \beta \subset \alpha
+ \;\Rightarrow\; \beta < \alpha
+ \\[-0.3em]
+ &\|s\|^{Sub}_2 = 0 > -1 = \|s\|^{Sub}_2 \wedge \|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 2
+ \;\Rightarrow\; t <_2 s
+ \end{aligned}$
+ };
+ \end{scope}
\end{scope}
}
\normalsize{
\node (z1)
[ xshift=2.7in
- , yshift=-6.0in
+ , yshift=-6in
, draw=none
] {(d) -- Rule 4: empty match is better than no match,
RE $(a|\epsilon)^{0,\infty}$ and string $\epsilon$.
- Order on IPTs: $t <_2 s$ because
- $\|s\|^{Sub}_2 = 0 > -1 = \|s\|^{Sub}_2$
};
-\node (z2)
- [ below of = z1
- , yshift=0.225in
- , draw=none
- ] {
- and $\|s\|^{Sub}_p = \|t\|^{Sub}_p \;\forall p < 2$.
- Order on PEs: $\beta < \alpha$ because
- $\rho_i = \rho'_i \;\forall i \;\Rightarrow\; \alpha \sim \beta$
- and
- $first(\alpha \backslash \beta) = \Xm > \Xl = first(\beta \backslash \alpha)
- \;\Rightarrow\;
- \beta \subset \alpha$.
- };
}
]
-\begin{scope}[xshift=0in, yshift=-2.0in]
+\begin{scope}[xshift=0in, yshift=-2.2in]
\tikzstyle{every node}=[draw = none, shape = circle, inner sep = 0]
\node[xshift=-0.4in, draw=none] {$t_3:$};
\graph [tree layout, grow=down, fresh nodes, sibling distance = 0.45in, level distance = 0.3in] {
\end{scope}
-\begin{scope}[xshift=1.6in, yshift=-2in]
+\begin{scope}[xshift=1.6in, yshift=-2.2in]
\tikzstyle{every node}=[draw = none, shape = circle, inner sep = 0]
\node[xshift=-0.4in, draw=none] {$t_5:$};
\graph [tree layout, grow=down, fresh nodes, sibling distance = 0.45in, level distance = 0.3in] {
\end{scope}
-\begin{scope}[xshift=5.6in, yshift=-1.85in]
+\begin{scope}[xshift=5.6in, yshift=-2in]
\node [shape=rectangle, draw = none] (a) {
$\begin{aligned}
&\begin{aligned}
\end{scope}
-\begin{scope}[xshift=2.0in, yshift=-1.8in]
+\begin{scope}[xshift=2.0in, yshift=-1.9in]
\node [shape=rectangle, draw = none] (a) {
\setlength\tabcolsep{1.5pt}
\renewcommand{\arraystretch}{0.5}
$\begin{aligned}
&\begin{tabular}{cccccccc|c}
$t_2$ & $t_3$ & $t_4$ & $t_5$ & $t_6$ & $t_7$ & $t_8$ & $t_9$ \\
+ &&&&&&& \\[-0.4em]
\hline
&&&&&&& \\[-0.2em]
%
\normalsize{
\node (w1)
[ xshift=3.3in
- , yshift=-3.2in
+ , yshift=-3.4in
, draw=none
, shape=rectangle
] {(e) --
- All possible IPTs for RE $(((a)^{1,3})^{1,3})^{1,3}$ and string $aaa$, the corresponding PEs,
- and the table of $traces(\Phi_0(t_i), \Phi_0(t_j))$
+ Pairwise comparison of all PEs for RE $(((a)^{1,3})^{1,3})^{1,3}$ and string $aaa$.
+ The table contains $traces(\Phi_0(t_i), \Phi_0(t_j))$
};
\node (w2)
[ below of = w1
, draw=none
, shape=rectangle
] {
- for each pair of PEs at row $t_i$, column $t_j$.
- IPTs $t_3$ and $t_5$ are shown in more detail (their table entry is in bold).
+ for PEs at row $t_i$, column $t_j$.
+ IPTs $t_3$ and $t_5$ are shown in more detail (table entry in bold).
};
}