Summary:
The existing isDivergent(Value) methods query whether a value is
divergent at its definition. However even if a value is uniform at its
definition, a use of it in another basic block can be divergent because
of divergent control flow between the def and the use.
This patch adds new isDivergent(Use) methods to DivergenceAnalysis,
LegacyDivergenceAnalysis and GPUDivergenceAnalysis.
This might allow D63953 or other similar workarounds to be removed.
Reviewers: alex-t, nhaehnle, arsenm, rtaylor, rampitec, simoll, jingyue
Reviewed By: nhaehnle
Subscribers: jfb, jvesely, wdng, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65141
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@367218
91177308-0d34-0410-b5e6-
96231b3b80d8
/// operands
bool isAlwaysUniform(const Value &Val) const;
- /// \brief Whether \p Val is a divergent value
+ /// \brief Whether \p Val is divergent at its definition.
bool isDivergent(const Value &Val) const;
+ /// \brief Whether \p U is divergent. Uses of a uniform value can be divergent.
+ bool isDivergentUse(const Use &U) const;
+
void print(raw_ostream &OS, const Module *) const;
private:
/// The GPU kernel this analysis result is for
const Function &getFunction() const { return DA.getFunction(); }
- /// Whether \p V is divergent.
+ /// Whether \p V is divergent at its definition.
bool isDivergent(const Value &V) const;
- /// Whether \p V is uniform/non-divergent
+ /// Whether \p U is divergent. Uses of a uniform value can be divergent.
+ bool isDivergentUse(const Use &U) const;
+
+ /// Whether \p V is uniform/non-divergent.
bool isUniform(const Value &V) const { return !isDivergent(V); }
+ /// Whether \p U is uniform/non-divergent. Uses of a uniform value can be
+ /// divergent.
+ bool isUniformUse(const Use &U) const { return !isDivergentUse(U); }
+
/// Print all divergent values in the kernel.
void print(raw_ostream &OS, const Module *) const;
};
void print(raw_ostream &OS, const Module *) const override;
// Returns true if V is divergent at its definition.
- //
- // Even if this function returns false, V may still be divergent when used
- // in a different basic block.
bool isDivergent(const Value *V) const;
+ // Returns true if U is divergent. Uses of a uniform value can be divergent.
+ bool isDivergentUse(const Use *U) const;
+
// Returns true if V is uniform/non-divergent.
- //
- // Even if this function returns true, V may still be divergent when used
- // in a different basic block.
bool isUniform(const Value *V) const { return !isDivergent(V); }
+ // Returns true if U is uniform/non-divergent. Uses of a uniform value can be
+ // divergent.
+ bool isUniformUse(const Use *U) const { return !isDivergentUse(U); }
+
// Keep the analysis results uptodate by removing an erased value.
void removeValue(const Value *V) { DivergentValues.erase(V); }
// Stores all divergent values.
DenseSet<const Value *> DivergentValues;
+
+ // Stores divergent uses of possibly uniform values.
+ DenseSet<const Use *> DivergentUses;
};
} // End llvm namespace
return DivergentValues.find(&V) != DivergentValues.end();
}
+bool DivergenceAnalysis::isDivergentUse(const Use &U) const {
+ Value &V = *U.get();
+ Instruction &I = *cast<Instruction>(U.getUser());
+ return isDivergent(V) || isTemporalDivergent(*I.getParent(), V);
+}
+
void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
if (DivergentValues.empty())
return;
return DA.isDivergent(val);
}
+bool GPUDivergenceAnalysis::isDivergentUse(const Use &use) const {
+ return DA.isDivergentUse(use);
+}
+
void GPUDivergenceAnalysis::print(raw_ostream &OS, const Module *mod) const {
OS << "Divergence of kernel " << DA.getFunction().getName() << " {\n";
DA.print(OS, mod);
class DivergencePropagator {
public:
DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
- PostDominatorTree &PDT, DenseSet<const Value *> &DV)
- : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
+ PostDominatorTree &PDT, DenseSet<const Value *> &DV,
+ DenseSet<const Use *> &DU)
+ : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV), DU(DU) {}
void populateWithSourcesOfDivergence();
void propagate();
PostDominatorTree &PDT;
std::vector<Value *> Worklist; // Stack for DFS.
DenseSet<const Value *> &DV; // Stores all divergent values.
+ DenseSet<const Use *> &DU; // Stores divergent uses of possibly uniform
+ // values.
};
void DivergencePropagator::populateWithSourcesOfDivergence() {
Worklist.clear();
DV.clear();
+ DU.clear();
for (auto &I : instructions(F)) {
if (TTI.isSourceOfDivergence(&I)) {
Worklist.push_back(&I);
// dominators of TI until it is outside the influence region.
BasicBlock *InfluencedBB = ThisBB;
while (InfluenceRegion.count(InfluencedBB)) {
- for (auto &I : *InfluencedBB)
- findUsersOutsideInfluenceRegion(I, InfluenceRegion);
+ for (auto &I : *InfluencedBB) {
+ if (!DV.count(&I))
+ findUsersOutsideInfluenceRegion(I, InfluenceRegion);
+ }
DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
if (IDomNode == nullptr)
break;
void DivergencePropagator::findUsersOutsideInfluenceRegion(
Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
- for (User *U : I.users()) {
- Instruction *UserInst = cast<Instruction>(U);
+ for (Use &Use : I.uses()) {
+ Instruction *UserInst = cast<Instruction>(Use.getUser());
if (!InfluenceRegion.count(UserInst->getParent())) {
+ DU.insert(&Use);
if (DV.insert(UserInst).second)
Worklist.push_back(UserInst);
}
return false;
DivergentValues.clear();
+ DivergentUses.clear();
gpuDA = nullptr;
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
} else {
// run LLVM's existing DivergenceAnalysis
- DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues);
+ DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues, DivergentUses);
DP.populateWithSourcesOfDivergence();
DP.propagate();
}
return DivergentValues.count(V);
}
+bool LegacyDivergenceAnalysis::isDivergentUse(const Use *U) const {
+ if (gpuDA) {
+ return gpuDA->isDivergentUse(*U);
+ }
+ return DivergentValues.count(U->get()) || DivergentUses.count(U);
+}
+
void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty())
return;
// If the pointer operand is divergent, then each lane is doing an atomic
// operation on a different address, and we cannot optimize that.
- if (DA->isDivergent(I.getOperand(PtrIdx))) {
+ if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) {
return;
}
- const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
+ const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
// If the value operand is divergent, each lane is contributing a different
// value to the atomic calculation. We can only optimize divergent values if
const unsigned ValIdx = 0;
- const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
+ const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
// If the value operand is divergent, each lane is contributing a different
// value to the atomic calculation. We can only optimize divergent values if
// If any of the other arguments to the intrinsic are divergent, we can't
// optimize the operation.
for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
- if (DA->isDivergent(I.getOperand(Idx))) {
+ if (DA->isDivergentUse(&I.getOperandUse(Idx))) {
return;
}
}
--- /dev/null
+; RUN: llc -march=amdgcn -mcpu=gfx900 -amdgpu-atomic-optimizations=true < %s | FileCheck %s
+; RUN: llc -march=amdgcn -mcpu=gfx900 -amdgpu-atomic-optimizations=true < %s -use-gpu-divergence-analysis | FileCheck %s
+
+@local = addrspace(3) global i32 undef
+
+define void @reducible(i32 %x) {
+; CHECK-LABEL: reducible:
+; CHECK-NOT: dpp
+entry:
+ br label %loop
+loop:
+ %i = phi i32 [ 0, %entry ], [ %i1, %loop ]
+ %gep = getelementptr i32, i32 addrspace(3)* @local, i32 %i
+ %cond = icmp ult i32 %i, %x
+ %i1 = add i32 %i, 1
+ br i1 %cond, label %loop, label %exit
+exit:
+ %old = atomicrmw add i32 addrspace(3)* %gep, i32 %x acq_rel
+ ret void
+}