bool IsOpenMPCapturedVar(VarDecl *VD);
public:
+ /// \brief Check if the specified variable is used in one of the private
+ /// clauses in OpenMP constructs.
+ /// \param Level Relative level of nested OpenMP construct for that the check
+ /// is performed.
+ bool isOpenMPPrivateVar(VarDecl *VD, unsigned Level);
+
ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc,
Expr *Op);
/// \brief Called on start of new data sharing attribute block.
const DeclarationNameInfo &DirName, Scope *CurScope,
SourceLocation Loc);
/// \brief Start analysis of clauses.
- void StartOpenMPClauses();
+ void StartOpenMPClause(OpenMPClauseKind K);
/// \brief End analysis of clauses.
- void EndOpenMPClauses();
+ void EndOpenMPClause();
/// \brief Called on end of data sharing attribute block.
void EndOpenMPDSABlock(Stmt *CurDirective);
ParseScope OMPDirectiveScope(this, ScopeFlags);
Actions.StartOpenMPDSABlock(DKind, DirName, Actions.getCurScope(), Loc);
- Actions.StartOpenMPClauses();
while (Tok.isNot(tok::annot_pragma_openmp_end)) {
OpenMPClauseKind CKind =
Tok.isAnnotation()
? OMPC_unknown
: FlushHasClause ? OMPC_flush
: getOpenMPClauseKind(PP.getSpelling(Tok));
+ Actions.StartOpenMPClause(CKind);
FlushHasClause = false;
OMPClause *Clause =
ParseOpenMPClause(DKind, CKind, !FirstClauses[CKind].getInt());
// Skip ',' if any.
if (Tok.is(tok::comma))
ConsumeToken();
+ Actions.EndOpenMPClause();
}
- Actions.EndOpenMPClauses();
// End location of the directive.
EndLoc = Tok.getLocation();
// Consume final annot_pragma_openmp_end.
bool Nested = false;
bool Explicit = (Kind != TryCapture_Implicit);
unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
+ unsigned OpenMPLevel = 0;
do {
// Only block literals, captured statements, and lambda expressions can
// capture; other scopes don't work.
if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
DeclRefType))
break;
+ if (getLangOpts().OpenMP) {
+ if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
+ // OpenMP private variables should not be captured in outer scope, so
+ // just break here.
+ if (RSI->CapRegionKind == CR_OpenMP) {
+ if (isOpenMPPrivateVar(Var, OpenMPLevel)) {
+ Nested = true;
+ CaptureType = Context.getLValueReferenceType(DeclRefType);
+ break;
+ }
+ ++OpenMPLevel;
+ }
+ }
+ }
// If we are instantiating a generic lambda call operator body,
// we do not want to capture new variables. What was captured
// during either a lambdas transformation or initial parsing
StackTy Stack;
/// \brief true, if check for DSA must be from parent directive, false, if
/// from current directive.
- bool FromParent;
+ OpenMPClauseKind ClauseKindMode;
Sema &SemaRef;
typedef SmallVector<SharingMapTy, 8>::reverse_iterator reverse_iterator;
bool isOpenMPLocal(VarDecl *D, StackTy::reverse_iterator Iter);
public:
- explicit DSAStackTy(Sema &S) : Stack(1), FromParent(false), SemaRef(S) {}
+ explicit DSAStackTy(Sema &S)
+ : Stack(1), ClauseKindMode(OMPC_unknown), SemaRef(S) {}
- bool isFromParent() const { return FromParent; }
- void setFromParent(bool Flag) { FromParent = Flag; }
+ bool isClauseParsingMode() const { return ClauseKindMode != OMPC_unknown; }
+ void setClauseParsingMode(OpenMPClauseKind K) { ClauseKindMode = K; }
void push(OpenMPDirectiveKind DKind, const DeclarationNameInfo &DirName,
Scope *CurScope, SourceLocation Loc) {
DSAVarData hasInnermostDSA(VarDecl *D, ClausesPredicate CPred,
DirectivesPredicate DPred,
bool FromParent);
+ /// \brief Checks if the specified variables has explicit data-sharing
+ /// attributes which match specified \a CPred predicate at the specified
+ /// OpenMP region.
+ bool hasExplicitDSA(VarDecl *D,
+ const llvm::function_ref<bool(OpenMPClauseKind)> &CPred,
+ unsigned Level);
/// \brief Finds a directive which matches specified \a DPred predicate.
template <class NamedDirectivesPredicate>
bool hasDirective(NamedDirectivesPredicate DPred, bool FromParent);
return DSAVarData();
}
+bool DSAStackTy::hasExplicitDSA(
+ VarDecl *D, const llvm::function_ref<bool(OpenMPClauseKind)> &CPred,
+ unsigned Level) {
+ if (CPred(ClauseKindMode))
+ return true;
+ if (isClauseParsingMode())
+ ++Level;
+ D = D->getCanonicalDecl();
+ auto StartI = Stack.rbegin();
+ auto EndI = std::prev(Stack.rend());
+ if (std::distance(StartI, EndI) <= Level)
+ return false;
+ std::advance(StartI, Level);
+ return (StartI->SharingMap.count(D) > 0) && StartI->SharingMap[D].RefExpr &&
+ CPred(StartI->SharingMap[D].Attributes);
+}
+
template <class NamedDirectivesPredicate>
bool DSAStackTy::hasDirective(NamedDirectivesPredicate DPred, bool FromParent) {
auto StartI = std::next(Stack.rbegin());
(VD->hasLocalStorage() &&
isParallelOrTaskRegion(DSAStack->getCurrentDirective())))
return true;
- auto DVarPrivate = DSAStack->getTopDSA(VD, DSAStack->isFromParent());
+ auto DVarPrivate = DSAStack->getTopDSA(VD, DSAStack->isClauseParsingMode());
if (DVarPrivate.CKind != OMPC_unknown && isOpenMPPrivate(DVarPrivate.CKind))
return true;
DVarPrivate = DSAStack->hasDSA(VD, isOpenMPPrivate, MatchesAlways(),
- DSAStack->isFromParent());
+ DSAStack->isClauseParsingMode());
return DVarPrivate.CKind != OMPC_unknown;
}
return false;
}
+bool Sema::isOpenMPPrivateVar(VarDecl *VD, unsigned Level) {
+ assert(LangOpts.OpenMP && "OpenMP is not allowed");
+ return DSAStack->hasExplicitDSA(
+ VD, [](OpenMPClauseKind K) -> bool { return K == OMPC_private; }, Level);
+}
+
void Sema::DestroyDataSharingAttributesStack() { delete DSAStack; }
void Sema::StartOpenMPDSABlock(OpenMPDirectiveKind DKind,
PushExpressionEvaluationContext(PotentiallyEvaluated);
}
-void Sema::StartOpenMPClauses() {
- DSAStack->setFromParent(/*Flag=*/true);
+void Sema::StartOpenMPClause(OpenMPClauseKind K) {
+ DSAStack->setClauseParsingMode(K);
}
-void Sema::EndOpenMPClauses() {
- DSAStack->setFromParent(/*Flag=*/false);
+void Sema::EndOpenMPClause() {
+ DSAStack->setClauseParsingMode(/*K=*/OMPC_unknown);
}
void Sema::EndOpenMPDSABlock(Stmt *CurDirective) {
for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
I != E; ++I) {
if (*I) {
+ getDerived().getSema().StartOpenMPClause((*I)->getClauseKind());
OMPClause *Clause = getDerived().TransformOMPClause(*I);
+ getDerived().getSema().EndOpenMPClause();
if (Clause)
TClauses.push_back(Clause);
} else {
volatile double g;
// CHECK: [[S_FLOAT_TY:%.+]] = type { float }
-// CHECK: [[CAP_MAIN_TY:%.+]] = type { i{{[0-9]+}}*, [2 x i{{[0-9]+}}]*, [2 x [[S_FLOAT_TY]]]*, [[S_FLOAT_TY]]* }
+// CHECK: [[CAP_MAIN_TY:%.+]] = type { i8 }
+// CHECK: type { i8 }
// CHECK: [[S_INT_TY:%.+]] = type { i{{[0-9]+}} }
-// CHECK: [[CAP_TMAIN_TY:%.+]] = type { i{{[0-9]+}}*, [2 x i{{[0-9]+}}]*, [2 x [[S_INT_TY]]]*, [[S_INT_TY]]* }
+// CHECK: [[CAP_TMAIN_TY:%.+]] = type { i8 }
template <typename T>
T tmain() {
S<T> test;
volatile int g = 1212;
// CHECK: [[S_FLOAT_TY:%.+]] = type { float }
-// CHECK: [[CAP_MAIN_TY:%.+]] = type { [2 x i{{[0-9]+}}]*, i{{[0-9]+}}*, [2 x [[S_FLOAT_TY]]]*, [[S_FLOAT_TY]]* }
+// CHECK: [[CAP_MAIN_TY:%.+]] = type { i8 }
// CHECK: [[S_INT_TY:%.+]] = type { i{{[0-9]+}} }
-// CHECK: [[CAP_TMAIN_TY:%.+]] = type { [2 x i{{[0-9]+}}]*, i{{[0-9]+}}*, [2 x [[S_INT_TY]]]*, [[S_INT_TY]]* }
+// CHECK: [[CAP_TMAIN_TY:%.+]] = type { i8 }
template <typename T>
T tmain() {
S<T> test;
// LAMBDA: call{{( x86_thiscallcc)?}} void [[OUTER_LAMBDA:@.+]](
[&]() {
// LAMBDA: define{{.*}} internal{{.*}} void [[OUTER_LAMBDA]](
- // LAMBDA: [[G_LOCAL_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[AGG_CAPTURED:%.+]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
- // LAMBDA: store i{{[0-9]+}}* [[G]], i{{[0-9]+}}** [[G_LOCAL_REF]]
- // LAMBDA: [[ARG:%.+]] = bitcast %{{.+}}* [[AGG_CAPTURED]] to i8*
+ // LAMBDA-NOT: = getelementptr inbounds %{{.+}},
+ // LAMBDA: [[ARG:%.+]] = bitcast %{{.+}}* %{{.+}} to i8*
// LAMBDA: call void {{.+}} @__kmpc_fork_call({{.+}}, i32 1, {{.+}}* [[OMP_REGION:@.+]] to {{.+}}, i8* [[ARG]])
#pragma omp parallel private(g)
{
// BLOCKS: call void {{%.+}}(i8
^{
// BLOCKS: define{{.*}} internal{{.*}} void {{.+}}(i8*
- // BLOCKS: [[G_LOCAL_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[AGG_CAPTURED:%.+]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
- // BLOCKS: store i{{[0-9]+}}* [[G]], i{{[0-9]+}}** [[G_LOCAL_REF]]
- // BLOCKS: [[ARG:%.+]] = bitcast %{{.+}}* [[AGG_CAPTURED]] to i8*
+ // BLOCKS-NOT: = getelementptr inbounds %{{.+}},
+ // BLOCKS: [[ARG:%.+]] = bitcast %{{.+}}* %{{.+}} to i8*
// BLOCKS: call void {{.+}} @__kmpc_fork_call({{.+}}, i32 1, {{.+}}* [[OMP_REGION:@.+]] to {{.+}}, i8* [[ARG]])
#pragma omp parallel private(g)
{
volatile double g;
// CHECK: [[S_FLOAT_TY:%.+]] = type { float }
-// CHECK: [[CAP_MAIN_TY:%.+]] = type { i{{[0-9]+}}*, [2 x i{{[0-9]+}}]*, [2 x [[S_FLOAT_TY]]]*, [[S_FLOAT_TY]]* }
+// CHECK: [[CAP_MAIN_TY:%.+]] = type { i8 }
// CHECK: [[S_INT_TY:%.+]] = type { i{{[0-9]+}} }
-// CHECK: [[CAP_TMAIN_TY:%.+]] = type { i{{[0-9]+}}*, [2 x i{{[0-9]+}}]*, [2 x [[S_INT_TY]]]*, [[S_INT_TY]]* }
+// CHECK: [[CAP_TMAIN_TY:%.+]] = type { i8 }
template <typename T>
T tmain() {
S<T> test;
volatile double g;
// CHECK: [[S_FLOAT_TY:%.+]] = type { float }
-// CHECK: [[CAP_MAIN_TY:%.+]] = type { i{{[0-9]+}}*, [2 x i{{[0-9]+}}]*, [2 x [[S_FLOAT_TY]]]*, [[S_FLOAT_TY]]* }
+// CHECK: [[CAP_MAIN_TY:%.+]] = type { i8 }
// CHECK: [[S_INT_TY:%.+]] = type { i{{[0-9]+}} }
-// CHECK: [[CAP_TMAIN_TY:%.+]] = type { i{{[0-9]+}}*, [2 x i{{[0-9]+}}]*, [2 x [[S_INT_TY]]]*, [[S_INT_TY]]* }
+// CHECK: [[CAP_TMAIN_TY:%.+]] = type { i8 }
template <typename T>
T tmain() {
S<T> test;
// CHECK-DAG: [[KMP_TASK_T_TY:%.+]] = type { i8*, i32 (i32, i8*)*, i32, i32 (i32, i8*)* }
// CHECK-DAG: [[S_DOUBLE_TY:%.+]] = type { double }
-// CHECK-DAG: [[CAP_MAIN_TY:%.+]] = type { [2 x i32]*, i32*, [2 x [[S_DOUBLE_TY]]]*, [[S_DOUBLE_TY]]* }
+// CHECK-DAG: [[CAP_MAIN_TY:%.+]] = type { i8 }
// CHECK-DAG: [[PRIVATES_MAIN_TY:%.+]] = type {{.?}}{ [[S_DOUBLE_TY]], [2 x [[S_DOUBLE_TY]]], i32, [2 x i32]
// CHECK-DAG: [[KMP_TASK_MAIN_TY:%.+]] = type { [[KMP_TASK_T_TY]], [[PRIVATES_MAIN_TY]] }
// CHECK-DAG: [[S_INT_TY:%.+]] = type { i32 }
-// CHECK-DAG: [[CAP_TMAIN_TY:%.+]] = type { [2 x i32]*, i32*, [2 x [[S_INT_TY]]]*, [[S_INT_TY]]* }
+// CHECK-DAG: [[CAP_TMAIN_TY:%.+]] = type { i8 }
// CHECK-DAG: [[PRIVATES_TMAIN_TY:%.+]] = type { i32, [2 x i32], [2 x [[S_INT_TY]]], [[S_INT_TY]] }
// CHECK-DAG: [[KMP_TASK_TMAIN_TY:%.+]] = type { [[KMP_TASK_T_TY]], [[PRIVATES_TMAIN_TY]] }
template <typename T>
// LAMBDA: call{{( x86_thiscallcc)?}} void [[OUTER_LAMBDA:@.+]](
[&]() {
// LAMBDA: define{{.*}} internal{{.*}} void [[OUTER_LAMBDA]](
- // LAMBDA: [[RES:%.+]] = call i8* @__kmpc_omp_task_alloc(%{{[^ ]+}} @{{[^,]+}}, i32 %{{[^,]+}}, i32 1, i64 40, i64 8, i32 (i32, i8*)* bitcast (i32 (i32, %{{[^*]+}}*)* [[TASK_ENTRY:@[^ ]+]] to i32 (i32, i8*)*))
+ // LAMBDA: [[RES:%.+]] = call i8* @__kmpc_omp_task_alloc(%{{[^ ]+}} @{{[^,]+}}, i32 %{{[^,]+}}, i32 1, i64 40, i64 1, i32 (i32, i8*)* bitcast (i32 (i32, %{{[^*]+}}*)* [[TASK_ENTRY:@[^ ]+]] to i32 (i32, i8*)*))
// LAMBDA: [[PRIVATES:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* %{{.+}}, i{{.+}} 0, i{{.+}} 1
// LAMBDA: [[G_PRIVATE_ADDR:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[PRIVATES]], i{{.+}} 0, i{{.+}} 0
// LAMBDA: call i32 @__kmpc_omp_task(%{{.+}}* @{{.+}}, i32 %{{.+}}, i8* [[RES]])
// BLOCKS: call void {{%.+}}(i8
^{
// BLOCKS: define{{.*}} internal{{.*}} void {{.+}}(i8*
- // BLOCKS: [[RES:%.+]] = call i8* @__kmpc_omp_task_alloc(%{{[^ ]+}} @{{[^,]+}}, i32 %{{[^,]+}}, i32 1, i64 40, i64 8, i32 (i32, i8*)* bitcast (i32 (i32, %{{[^*]+}}*)* [[TASK_ENTRY:@[^ ]+]] to i32 (i32, i8*)*))
+ // BLOCKS: [[RES:%.+]] = call i8* @__kmpc_omp_task_alloc(%{{[^ ]+}} @{{[^,]+}}, i32 %{{[^,]+}}, i32 1, i64 40, i64 1, i32 (i32, i8*)* bitcast (i32 (i32, %{{[^*]+}}*)* [[TASK_ENTRY:@[^ ]+]] to i32 (i32, i8*)*))
// BLOCKS: [[PRIVATES:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* %{{.+}}, i{{.+}} 0, i{{.+}} 1
// BLOCKS: [[G_PRIVATE_ADDR:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[PRIVATES]], i{{.+}} 0, i{{.+}} 0
// BLOCKS: call i32 @__kmpc_omp_task(%{{.+}}* @{{.+}}, i32 %{{.+}}, i8* [[RES]])
// CHECK: call {{.*}} [[S_DOUBLE_TY_DEF_CONSTR:@.+]]([[S_DOUBLE_TY]]* [[TEST]])
-// Store original variables in capture struct.
-// CHECK: [[VEC_REF:%.+]] = getelementptr inbounds [[CAP_MAIN_TY]], [[CAP_MAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 0
-// CHECK: store [2 x i32]* [[VEC_ADDR]], [2 x i32]** [[VEC_REF]],
-// CHECK: [[T_VAR_REF:%.+]] = getelementptr inbounds [[CAP_MAIN_TY]], [[CAP_MAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 1
-// CHECK: store i32* [[T_VAR_ADDR]], i32** [[T_VAR_REF]],
-// CHECK: [[S_ARR_REF:%.+]] = getelementptr inbounds [[CAP_MAIN_TY]], [[CAP_MAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 2
-// CHECK: store [2 x [[S_DOUBLE_TY]]]* [[S_ARR_ADDR]], [2 x [[S_DOUBLE_TY]]]** [[S_ARR_REF]],
-// CHECK: [[VAR_REF:%.+]] = getelementptr inbounds [[CAP_MAIN_TY]], [[CAP_MAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 3
-// CHECK: store [[S_DOUBLE_TY]]* [[VAR_ADDR]], [[S_DOUBLE_TY]]** [[VAR_REF]],
+// Do not store original variables in capture struct.
+// CHECK-NOT: getelementptr inbounds [[CAP_MAIN_TY]],
// Allocate task.
// Returns struct kmp_task_t {
// [[KMP_TASK_T_TY]] task_data;
// [[KMP_TASK_MAIN_TY]] privates;
// };
-// CHECK: [[RES:%.+]] = call i8* @__kmpc_omp_task_alloc([[LOC]], i32 [[GTID]], i32 1, i64 72, i64 32, i32 (i32, i8*)* bitcast (i32 (i32, [[KMP_TASK_MAIN_TY]]*)* [[TASK_ENTRY:@[^ ]+]] to i32 (i32, i8*)*))
+// CHECK: [[RES:%.+]] = call i8* @__kmpc_omp_task_alloc([[LOC]], i32 [[GTID]], i32 1, i64 72, i64 1, i32 (i32, i8*)* bitcast (i32 (i32, [[KMP_TASK_MAIN_TY]]*)* [[TASK_ENTRY:@[^ ]+]] to i32 (i32, i8*)*))
// CHECK: [[RES_KMP_TASK:%.+]] = bitcast i8* [[RES]] to [[KMP_TASK_MAIN_TY]]*
-// Fill kmp_task_t->shareds by copying from original capture argument.
// CHECK: [[TASK:%.+]] = getelementptr inbounds [[KMP_TASK_MAIN_TY]], [[KMP_TASK_MAIN_TY]]* [[RES_KMP_TASK]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
-// CHECK: [[SHAREDS_REF_ADDR:%.+]] = getelementptr inbounds [[KMP_TASK_T_TY]], [[KMP_TASK_T_TY]]* [[TASK]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
-// CHECK: [[SHAREDS_REF:%.+]] = load i8*, i8** [[SHAREDS_REF_ADDR]],
-// CHECK: [[CAPTURES_ADDR:%.+]] = bitcast [[CAP_MAIN_TY]]* %{{.+}} to i8*
-// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[SHAREDS_REF]], i8* [[CAPTURES_ADDR]], i64 32, i32 8, i1 false)
-
// Initialize kmp_task_t->privates with default values (no init for simple types, default constructors for classes).
// Also copy address of private copy to the corresponding shareds reference.
// CHECK: [[PRIVATES:%.+]] = getelementptr inbounds [[KMP_TASK_MAIN_TY]], [[KMP_TASK_MAIN_TY]]* [[RES_KMP_TASK]], i{{[0-9]+}} 0, i{{[0-9]+}} 1
// CHECK: call {{.*}} [[S_INT_TY_DEF_CONSTR:@.+]]([[S_INT_TY]]* [[TEST]])
-// Store original variables in capture struct.
-// CHECK: [[VEC_REF:%.+]] = getelementptr inbounds [[CAP_TMAIN_TY]], [[CAP_TMAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 0
-// CHECK: store [2 x i32]* [[VEC_ADDR]], [2 x i32]** [[VEC_REF]],
-// CHECK: [[T_VAR_REF:%.+]] = getelementptr inbounds [[CAP_TMAIN_TY]], [[CAP_TMAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 1
-// CHECK: store i32* [[T_VAR_ADDR]], i32** [[T_VAR_REF]],
-// CHECK: [[S_ARR_REF:%.+]] = getelementptr inbounds [[CAP_TMAIN_TY]], [[CAP_TMAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 2
-// CHECK: store [2 x [[S_INT_TY]]]* [[S_ARR_ADDR]], [2 x [[S_INT_TY]]]** [[S_ARR_REF]],
-// CHECK: [[VAR_REF:%.+]] = getelementptr inbounds [[CAP_TMAIN_TY]], [[CAP_TMAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 3
-// CHECK: store [[S_INT_TY]]* [[VAR_ADDR]], [[S_INT_TY]]** [[VAR_REF]],
+// Do not store original variables in capture struct.
+// CHECK-NOT: getelementptr inbounds [[CAP_TMAIN_TY]],
// Allocate task.
// Returns struct kmp_task_t {
// [[KMP_TASK_T_TY]] task_data;
// [[KMP_TASK_TMAIN_TY]] privates;
// };
-// CHECK: [[RES:%.+]] = call i8* @__kmpc_omp_task_alloc([[LOC]], i32 [[GTID]], i32 1, i64 56, i64 32, i32 (i32, i8*)* bitcast (i32 (i32, [[KMP_TASK_TMAIN_TY]]*)* [[TASK_ENTRY:@[^ ]+]] to i32 (i32, i8*)*))
+// CHECK: [[RES:%.+]] = call i8* @__kmpc_omp_task_alloc([[LOC]], i32 [[GTID]], i32 1, i64 56, i64 1, i32 (i32, i8*)* bitcast (i32 (i32, [[KMP_TASK_TMAIN_TY]]*)* [[TASK_ENTRY:@[^ ]+]] to i32 (i32, i8*)*))
// CHECK: [[RES_KMP_TASK:%.+]] = bitcast i8* [[RES]] to [[KMP_TASK_TMAIN_TY]]*
-// Fill kmp_task_t->shareds by copying from original capture argument.
// CHECK: [[TASK:%.+]] = getelementptr inbounds [[KMP_TASK_TMAIN_TY]], [[KMP_TASK_TMAIN_TY]]* [[RES_KMP_TASK]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
-// CHECK: [[SHAREDS_REF_ADDR:%.+]] = getelementptr inbounds [[KMP_TASK_T_TY]], [[KMP_TASK_T_TY]]* [[TASK]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
-// CHECK: [[SHAREDS_REF:%.+]] = load i8*, i8** [[SHAREDS_REF_ADDR]],
-// CHECK: [[CAPTURES_ADDR:%.+]] = bitcast [[CAP_TMAIN_TY]]* %{{.+}} to i8*
-// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[SHAREDS_REF]], i8* [[CAPTURES_ADDR]], i64 32, i32 8, i1 false)
// Initialize kmp_task_t->privates with default values (no init for simple types, default constructors for classes).
// CHECK: [[PRIVATES:%.+]] = getelementptr inbounds [[KMP_TASK_TMAIN_TY]], [[KMP_TASK_TMAIN_TY]]* [[RES_KMP_TASK]], i{{[0-9]+}} 0, i{{[0-9]+}} 1