results, the positional and keyword arguments to the function must be
hashable.
- The wrapped function is instrumented with two attributes, :attr:`cache_hits`
- and :attr:`cache_misses` which count the number of successful or unsuccessful
- cache lookups. These statistics are helpful for tuning the *maxsize*
- parameter and for measuring the cache's effectiveness.
+ The wrapped function is instrumented with a :attr:`cache_info` attribute that
+ can be called to retrieve a named tuple with the following fields:
+
+ - :attr:`maxsize`: maximum cache size (as set by the *maxsize* parameter)
+ - :attr:`size`: current number of entries in the cache
+ - :attr:`hits`: number of successful cache lookups
+ - :attr:`misses`: number of unsuccessful cache lookups.
+
+ These statistics are helpful for tuning the *maxsize* parameter and for measuring
+ the effectiveness of the cache.
The wrapped function also has a :attr:`cache_clear` attribute which can be
called (with no arguments) to clear the cache.
'total_ordering', 'cmp_to_key', 'lru_cache', 'reduce', 'partial']
from _functools import partial, reduce
-from collections import OrderedDict
+from collections import OrderedDict, namedtuple
try:
from _thread import allocate_lock as Lock
except:
raise TypeError('hash not implemented')
return K
+_CacheInfo = namedtuple("CacheInfo", "maxsize, size, hits, misses")
+
def lru_cache(maxsize=100):
"""Least-recently-used cache decorator.
Arguments to the cached function must be hashable.
- Performance statistics stored in f.cache_hits and f.cache_misses.
+ Significant statistics (maxsize, size, hits, misses) are
+ available through the f.cache_info() named tuple.
Clear the cache and statistics using f.cache_clear().
The underlying function is stored in f.__wrapped__.
"""
# Users should only access the lru_cache through its public API:
- # cache_hits, cache_misses, cache_clear(), and __wrapped__
+ # cache_info, cache_clear, and f.__wrapped__
# The internals of the lru_cache are encapsulated for thread safety and
# to allow the implementation to change (including a possible C version).
cache = OrderedDict() # ordered least recent to most recent
cache_popitem = cache.popitem
cache_renew = cache.move_to_end
+ hits = misses = 0
kwd_mark = object() # separate positional and keyword args
lock = Lock()
@wraps(user_function)
def wrapper(*args, **kwds):
+ nonlocal hits, misses
key = args
if kwds:
key += (kwd_mark,) + tuple(sorted(kwds.items()))
with lock:
result = cache[key]
cache_renew(key) # record recent use of this key
- wrapper.cache_hits += 1
+ hits += 1
except KeyError:
result = user_function(*args, **kwds)
with lock:
cache[key] = result # record recent use of this key
- wrapper.cache_misses += 1
+ misses += 1
if len(cache) > maxsize:
cache_popitem(0) # purge least recently used cache entry
return result
+ def cache_info():
+ """Report significant cache statistics"""
+ with lock:
+ return _CacheInfo(maxsize, len(cache), hits, misses)
+
def cache_clear():
"""Clear the cache and cache statistics"""
+ nonlocal hits, misses
with lock:
cache.clear()
- wrapper.cache_hits = wrapper.cache_misses = 0
+ hits = misses = 0
- wrapper.cache_hits = wrapper.cache_misses = 0
+ wrapper.cache_info = cache_info
wrapper.cache_clear = cache_clear
return wrapper
def orig(x, y):
return 3*x+y
f = functools.lru_cache(maxsize=20)(orig)
+ maxsize, currsize, hits, misses = f.cache_info()
+ self.assertEqual(maxsize, 20)
+ self.assertEqual(currsize, 0)
+ self.assertEqual(hits, 0)
+ self.assertEqual(misses, 0)
domain = range(5)
for i in range(1000):
actual = f(x, y)
expected = orig(x, y)
self.assertEqual(actual, expected)
- self.assertTrue(f.cache_hits > f.cache_misses)
- self.assertEqual(f.cache_hits + f.cache_misses, 1000)
+ maxsize, currsize, hits, misses = f.cache_info()
+ self.assertTrue(hits > misses)
+ self.assertEqual(hits + misses, 1000)
+ self.assertEqual(currsize, 20)
f.cache_clear() # test clearing
- self.assertEqual(f.cache_hits, 0)
- self.assertEqual(f.cache_misses, 0)
+ maxsize, currsize, hits, misses = f.cache_info()
+ self.assertEqual(hits, 0)
+ self.assertEqual(misses, 0)
+ self.assertEqual(currsize, 0)
f(x, y)
- self.assertEqual(f.cache_hits, 0)
- self.assertEqual(f.cache_misses, 1)
+ maxsize, currsize, hits, misses = f.cache_info()
+ self.assertEqual(hits, 0)
+ self.assertEqual(misses, 1)
+ self.assertEqual(currsize, 1)
# Test bypassing the cache
self.assertIs(f.__wrapped__, orig)
f.__wrapped__(x, y)
- self.assertEqual(f.cache_hits, 0)
- self.assertEqual(f.cache_misses, 1)
+ maxsize, currsize, hits, misses = f.cache_info()
+ self.assertEqual(hits, 0)
+ self.assertEqual(misses, 1)
+ self.assertEqual(currsize, 1)
# test size zero (which means "never-cache")
@functools.lru_cache(0)
nonlocal f_cnt
f_cnt += 1
return 20
+ self.assertEqual(f.cache_info().maxsize, 0)
f_cnt = 0
for i in range(5):
self.assertEqual(f(), 20)
self.assertEqual(f_cnt, 5)
+ maxsize, currsize, hits, misses = f.cache_info()
+ self.assertEqual(hits, 0)
+ self.assertEqual(misses, 5)
+ self.assertEqual(currsize, 0)
# test size one
@functools.lru_cache(1)
nonlocal f_cnt
f_cnt += 1
return 20
+ self.assertEqual(f.cache_info().maxsize, 1)
f_cnt = 0
for i in range(5):
self.assertEqual(f(), 20)
self.assertEqual(f_cnt, 1)
+ maxsize, currsize, hits, misses = f.cache_info()
+ self.assertEqual(hits, 4)
+ self.assertEqual(misses, 1)
+ self.assertEqual(currsize, 1)
# test size two
@functools.lru_cache(2)
nonlocal f_cnt
f_cnt += 1
return x*10
+ self.assertEqual(f.cache_info().maxsize, 2)
f_cnt = 0
for x in 7, 9, 7, 9, 7, 9, 8, 8, 8, 9, 9, 9, 8, 8, 8, 7:
# * * * *
self.assertEqual(f(x), x*10)
self.assertEqual(f_cnt, 4)
+ maxsize, currsize, hits, misses = f.cache_info()
+ self.assertEqual(hits, 12)
+ self.assertEqual(misses, 4)
+ self.assertEqual(currsize, 2)
def test_main(verbose=None):
test_classes = (