# references to input data and Z.hi updates to achieve 12 cycles
# timing. To anchor to something else, sha1-sparcv9.pl spends 11.6
# cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1.
+#
+# October 2012
+#
+# Add VIS3 lookup-table-free implementation using polynomial
+# multiplication xmulx[hi] and extended addition addxc[cc]
+# instructions. 3.96/6.26x improvement on T3/T4 or in absolute
+# terms 9.02/2.61 cycles per byte.
$bits=32;
for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
$inp="%i2";
$len="%i3";
+$code.=<<___ if ($bits==64);
+.register %g2,#scratch
+.register %g3,#scratch
+___
$code.=<<___;
.section ".text",#alloc,#execinstr
restore
.type gcm_gmult_4bit,#function
.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
-.asciz "GHASH for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
+___
+\f
+{{{
+# Straightforward 64-bits-at-a-time approach with pair of 128x64-bit
+# multiplications followed by 64-bit reductions. While it might be
+# suboptimal with regard to sheer amount of multiplications, other
+# methods would require larger amount of 64-bit registers, which we
+# don't have in 32-bit application. Also, they [alternative methods
+# such as aggregated reduction] kind of thrive on fast 128-bit SIMD
+# instructions and these are not option on SPARC...
+
+($Xip,$Htable,$inp,$len)=map("%i$_",(0..3));
+
+($xE1,$Hhi,$Hlo,$Rhi,$Rlo,$M0hi,$M0lo,$M1hi,$M1lo,$Zhi,$Zlo,$X)=
+ (map("%g$_",(1..5)),map("%o$_",(0..5,7)));
+($shl,$shr)=map("%l$_",(0..7));
+
+$code.=<<___;
+.globl gcm_gmult_vis3
+.align 32
+gcm_gmult_vis3:
+ save %sp,-$frame,%sp
+
+ ldx [$Xip+8],$X ! load X.lo
+ ldx [$Htable-8], $Hlo ! load H
+ ldx [$Htable-16],$Hhi
+ mov 0xE1,$xE1
+ sllx $xE1,57,$xE1
+
+ xmulx $X,$Hlo,$M0lo ! H·X.lo
+ xmulxhi $X,$Hlo,$M0hi
+ xmulx $X,$Hhi,$M1lo
+ xmulxhi $X,$Hhi,$M1hi
+ ldx [$Xip+0],$X ! load X.hi
+
+ addcc $M0lo,$M0lo,$M0lo ! (H·X.lo)<<1
+ xor $M0hi,$M1lo,$M1lo
+
+ xmulx $xE1,$M0lo,$Rlo ! res=Z.lo·(0xE1<<57)
+ xmulxhi $xE1,$M0lo,$Rhi
+
+ addxccc $M1lo,$M1lo,$Zlo ! Z=((H·X.lo)<<1)>>64
+ addxc $M1hi,$M1hi,$Zhi
+ xor $M0lo,$Zhi,$Zhi ! overflow bit from 0xE1<<57
+
+ xmulx $X,$Hlo,$M0lo ! H·X.hi
+ xmulxhi $X,$Hlo,$M0hi
+ xmulx $X,$Hhi,$M1lo
+ xmulxhi $X,$Hhi,$M1hi
+
+ xor $Rlo,$Zlo,$Zlo ! Z^=res
+ xor $Rhi,$Zhi,$Zhi
+
+ addcc $M0lo,$M0lo,$M0lo ! (H·X.lo)<<1
+ xor $Zlo, $M0lo,$M0lo
+ xor $M0hi,$M1lo,$M1lo
+
+ xmulx $xE1,$M0lo,$Rlo ! res=Z.lo·(0xE1<<57)
+ xmulxhi $xE1,$M0lo,$Rhi
+
+ addxccc $M1lo,$M1lo,$M1lo
+ addxc $M1hi,$M1hi,$M1hi
+
+ xor $M1lo,$Zhi,$Zlo ! Z=(Z^(H·X.hi)<<1)>>64
+ xor $M0lo,$M1hi,$Zhi ! overflow bit from 0xE1<<57
+
+ xor $Rlo,$Zlo,$Zlo ! Z^=res
+ xor $Rhi,$Zhi,$Zhi
+
+ stx $Zlo,[$Xip+8] ! save Xi
+ stx $Zhi,[$Xip+0]
+
+ ret
+ restore
+.type gcm_gmult_vis3,#function
+.size gcm_gmult_vis3,.-gcm_gmult_vis3
+
+.globl gcm_ghash_vis3
+.align 32
+gcm_ghash_vis3:
+ save %sp,-$frame,%sp
+
+ ldx [$Xip+0],$Zhi ! load X.hi
+ ldx [$Xip+8],$Zlo ! load X.lo
+ and $inp,7,$shl
+ andn $inp,7,$inp
+ ldx [$Htable-8], $Hlo ! load H
+ ldx [$Htable-16],$Hhi
+ sll $shl,3,$shl
+ prefetch [$inp+63], 20
+ mov 0xE1,$xE1
+ sub %g0,$shl,$shr
+ sllx $xE1,57,$xE1
+
+.Loop:
+ ldx [$inp+8],$Rlo ! load *inp
+ brz,pt $shl,1f
+ ldx [$inp+0],$Rhi
+
+ ldx [$inp+16],$X ! align data
+ srlx $Rlo,$shr,$M0lo
+ sllx $Rlo,$shl,$Rlo
+ sllx $Rhi,$shl,$Rhi
+ srlx $X,$shr,$X
+ or $M0lo,$Rhi,$Rhi
+ or $X,$Rlo,$Rlo
+
+1:
+ add $inp,16,$inp
+ sub $len,16,$len
+ xor $Rlo,$Zlo,$X
+ prefetch [$inp+63], 20
+
+ xmulx $X,$Hlo,$M0lo ! H·X.lo
+ xmulxhi $X,$Hlo,$M0hi
+ xmulx $X,$Hhi,$M1lo
+ xmulxhi $X,$Hhi,$M1hi
+ xor $Rhi,$Zhi,$X
+
+ addcc $M0lo,$M0lo,$M0lo ! (H·X.lo)<<1
+ xor $M0hi,$M1lo,$M1lo
+
+ xmulx $xE1,$M0lo,$Rlo ! res=Z.lo·(0xE1<<57)
+ xmulxhi $xE1,$M0lo,$Rhi
+
+ addxccc $M1lo,$M1lo,$Zlo ! Z=((H·X.lo)<<1)>>64
+ addxc $M1hi,$M1hi,$Zhi
+ xor $M0lo,$Zhi,$Zhi ! overflow bit from 0xE1<<57
+
+ xmulx $X,$Hlo,$M0lo ! H·X.hi
+ xmulxhi $X,$Hlo,$M0hi
+ xmulx $X,$Hhi,$M1lo
+ xmulxhi $X,$Hhi,$M1hi
+
+ xor $Rlo,$Zlo,$Zlo ! Z^=res
+ xor $Rhi,$Zhi,$Zhi
+
+ addcc $M0lo,$M0lo,$M0lo ! (H·X.lo)<<1
+ xor $Zlo, $M0lo,$M0lo
+ xor $M0hi,$M1lo,$M1lo
+
+ xmulx $xE1,$M0lo,$Rlo ! res=Z.lo·(0xE1<<57)
+ xmulxhi $xE1,$M0lo,$Rhi
+
+ addxccc $M1lo,$M1lo,$M1lo
+ addxc $M1hi,$M1hi,$M1hi
+
+ xor $M1lo,$Zhi,$Zlo ! Z=(Z^(H·X.hi)<<1)>>64
+ xor $M0lo,$M1hi,$Zhi ! overflow bit from 0xE1<<57
+
+ xor $Rlo,$Zlo,$Zlo ! Z^=res
+ brnz,pt $len,.Loop
+ xor $Rhi,$Zhi,$Zhi
+
+ stx $Zlo,[$Xip+8] ! save Xi
+ stx $Zhi,[$Xip+0]
+
+ ret
+ restore
+.type gcm_ghash_vis3,#function
+.size gcm_ghash_vis3,.-gcm_ghash_vis3
+___
+}}}
+$code.=<<___;
+.asciz "GHASH for SPARCv9/VIS3, CRYPTOGAMS by <appro\@openssl.org>"
.align 4
___
-$code =~ s/\`([^\`]*)\`/eval $1/gem;
-print $code;
+\f
+# Purpose of these subroutines is to explicitly encode VIS instructions,
+# so that one can compile the module without having to specify VIS
+# extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
+# Idea is to reserve for option to produce "universal" binary and let
+# programmer detect if current CPU is VIS capable at run-time.
+sub unvis3 {
+my ($mnemonic,$rs1,$rs2,$rd)=@_;
+my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
+my ($ref,$opf);
+my %visopf = ( "addxc" => 0x011,
+ "addxccc" => 0x013,
+ "xmulx" => 0x115,
+ "xmulxhi" => 0x116 );
+
+ $ref = "$mnemonic\t$rs1,$rs2,$rd";
+
+ if ($opf=$visopf{$mnemonic}) {
+ foreach ($rs1,$rs2,$rd) {
+ return $ref if (!/%([goli])([0-9])/);
+ $_=$bias{$1}+$2;
+ }
+
+ return sprintf ".word\t0x%08x !%s",
+ 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
+ $ref;
+ } else {
+ return $ref;
+ }
+}
+
+foreach (split("\n",$code)) {
+ s/\`([^\`]*)\`/eval $1/ge;
+
+ s/\b(xmulx[hi]*|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
+ &unvis3($1,$2,$3,$4)
+ /ge;
+
+ print $_,"\n";
+}
+
close STDOUT;