self.fail('{}: wrong element at position {};'
'expected {}, got {}'.format(test_id, i, y, x))
+ def assert_xranges_equivalent(self, x, y):
+ # Check that two xrange objects are equivalent, in the sense of the
+ # associated sequences being the same. We want to use this for large
+ # xrange objects, so instead of converting to lists and comparing
+ # directly we do a number of indirect checks.
+ if len(x) != len(y):
+ self.fail('{} and {} have different '
+ 'lengths: {} and {} '.format(x, y, len(x), len(y)))
+ if len(x) >= 1:
+ if x[0] != y[0]:
+ self.fail('{} and {} have different initial '
+ 'elements: {} and {} '.format(x, y, x[0], y[0]))
+ if x[-1] != y[-1]:
+ self.fail('{} and {} have different final '
+ 'elements: {} and {} '.format(x, y, x[-1], y[-1]))
+ if len(x) >= 2:
+ x_step = x[1] - x[0]
+ y_step = y[1] - y[0]
+ if x_step != y_step:
+ self.fail('{} and {} have different step: '
+ '{} and {} '.format(x, y, x_step, y_step))
+
def test_xrange(self):
self.assertEqual(list(xrange(3)), [0, 1, 2])
self.assertEqual(list(xrange(1, 5)), [1, 2, 3, 4])
self.assertEqual(list(pickle.loads(pickle.dumps(r, proto))),
list(r))
+ M = min(sys.maxint, sys.maxsize)
+ large_testcases = testcases + [
+ (0, M, 1),
+ (M, 0, -1),
+ (0, M, M - 1),
+ (M // 2, M, 1),
+ (0, -M, -1),
+ (0, -M, 1 - M),
+ (-M, M, 2),
+ (-M, M, 1024),
+ (-M, M, 10585),
+ (M, -M, -2),
+ (M, -M, -1024),
+ (M, -M, -10585),
+ ]
+ for proto in range(pickle.HIGHEST_PROTOCOL + 1):
+ for t in large_testcases:
+ r = xrange(*t)
+ r_out = pickle.loads(pickle.dumps(r, proto))
+ self.assert_xranges_equivalent(r_out, r)
+
+ def test_repr(self):
+ # Check that repr of an xrange is a valid representation
+ # of that xrange.
+
+ # Valid xranges have at most min(sys.maxint, sys.maxsize) elements.
+ M = min(sys.maxint, sys.maxsize)
+
+ testcases = [
+ (13,),
+ (0, 11),
+ (-22, 10),
+ (20, 3, -1),
+ (13, 21, 3),
+ (-2, 2, 2),
+ (0, M, 1),
+ (M, 0, -1),
+ (0, M, M - 1),
+ (M // 2, M, 1),
+ (0, -M, -1),
+ (0, -M, 1 - M),
+ (-M, M, 2),
+ (-M, M, 1024),
+ (-M, M, 10585),
+ (M, -M, -2),
+ (M, -M, -1024),
+ (M, -M, -10585),
+ ]
+ for t in testcases:
+ r = xrange(*t)
+ r_out = eval(repr(r))
+ self.assert_xranges_equivalent(r, r_out)
+
def test_range_iterators(self):
# see issue 7298
limits = [base + jiggle
return 0UL;
}
+/* Return a stop value suitable for reconstructing the xrange from
+ * a (start, stop, step) triple. Used in range_repr and range_reduce.
+ * Computes start + len * step, clipped to the range [LONG_MIN, LONG_MAX].
+ */
+static long
+get_stop_for_range(rangeobject *r)
+{
+ long last;
+
+ if (r->len == 0)
+ return r->start;
+
+ /* The tricky bit is avoiding overflow. We first compute the last entry in
+ the xrange, start + (len - 1) * step, which is guaranteed to lie within
+ the range of a long, and then add step to it. See the range_reverse
+ comments for an explanation of the casts below.
+ */
+ last = (long)(r->start + (unsigned long)(r->len - 1) * r->step);
+ if (r->step > 0)
+ return last > LONG_MAX - r->step ? LONG_MAX : last + r->step;
+ else
+ return last < LONG_MIN - r->step ? LONG_MIN : last + r->step;
+}
+
static PyObject *
range_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
if (r->start == 0 && r->step == 1)
rtn = PyString_FromFormat("xrange(%ld)",
- r->start + r->len * r->step);
+ get_stop_for_range(r));
else if (r->step == 1)
rtn = PyString_FromFormat("xrange(%ld, %ld)",
r->start,
- r->start + r->len * r->step);
+ get_stop_for_range(r));
else
rtn = PyString_FromFormat("xrange(%ld, %ld, %ld)",
r->start,
- r->start + r->len * r->step,
+ get_stop_for_range(r),
r->step);
return rtn;
}
static PyObject *
range_reduce(rangeobject *r, PyObject *args)
{
- return Py_BuildValue("(O(iii))", Py_TYPE(r),
+ return Py_BuildValue("(O(lll))", Py_TYPE(r),
r->start,
- r->start + r->len * r->step,
+ get_stop_for_range(r),
r->step);
}