/// ConstantExpr - An expression that occurs in a constant context.
class ConstantExpr : public FullExpr {
+public:
ConstantExpr(Expr *subexpr)
: FullExpr(ConstantExprClass, subexpr) {}
-public:
- static ConstantExpr *Create(const ASTContext &Context, Expr *E) {
- assert(!isa<ConstantExpr>(E));
- return new (Context) ConstantExpr(E);
- }
-
/// Build an empty constant expression wrapper.
explicit ConstantExpr(EmptyShell Empty)
: FullExpr(ConstantExprClass, Empty) {}
while (true)
if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
e = ice->getSubExpr();
- else if (FullExpr *fe = dyn_cast<FullExpr>(e))
- e = fe->getSubExpr();
+ else if (ConstantExpr *ce = dyn_cast<ConstantExpr>(e))
+ e = ce->getSubExpr();
else
break;
return e;
Expr *ToSubExpr;
std::tie(ToSubExpr) = *Imp;
- return ConstantExpr::Create(Importer.getToContext(), ToSubExpr);
+ return new (Importer.getToContext()) ConstantExpr(ToSubExpr);
}
ExpectedStmt ASTNodeImporter::VisitParenExpr(ParenExpr *E) {
E = NTTP->getReplacement();
continue;
}
- if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
- E = FE->getSubExpr();
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) {
+ E = CE->getSubExpr();
continue;
}
return E;
E = NTTP->getReplacement();
continue;
}
- if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
- E = FE->getSubExpr();
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) {
+ E = CE->getSubExpr();
continue;
}
return E;
= dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
E = NTTP->getReplacement();
continue;
- } else if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
- E = FE->getSubExpr();
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) {
+ E = CE->getSubExpr();
continue;
}
break;
break;
}
- case ConstantExprClass: {
- // FIXME: We should be able to return "true" here, but it can lead to extra
- // error messages. E.g. in Sema/array-init.c.
- const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
- return Exp->isConstantInitializer(Ctx, false, Culprit);
- }
case CompoundLiteralExprClass: {
// This handles gcc's extension that allows global initializers like
// "struct x {int x;} x = (struct x) {};".
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/TargetInfo.h"
-#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <cstring>
#include <functional>
/// Whether or not we're currently speculatively evaluating.
bool IsSpeculativelyEvaluating;
- /// Whether or not we're in a context where the front end requires a
- /// constant value.
- bool InConstantContext;
-
enum EvaluationMode {
/// Evaluate as a constant expression. Stop if we find that the expression
/// is not a constant expression.
EvaluatingDecl((const ValueDecl *)nullptr),
EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
HasFoldFailureDiagnostic(false), IsSpeculativelyEvaluating(false),
- InConstantContext(false), EvalMode(Mode) {}
+ EvalMode(Mode) {}
void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
EvaluatingDecl = Base;
// Visitor Methods
//===--------------------------------------------------------------------===//
- bool VisitConstantExpr(const ConstantExpr *E);
-
bool VisitIntegerLiteral(const IntegerLiteral *E) {
return Success(E->getValue(), E);
}
return true;
}
-bool IntExprEvaluator::VisitConstantExpr(const ConstantExpr *E) {
- llvm::SaveAndRestore<bool> InConstantContext(Info.InConstantContext, true);
- return ExprEvaluatorBaseTy::VisitConstantExpr(E);
-}
-
bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
if (unsigned BuiltinOp = E->getBuiltinCallee())
return VisitBuiltinCallExpr(E, BuiltinOp);
return Success(Val.countLeadingZeros(), E);
}
- case Builtin::BI__builtin_constant_p: {
- auto Arg = E->getArg(0);
- if (EvaluateBuiltinConstantP(Info.Ctx, Arg))
- return Success(true, E);
- auto ArgTy = Arg->IgnoreImplicit()->getType();
- if (!Info.InConstantContext && !Arg->HasSideEffects(Info.Ctx) &&
- !ArgTy->isAggregateType() && !ArgTy->isPointerType()) {
- // We can delay calculation of __builtin_constant_p until after
- // inlining. Note: This diagnostic won't be shown to the user.
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- return Success(false, E);
- }
+ case Builtin::BI__builtin_constant_p:
+ return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
case Builtin::BI__builtin_ctz:
case Builtin::BI__builtin_ctzl:
return false;
}
-static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
- const ASTContext &Ctx, EvalInfo &Info) {
- bool IsConst;
- if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
- return IsConst;
-
- return EvaluateAsRValue(Info, E, Result.Val);
-}
/// EvaluateAsRValue - Return true if this is a constant which we can fold using
/// any crazy technique (that has nothing to do with language standards) that
/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
/// will be applied to the result.
bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
+ bool IsConst;
+ if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
+ return IsConst;
+
EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
- return ::EvaluateAsRValue(this, Result, Ctx, Info);
+ return ::EvaluateAsRValue(Info, this, Result.Val);
}
bool Expr::EvaluateAsBooleanCondition(bool &Result,
APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
- EvalResult EVResult;
- EVResult.Diag = Diag;
- EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
- Info.InConstantContext = true;
-
- bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
+ EvalResult EvalResult;
+ EvalResult.Diag = Diag;
+ bool Result = EvaluateAsRValue(EvalResult, Ctx);
(void)Result;
assert(Result && "Could not evaluate expression");
- assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
+ assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
- return EVResult.Val.getInt();
+ return EvalResult.Val.getInt();
}
APSInt Expr::EvaluateKnownConstIntCheckOverflow(
const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
- EvalResult EVResult;
- EVResult.Diag = Diag;
- EvalInfo Info(Ctx, EVResult, EvalInfo::EM_EvaluateForOverflow);
- Info.InConstantContext = true;
-
- bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
+ EvalResult EvalResult;
+ EvalResult.Diag = Diag;
+ EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
+ bool Result = ::EvaluateAsRValue(Info, this, EvalResult.Val);
(void)Result;
assert(Result && "Could not evaluate expression");
- assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
+ assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
- return EVResult.Val.getInt();
+ return EvalResult.Val.getInt();
}
void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
bool IsConst;
- EvalResult EVResult;
- if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
- EvalInfo Info(Ctx, EVResult, EvalInfo::EM_EvaluateForOverflow);
- (void)::EvaluateAsRValue(Info, this, EVResult.Val);
+ EvalResult EvalResult;
+ if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
+ EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
+ (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
}
}
static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
Expr::EvalResult EVResult;
- Expr::EvalStatus Status;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
-
- Info.InConstantContext = true;
- if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
+ if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
!EVResult.Val.isInt())
return ICEDiag(IK_NotICE, E->getBeginLoc());
case Builtin::BI__builtin_rotateright64:
return emitRotate(E, true);
- case Builtin::BI__builtin_constant_p: {
- llvm::Type *ResultType = ConvertType(E->getType());
- if (CGM.getCodeGenOpts().OptimizationLevel == 0)
- // At -O0, we don't perform inlining, so we don't need to delay the
- // processing.
- return RValue::get(ConstantInt::get(ResultType, 0));
- if (auto *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)->IgnoreImplicit())) {
- auto DREType = DRE->getType();
- if (DREType->isAggregateType() || DREType->isFunctionType())
- return RValue::get(ConstantInt::get(ResultType, 0));
- }
- Value *ArgValue = EmitScalarExpr(E->getArg(0));
- llvm::Type *ArgType = ArgValue->getType();
-
- Value *F = CGM.getIntrinsic(Intrinsic::is_constant, ArgType);
- Value *Result = Builder.CreateCall(F, ArgValue);
- if (Result->getType() != ResultType)
- Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true);
- return RValue::get(Result);
- }
case Builtin::BI__builtin_object_size: {
unsigned Type =
E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
if (Converted.isInvalid())
Failed = true;
- else
- Converted = ConstantExpr::Create(Context, Converted.get());
llvm::APSInt Cond;
if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
? VK_RValue
: VK_LValue;
- if (isFileScope)
- LiteralExpr = ConstantExpr::Create(Context, LiteralExpr);
Expr *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
VK, LiteralExpr, isFileScope);
if (isFileScope) {
!literalType->isDependentType()) // C99 6.5.2.5p3
if (CheckForConstantInitializer(LiteralExpr, literalType))
return ExprError();
+ E = new (Context) ConstantExpr(E);
} else if (literalType.getAddressSpace() != LangAS::opencl_private &&
literalType.getAddressSpace() != LangAS::Default) {
// Embedded-C extensions to C99 6.5.2.5:
return ExprError();
}
- if (!isa<ConstantExpr>(E))
- E = ConstantExpr::Create(Context, E);
-
// Circumvent ICE checking in C++11 to avoid evaluating the expression twice
// in the non-ICE case.
if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
if (Result)
*Result = E->EvaluateKnownConstIntCheckOverflow(Context);
- return E;
+ return new (Context) ConstantExpr(E);
}
Expr::EvalResult EvalResult;
if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
if (Result)
*Result = EvalResult.Val.getInt();
- return E;
+ return new (Context) ConstantExpr(E);
}
// If our only note is the usual "invalid subexpression" note, just point
if (Result)
*Result = EvalResult.Val.getInt();
- return E;
+ return new (Context) ConstantExpr(E);
}
namespace {
if (Notes.empty()) {
// It's a constant expression.
- return ConstantExpr::Create(S.Context, Result.get());
+ return new (S.Context) ConstantExpr(Result.get());
}
}
while (true) {
if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
E = IC->getSubExpr();
- else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
- E = CE->getSubExpr();
else if (SubstNonTypeTemplateParmExpr *Subst =
dyn_cast<SubstNonTypeTemplateParmExpr>(E))
E = Subst->getReplacement();
while (true) {
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
E = ICE->getSubExpr();
- else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
- E = CE->getSubExpr();
else if (const SubstNonTypeTemplateParmExpr *Subst =
dyn_cast<SubstNonTypeTemplateParmExpr>(E))
E = Subst->getReplacement();
T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
}
+ if (ArraySize && !CurContext->isFunctionOrMethod())
+ // A file-scoped array must have a constant array size.
+ ArraySize = new (Context) ConstantExpr(ArraySize);
+
// OpenCL v1.2 s6.9.d: variable length arrays are not supported.
if (getLangOpts().OpenCL && T->isVariableArrayType()) {
Diag(Loc, diag::err_opencl_vla);
break;
case Expr::ConstantExprClass:
+ // Handled due to it being a wrapper class.
+ break;
+
case Stmt::ExprWithCleanupsClass:
// Handled due to fully linearised CFG.
break;
const int j = 2;
constexpr int k = 3;
clang_analyzer_eval(__builtin_constant_p(42) == 1); // expected-warning {{TRUE}}
- clang_analyzer_eval(__builtin_constant_p(i) == 0); // expected-warning {{UNKNOWN}}
+ clang_analyzer_eval(__builtin_constant_p(i) == 0); // expected-warning {{TRUE}}
clang_analyzer_eval(__builtin_constant_p(j) == 1); // expected-warning {{TRUE}}
clang_analyzer_eval(__builtin_constant_p(k) == 1); // expected-warning {{TRUE}}
- clang_analyzer_eval(__builtin_constant_p(i + 42) == 0); // expected-warning {{UNKNOWN}}
+ clang_analyzer_eval(__builtin_constant_p(i + 42) == 0); // expected-warning {{TRUE}}
clang_analyzer_eval(__builtin_constant_p(j + 42) == 1); // expected-warning {{TRUE}}
clang_analyzer_eval(__builtin_constant_p(k + 42) == 1); // expected-warning {{TRUE}}
clang_analyzer_eval(__builtin_constant_p(" ") == 1); // expected-warning {{TRUE}}
- clang_analyzer_eval(__builtin_constant_p(test_constant_p) == 0); // expected-warning {{UNKNOWN}}
+ clang_analyzer_eval(__builtin_constant_p(test_constant_p) == 0); // expected-warning {{TRUE}}
clang_analyzer_eval(__builtin_constant_p(k - 3) == 0); // expected-warning {{FALSE}}
clang_analyzer_eval(__builtin_constant_p(k - 3) == 1); // expected-warning {{TRUE}}
}
__builtin_constant_p(1, 2); // expected-error {{too many arguments}}
}
-// __builtin_constant_p cannot resolve non-constants as a file scoped array.
-int expr;
-char y[__builtin_constant_p(expr) ? -1 : 1]; // no warning, the builtin is false.
-
-// no warning, the builtin is false.
-struct foo { int a; };
-struct foo x = (struct foo) { __builtin_constant_p(42) ? 37 : 927 };
-
const int test17_n = 0;
const char test17_c[] = {1, 2, 3, 0};
const char test17_d[] = {1, 2, 3, 4};
F(&test17_d);
F((struct Aggregate){0, 1});
F((IntVector){0, 1, 2, 3});
- F(test17);
// Ensure that a technique used in glibc is handled correctly.
#define OPT(...) (__builtin_constant_p(__VA_ARGS__) && strlen(__VA_ARGS__) < 4)
\r
POD p = (POD){1, 2};\r
// CHECK-NOT: CXXBindTemporaryExpr {{.*}} 'brace_initializers::POD'\r
- // CHECK: CompoundLiteralExpr {{.*}} 'brace_initializers::POD'\r
- // CHECK-NEXT: ConstantExpr {{.*}} 'brace_initializers::POD'\r
+ // CHECK: ConstantExpr {{.*}} 'brace_initializers::POD'\r
+ // CHECK-NEXT: CompoundLiteralExpr {{.*}} 'brace_initializers::POD'\r
// CHECK-NEXT: InitListExpr {{.*}} 'brace_initializers::POD'\r
// CHECK-NEXT: IntegerLiteral {{.*}} 1{{$}}\r
// CHECK-NEXT: IntegerLiteral {{.*}} 2{{$}}\r