]> granicus.if.org Git - openssl/commitdiff
SSE2 SHA512_Transform implementation. No, it's not used anywhere yet and
authorAndy Polyakov <appro@openssl.org>
Thu, 6 May 2004 10:41:07 +0000 (10:41 +0000)
committerAndy Polyakov <appro@openssl.org>
Thu, 6 May 2004 10:41:07 +0000 (10:41 +0000)
is subject to change as C implementation is added...

crypto/sha/asm/sha512-sse2.pl [new file with mode: 0644]

diff --git a/crypto/sha/asm/sha512-sse2.pl b/crypto/sha/asm/sha512-sse2.pl
new file mode 100644 (file)
index 0000000..87a14ae
--- /dev/null
@@ -0,0 +1,370 @@
+#!/usr/bin/env perl
+#
+# SHA512_Transform_SSE2.
+#
+# As the name suggests, this is an IA-32 SSE2 implementation of
+# SHA512_Transform. Motivating factor for the undertaken effort was that
+# SHA512 was observed to *consistently* perform *significantly* poorer
+# than SHA256 [2x and slower is common] on 32-bit platforms. On 64-bit
+# platforms on the other hand SHA512 tend to outperform SHA256 [~50%
+# seem to be common improvement factor]. All this is perfectly natural,
+# as SHA512 is a 64-bit algorithm. But isn't IA-32 SSE2 essentially
+# a 64-bit instruction set? Is it rich enough to implement SHA512?
+# If answer was "no," then you wouldn't have been reading this...
+#
+# [Preliminary] throughput numbers (larger is better):
+#
+#              2.4GHz P4       1.4GHz AMD32    1.4GHz AMD64
+# SHA256/gcc   38              36              46
+# SHA512/gcc   9               15              72
+# SHA512/sse2  53(*)           51
+# SHA512/icc   21              21
+# SHA256/icc   52              42
+#
+#  (*) I.e. it gives ~6x speed-up on P4 if compared to code generated
+#      by gcc, and 2.5x over icc. It was worth it:-) Well, one can
+#      argue that handcoded *non*-SSE2 implementation would perform
+#      better than compiler generated one, and comparison therefore
+#      is not exactly fair. As SHA512 puts enormous pressure on IA-32
+#      GP register bank, I reckon handcoded version wouldn't perform
+#      significantly better than one compiled with icc, ~20% perhaps.
+#      So that this code would still outperform it with distinguishing
+#      marginal. But feel free to prove me wrong:-)
+#
+#                                              <appro@fy.chalmers.se>
+push(@INC,"perlasm","../../perlasm");
+require "x86asm.pl";
+
+&asm_init($ARGV[0],"sha512-sse2.pl",$ARGV[$#ARGV] eq "386");
+
+$K512="esi";   # K512[80] table, found at the end...
+#$W512="esp";  # $W512 is not just W512[16]: it comprises *two* copies
+               # of W512[16] and a copy of A-H variables...
+$W512_SZ=8*(16+16+8);  # see above...
+#$Kidx="ebx";  # index in K512 table, advances from 0 to 80...
+$Widx="edx";   # index in W512, wraps around at 16...
+$data="edi";   # 16 qwords of input data...
+$A="mm0";      # B-D and
+$E="mm1";      # F-H are allocated dynamically...
+$Aoff=256+0;   # A-H offsets relative to $W512...
+$Boff=256+8;
+$Coff=256+16;
+$Doff=256+24;
+$Eoff=256+32;
+$Foff=256+40;
+$Goff=256+48;
+$Hoff=256+56;
+
+sub SHA2_ROUND()
+{ local ($kidx,$widx)=@_;
+
+       # One can argue that one could reorder instructions for better
+       # performance. Well, I tried and it doesn't seem to make any
+       # noticeable difference. Modern out-of-order execution cores
+       # reorder instructions to their liking in either case and they
+       # apparently do decent job. So we can keep the code more
+       # readable/regular/comprehensible:-)
+
+       # I adhere to 64-bit %mmX registers in order to avoid/not care
+       # about #GP exceptions on misaligned 128-bit access, most
+       # notably in paddq with memory operand.
+
+       &movq   ("mm4",&QWP($Foff,$W512));      # load f
+       &movq   ("mm5",&QWP($Goff,$W512));      # load g
+       &movq   ("mm6",&QWP($Hoff,$W512));      # load h
+       &movq   (&QWP($Foff,$W512),$E);         # f = e
+       &movq   (&QWP($Goff,$W512),"mm4");      # g = f
+       &movq   (&QWP($Hoff,$W512),"mm5");      # h = g
+
+       &movq   ("mm2",$E);                     # %mm2 is sliding right
+       &movq   ("mm3",$E);                     # %mm3 is sliding left
+       &psrlq  ("mm2",14);
+       &psllq  ("mm3",23);
+       &movq   ("mm7","mm2");                  # %mm7 is T1
+       &pxor   ("mm7","mm3");
+       &psrlq  ("mm2",4);
+       &psllq  ("mm3",23);
+       &pxor   ("mm7","mm2");
+       &pxor   ("mm7","mm3");
+       &psrlq  ("mm2",23);
+       &psllq  ("mm3",4);
+       &pxor   ("mm7","mm2");
+       &pxor   ("mm7","mm3");                  # T1=Sigma1_512(e)
+
+       &pxor   ("mm4","mm5");                  # f^=g
+       &pand   ("mm4",$E);                     # f&=e
+       &pxor   ("mm4","mm5");                  # f^=g
+       &paddq  ("mm7","mm4");                  # T1+=Ch(e,f,g)
+
+       &movq   ("mm2",&QWP($Boff,$W512));      # load b
+       &movq   ("mm3",&QWP($Coff,$W512));      # load c
+       &movq   ($E,&QWP($Doff,$W512));         # e = d
+       &movq   (&QWP($Boff,$W512),$A);         # b = a
+       &movq   (&QWP($Coff,$W512),"mm2");      # c = b
+       &movq   (&QWP($Doff,$W512),"mm3");      # d = c
+
+       &paddq  ("mm7","mm6");                  # T1+=h
+       &paddq  ("mm7",&QWP(0,$K512,$kidx,8));  # T1+=K512[i]
+       &paddq  ("mm7",&QWP(0,$W512,$widx,8));  # T1+=W512[i]
+       &paddq  ($E,"mm7");                     # e += T1
+
+       &movq   ("mm4",$A);                     # %mm4 is sliding right
+       &movq   ("mm5",$A);                     # %mm5 is sliding left
+       &psrlq  ("mm4",28);
+       &psllq  ("mm5",25);
+       &movq   ("mm6","mm4");                  # %mm6 is T2
+       &pxor   ("mm6","mm5");
+       &psrlq  ("mm4",6);
+       &psllq  ("mm5",5);
+       &pxor   ("mm6","mm4");
+       &pxor   ("mm6","mm5");
+       &psrlq  ("mm4",5);
+       &psllq  ("mm5",6);
+       &pxor   ("mm6","mm4");
+       &pxor   ("mm6","mm5");                  # T2=Sigma0_512(a)
+
+       &movq   ("mm4","mm2");                  # %mm4=b
+       &pand   ("mm2",$A);                     # b&=a
+       &pand   ("mm4","mm3");                  # %mm4&=c
+       &pand   ("mm3",$A);                     # c&=a
+       &pxor   ("mm4","mm2");                  # %mm4^=b&a
+       &pxor   ("mm4","mm3");                  # %mm4^=c&a
+       &paddq  ("mm6","mm4");                  # T2+=Maj(a,b,c)
+
+       &movq   ($A,"mm7");                     # a=T1
+       &paddq  ($A,"mm6");                     # a+=T2
+}
+
+$func="SHA512_Transform_SSE2";
+
+&function_begin_B($func);
+       if (0) {# Caller is expected to check if it's appropriate to
+               # call this routine. Below 3 lines are retained for
+               # debugging purposes...
+               &picmeup("eax","OPENSSL_ia32cap");
+               &bt     (&DWP(0,"eax"),26);
+               &jnc    ("SHA512_Transform");
+       }
+
+       &push   ("ebp");
+       &mov    ("ebp","esp");
+       &push   ("ebx");
+       &push   ("esi");
+       &push   ("edi");
+
+       &mov    ($Widx,&DWP(8,"ebp"));          # A-H state, 1st arg
+       &mov    ($data,&DWP(12,"ebp"));         # input data, 2nd arg
+       &call   (&label("pic_point"));          # make it PIC!
+&set_label("pic_point");
+       &blindpop($K512);
+       &lea    ($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512));
+
+       $W512 = "esp";                  # start using %esp as W512
+       &sub    ($W512,$W512_SZ);
+       &and    ($W512,-16);            # ensure 128-bit alignment
+
+       # make private copy of A-H
+       #     v assume the worst and stick to unaligned load
+       &movdqu ("xmm0",&QWP(0,$Widx));
+       &movdqu ("xmm1",&QWP(16,$Widx));
+       &movdqu ("xmm2",&QWP(32,$Widx));
+       &movdqu ("xmm3",&QWP(48,$Widx));
+       &movdqa (&QWP($Aoff,$W512),"xmm0");     # a,b
+       &movdqa (&QWP($Coff,$W512),"xmm1");     # c,d
+       &movdqa (&QWP($Eoff,$W512),"xmm2");     # e,f
+       &movdqa (&QWP($Goff,$W512),"xmm3");     # g,h
+
+       &xor    ($Widx,$Widx);
+
+       &movdq2q($A,"xmm0");                    # load a
+       &movdq2q($E,"xmm2");                    # load e
+
+       # Why aren't loops unrolled? It makes sense to unroll if
+       # execution time for loop body is comparable with branch
+       # penalties and/or if whole data-set resides in register
+       # bank. Neither is case here...
+
+&align(8);
+&set_label("_1st_loop");               # 0-15
+       # flip input stream byte order...
+       &mov    ("eax",&DWP(0,$data,$Widx,8));
+       &mov    ("ebx",&DWP(4,$data,$Widx,8));
+       &bswap  ("eax");
+       &bswap  ("ebx");
+       &mov    (&DWP(0,$W512,$Widx,8),"ebx");          # W512[i]
+       &mov    (&DWP(4,$W512,$Widx,8),"eax");
+       &mov    (&DWP(128+0,$W512,$Widx,8),"ebx");      # copy of W512[i]
+       &mov    (&DWP(128+4,$W512,$Widx,8),"eax");
+
+       &SHA2_ROUND($Widx,$Widx); &inc($Widx);
+
+&cmp   ($Widx,16)
+&jl    (&label("_1st_loop"));
+
+       $Kidx = "ebx";                  # start using %ebx as Kidx
+       &mov    ($Kidx,$Widx);
+
+&align(8);
+&set_label("_2nd_loop");               # 16-79
+       &and($Widx,0xf);
+
+       # 128-bit fragment! I update W512[i] and W512[i+1] in
+       # parallel:-) Note that I refer to W512[(i&0xf)+N] and not to
+       # W512[(i+N)&0xf]! This is exactly what I maintain the second
+       # copy of W512[16] for...
+       &movdqu ("xmm0",&QWP(8*1,$W512,$Widx,8));       # s0=W512[i+1]
+       &movdqa ("xmm2","xmm0");                # %xmm2 is sliding right
+       &movdqa ("xmm3","xmm0");                # %xmm3 is sliding left
+       &psrlq  ("xmm2",1);
+       &psllq  ("xmm3",56);
+       &movdqa ("xmm0","xmm2");
+       &pxor   ("xmm0","xmm3");
+       &psrlq  ("xmm2",6);
+       &psllq  ("xmm3",7);
+       &pxor   ("xmm0","xmm2");
+       &pxor   ("xmm0","xmm3");
+       &psrlq  ("xmm2",1);
+       &pxor   ("xmm0","xmm2");                # s0 = sigma0_512(s0);
+
+       &movdqa ("xmm1",&QWP(8*14,$W512,$Widx,8));      # s1=W512[i+14]
+       &movdqa ("xmm4","xmm1");                # %xmm4 is sliding right
+       &movdqa ("xmm5","xmm1");                # %xmm5 is sliding left
+       &psrlq  ("xmm4",6);
+       &psllq  ("xmm5",3);
+       &movdqa ("xmm1","xmm4");
+       &pxor   ("xmm1","xmm5");
+       &psrlq  ("xmm4",13);
+       &psllq  ("xmm5",42);
+       &pxor   ("xmm1","xmm4");
+       &pxor   ("xmm1","xmm5");
+       &psrlq  ("xmm4",42);
+       &pxor   ("xmm1","xmm4");                # s1 = sigma1_512(s1);
+
+       #     + have to explictly load W512[i+9] as it's not 128-bit
+       #     v aligned and paddq would throw an exception...
+       &movdqu ("xmm6",&QWP(8*9,$W512,$Widx,8));
+       &paddq  ("xmm0","xmm1");                # s0 += s1
+       &paddq  ("xmm0","xmm6");                # s0 += W512[i+9]
+       &paddq  ("xmm0",&QWP(0,$W512,$Widx,8)); # s0 += W512[i]
+
+       &movdqa (&QWP(0,$W512,$Widx,8),"xmm0");         # W512[i] = s0
+       &movdqa (&QWP(16*8,$W512,$Widx,8),"xmm0");      # copy of W512[i]
+
+       # as the above fragment was 128-bit, we "owe" 2 rounds...
+       &SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);
+       &SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);
+
+&cmp   ($Kidx,80);
+&jl    (&label("_2nd_loop"));
+
+       # update A-H state
+       &mov    ($Widx,&DWP(8,"ebp"));          # A-H state, 1st arg
+       &movq   (&QWP($Aoff,$W512),$A);         # write out a
+       &movq   (&QWP($Eoff,$W512),$E);         # write out e
+       &movdqu ("xmm0",&QWP(0,$Widx));
+       &movdqu ("xmm1",&QWP(16,$Widx));
+       &movdqu ("xmm2",&QWP(32,$Widx));
+       &movdqu ("xmm3",&QWP(48,$Widx));
+       &paddq  ("xmm0",&QWP($Aoff,$W512));     # 128-bit additions...
+       &paddq  ("xmm1",&QWP($Coff,$W512));
+       &paddq  ("xmm2",&QWP($Eoff,$W512));
+       &paddq  ("xmm3",&QWP($Goff,$W512));
+       &movdqu (&QWP(0,$Widx),"xmm0");
+       &movdqu (&QWP(16,$Widx),"xmm1");
+       &movdqu (&QWP(32,$Widx),"xmm2");
+       &movdqu (&QWP(48,$Widx),"xmm3");
+
+       # epilogue
+       &emms   ();     # required for at least ELF and Win32 ABIs
+       &mov    ("edi",&DWP(-12,"ebp"));
+       &mov    ("esi",&DWP(-8,"ebp"));
+       &mov    ("ebx",&DWP(-4,"ebp"));
+       &leave  ();
+&ret   ();
+
+&align(16);
+&set_label("K512");    # Yes! I keep it in the code segment!
+       &data_word(0xd728ae22,0x428a2f98);      # u64
+       &data_word(0x23ef65cd,0x71374491);      # u64
+       &data_word(0xec4d3b2f,0xb5c0fbcf);      # u64
+       &data_word(0x8189dbbc,0xe9b5dba5);      # u64
+       &data_word(0xf348b538,0x3956c25b);      # u64
+       &data_word(0xb605d019,0x59f111f1);      # u64
+       &data_word(0xaf194f9b,0x923f82a4);      # u64
+       &data_word(0xda6d8118,0xab1c5ed5);      # u64
+       &data_word(0xa3030242,0xd807aa98);      # u64
+       &data_word(0x45706fbe,0x12835b01);      # u64
+       &data_word(0x4ee4b28c,0x243185be);      # u64
+       &data_word(0xd5ffb4e2,0x550c7dc3);      # u64
+       &data_word(0xf27b896f,0x72be5d74);      # u64
+       &data_word(0x3b1696b1,0x80deb1fe);      # u64
+       &data_word(0x25c71235,0x9bdc06a7);      # u64
+       &data_word(0xcf692694,0xc19bf174);      # u64
+       &data_word(0x9ef14ad2,0xe49b69c1);      # u64
+       &data_word(0x384f25e3,0xefbe4786);      # u64
+       &data_word(0x8b8cd5b5,0x0fc19dc6);      # u64
+       &data_word(0x77ac9c65,0x240ca1cc);      # u64
+       &data_word(0x592b0275,0x2de92c6f);      # u64
+       &data_word(0x6ea6e483,0x4a7484aa);      # u64
+       &data_word(0xbd41fbd4,0x5cb0a9dc);      # u64
+       &data_word(0x831153b5,0x76f988da);      # u64
+       &data_word(0xee66dfab,0x983e5152);      # u64
+       &data_word(0x2db43210,0xa831c66d);      # u64
+       &data_word(0x98fb213f,0xb00327c8);      # u64
+       &data_word(0xbeef0ee4,0xbf597fc7);      # u64
+       &data_word(0x3da88fc2,0xc6e00bf3);      # u64
+       &data_word(0x930aa725,0xd5a79147);      # u64
+       &data_word(0xe003826f,0x06ca6351);      # u64
+       &data_word(0x0a0e6e70,0x14292967);      # u64
+       &data_word(0x46d22ffc,0x27b70a85);      # u64
+       &data_word(0x5c26c926,0x2e1b2138);      # u64
+       &data_word(0x5ac42aed,0x4d2c6dfc);      # u64
+       &data_word(0x9d95b3df,0x53380d13);      # u64
+       &data_word(0x8baf63de,0x650a7354);      # u64
+       &data_word(0x3c77b2a8,0x766a0abb);      # u64
+       &data_word(0x47edaee6,0x81c2c92e);      # u64
+       &data_word(0x1482353b,0x92722c85);      # u64
+       &data_word(0x4cf10364,0xa2bfe8a1);      # u64
+       &data_word(0xbc423001,0xa81a664b);      # u64
+       &data_word(0xd0f89791,0xc24b8b70);      # u64
+       &data_word(0x0654be30,0xc76c51a3);      # u64
+       &data_word(0xd6ef5218,0xd192e819);      # u64
+       &data_word(0x5565a910,0xd6990624);      # u64
+       &data_word(0x5771202a,0xf40e3585);      # u64
+       &data_word(0x32bbd1b8,0x106aa070);      # u64
+       &data_word(0xb8d2d0c8,0x19a4c116);      # u64
+       &data_word(0x5141ab53,0x1e376c08);      # u64
+       &data_word(0xdf8eeb99,0x2748774c);      # u64
+       &data_word(0xe19b48a8,0x34b0bcb5);      # u64
+       &data_word(0xc5c95a63,0x391c0cb3);      # u64
+       &data_word(0xe3418acb,0x4ed8aa4a);      # u64
+       &data_word(0x7763e373,0x5b9cca4f);      # u64
+       &data_word(0xd6b2b8a3,0x682e6ff3);      # u64
+       &data_word(0x5defb2fc,0x748f82ee);      # u64
+       &data_word(0x43172f60,0x78a5636f);      # u64
+       &data_word(0xa1f0ab72,0x84c87814);      # u64
+       &data_word(0x1a6439ec,0x8cc70208);      # u64
+       &data_word(0x23631e28,0x90befffa);      # u64
+       &data_word(0xde82bde9,0xa4506ceb);      # u64
+       &data_word(0xb2c67915,0xbef9a3f7);      # u64
+       &data_word(0xe372532b,0xc67178f2);      # u64
+       &data_word(0xea26619c,0xca273ece);      # u64
+       &data_word(0x21c0c207,0xd186b8c7);      # u64
+       &data_word(0xcde0eb1e,0xeada7dd6);      # u64
+       &data_word(0xee6ed178,0xf57d4f7f);      # u64
+       &data_word(0x72176fba,0x06f067aa);      # u64
+       &data_word(0xa2c898a6,0x0a637dc5);      # u64
+       &data_word(0xbef90dae,0x113f9804);      # u64
+       &data_word(0x131c471b,0x1b710b35);      # u64
+       &data_word(0x23047d84,0x28db77f5);      # u64
+       &data_word(0x40c72493,0x32caab7b);      # u64
+       &data_word(0x15c9bebc,0x3c9ebe0a);      # u64
+       &data_word(0x9c100d4c,0x431d67c4);      # u64
+       &data_word(0xcb3e42b6,0x4cc5d4be);      # u64
+       &data_word(0xfc657e2a,0x597f299c);      # u64
+       &data_word(0x3ad6faec,0x5fcb6fab);      # u64
+       &data_word(0x4a475817,0x6c44198c);      # u64
+
+&function_end_B($func);
+
+&asm_finish();