/// post-order walk.
LazyCallGraph::SCC *UpdatedC;
+ /// Preserved analyses across SCCs.
+ ///
+ /// We specifically want to allow CGSCC passes to mutate ancestor IR
+ /// (changing both the CG structure and the function IR itself). However,
+ /// this means we need to take special care to correctly mark what analyses
+ /// are preserved *across* SCCs. We have to track this out-of-band here
+ /// because within the main `PassManeger` infrastructure we need to mark
+ /// everything within an SCC as preserved in order to avoid repeatedly
+ /// invalidating the same analyses as we unnest pass managers and adaptors.
+ /// So we track the cross-SCC version of the preserved analyses here from any
+ /// code that does direct invalidation of SCC analyses, and then use it
+ /// whenever we move forward in the post-order walk of SCCs before running
+ /// passes over the new SCC.
+ PreservedAnalyses CrossSCCPA;
+
/// A hacky area where the inliner can retain history about inlining
/// decisions that mutated the call graph's SCC structure in order to avoid
/// infinite inlining. See the comments in the inliner's CG update logic.
}
/// Runs the CGSCC pass across every SCC in the module.
- PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
- // Setup the CGSCC analysis manager from its proxy.
- CGSCCAnalysisManager &CGAM =
- AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
-
- // Get the call graph for this module.
- LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
-
- // We keep worklists to allow us to push more work onto the pass manager as
- // the passes are run.
- SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
- SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
-
- // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
- // iterating off the worklists.
- SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
- SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
-
- SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
- InlinedInternalEdges;
-
- CGSCCUpdateResult UR = {RCWorklist, CWorklist, InvalidRefSCCSet,
- InvalidSCCSet, nullptr, nullptr,
- InlinedInternalEdges};
-
- // Request PassInstrumentation from analysis manager, will use it to run
- // instrumenting callbacks for the passes later.
- PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
-
- PreservedAnalyses PA = PreservedAnalyses::all();
- CG.buildRefSCCs();
- for (auto RCI = CG.postorder_ref_scc_begin(),
- RCE = CG.postorder_ref_scc_end();
- RCI != RCE;) {
- assert(RCWorklist.empty() &&
- "Should always start with an empty RefSCC worklist");
- // The postorder_ref_sccs range we are walking is lazily constructed, so
- // we only push the first one onto the worklist. The worklist allows us
- // to capture *new* RefSCCs created during transformations.
- //
- // We really want to form RefSCCs lazily because that makes them cheaper
- // to update as the program is simplified and allows us to have greater
- // cache locality as forming a RefSCC touches all the parts of all the
- // functions within that RefSCC.
- //
- // We also eagerly increment the iterator to the next position because
- // the CGSCC passes below may delete the current RefSCC.
- RCWorklist.insert(&*RCI++);
-
- do {
- LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
- if (InvalidRefSCCSet.count(RC)) {
- LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
- continue;
- }
-
- assert(CWorklist.empty() &&
- "Should always start with an empty SCC worklist");
-
- LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
- << "\n");
-
- // Push the initial SCCs in reverse post-order as we'll pop off the
- // back and so see this in post-order.
- for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
- CWorklist.insert(&C);
-
- do {
- LazyCallGraph::SCC *C = CWorklist.pop_back_val();
- // Due to call graph mutations, we may have invalid SCCs or SCCs from
- // other RefSCCs in the worklist. The invalid ones are dead and the
- // other RefSCCs should be queued above, so we just need to skip both
- // scenarios here.
- if (InvalidSCCSet.count(C)) {
- LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
- continue;
- }
- if (&C->getOuterRefSCC() != RC) {
- LLVM_DEBUG(dbgs()
- << "Skipping an SCC that is now part of some other "
- "RefSCC...\n");
- continue;
- }
-
- do {
- // Check that we didn't miss any update scenario.
- assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
- assert(C->begin() != C->end() && "Cannot have an empty SCC!");
- assert(&C->getOuterRefSCC() == RC &&
- "Processing an SCC in a different RefSCC!");
-
- UR.UpdatedRC = nullptr;
- UR.UpdatedC = nullptr;
-
- // Check the PassInstrumentation's BeforePass callbacks before
- // running the pass, skip its execution completely if asked to
- // (callback returns false).
- if (!PI.runBeforePass<LazyCallGraph::SCC>(Pass, *C))
- continue;
-
- PreservedAnalyses PassPA = Pass.run(*C, CGAM, CG, UR);
-
- if (UR.InvalidatedSCCs.count(C))
- PI.runAfterPassInvalidated<LazyCallGraph::SCC>(Pass);
- else
- PI.runAfterPass<LazyCallGraph::SCC>(Pass, *C);
-
- // Update the SCC and RefSCC if necessary.
- C = UR.UpdatedC ? UR.UpdatedC : C;
- RC = UR.UpdatedRC ? UR.UpdatedRC : RC;
-
- // If the CGSCC pass wasn't able to provide a valid updated SCC,
- // the current SCC may simply need to be skipped if invalid.
- if (UR.InvalidatedSCCs.count(C)) {
- LLVM_DEBUG(dbgs()
- << "Skipping invalidated root or island SCC!\n");
- break;
- }
- // Check that we didn't miss any update scenario.
- assert(C->begin() != C->end() && "Cannot have an empty SCC!");
-
- // We handle invalidating the CGSCC analysis manager's information
- // for the (potentially updated) SCC here. Note that any other SCCs
- // whose structure has changed should have been invalidated by
- // whatever was updating the call graph. This SCC gets invalidated
- // late as it contains the nodes that were actively being
- // processed.
- CGAM.invalidate(*C, PassPA);
-
- // Then intersect the preserved set so that invalidation of module
- // analyses will eventually occur when the module pass completes.
- PA.intersect(std::move(PassPA));
-
- // The pass may have restructured the call graph and refined the
- // current SCC and/or RefSCC. We need to update our current SCC and
- // RefSCC pointers to follow these. Also, when the current SCC is
- // refined, re-run the SCC pass over the newly refined SCC in order
- // to observe the most precise SCC model available. This inherently
- // cannot cycle excessively as it only happens when we split SCCs
- // apart, at most converging on a DAG of single nodes.
- // FIXME: If we ever start having RefSCC passes, we'll want to
- // iterate there too.
- if (UR.UpdatedC)
- LLVM_DEBUG(dbgs()
- << "Re-running SCC passes after a refinement of the "
- "current SCC: "
- << *UR.UpdatedC << "\n");
-
- // Note that both `C` and `RC` may at this point refer to deleted,
- // invalid SCC and RefSCCs respectively. But we will short circuit
- // the processing when we check them in the loop above.
- } while (UR.UpdatedC);
- } while (!CWorklist.empty());
-
- // We only need to keep internal inlined edge information within
- // a RefSCC, clear it to save on space and let the next time we visit
- // any of these functions have a fresh start.
- InlinedInternalEdges.clear();
- } while (!RCWorklist.empty());
- }
-
- // By definition we preserve the call garph, all SCC analyses, and the
- // analysis proxies by handling them above and in any nested pass managers.
- PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
- PA.preserve<LazyCallGraphAnalysis>();
- PA.preserve<CGSCCAnalysisManagerModuleProxy>();
- PA.preserve<FunctionAnalysisManagerModuleProxy>();
- return PA;
- }
+ PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
private:
CGSCCPassT Pass;
return DevirtSCCRepeatedPass<PassT>(std::move(Pass), MaxIterations);
}
+// Out-of-line implementation details for templates below this point.
+
+template <typename CGSCCPassT>
+PreservedAnalyses
+ModuleToPostOrderCGSCCPassAdaptor<CGSCCPassT>::run(Module &M,
+ ModuleAnalysisManager &AM) {
+ // Setup the CGSCC analysis manager from its proxy.
+ CGSCCAnalysisManager &CGAM =
+ AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
+
+ // Get the call graph for this module.
+ LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
+
+ // We keep worklists to allow us to push more work onto the pass manager as
+ // the passes are run.
+ SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
+ SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
+
+ // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
+ // iterating off the worklists.
+ SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
+ SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
+
+ SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
+ InlinedInternalEdges;
+
+ CGSCCUpdateResult UR = {
+ RCWorklist, CWorklist, InvalidRefSCCSet, InvalidSCCSet,
+ nullptr, nullptr, PreservedAnalyses::all(), InlinedInternalEdges};
+
+ // Request PassInstrumentation from analysis manager, will use it to run
+ // instrumenting callbacks for the passes later.
+ PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
+
+ PreservedAnalyses PA = PreservedAnalyses::all();
+ CG.buildRefSCCs();
+ for (auto RCI = CG.postorder_ref_scc_begin(),
+ RCE = CG.postorder_ref_scc_end();
+ RCI != RCE;) {
+ assert(RCWorklist.empty() &&
+ "Should always start with an empty RefSCC worklist");
+ // The postorder_ref_sccs range we are walking is lazily constructed, so
+ // we only push the first one onto the worklist. The worklist allows us
+ // to capture *new* RefSCCs created during transformations.
+ //
+ // We really want to form RefSCCs lazily because that makes them cheaper
+ // to update as the program is simplified and allows us to have greater
+ // cache locality as forming a RefSCC touches all the parts of all the
+ // functions within that RefSCC.
+ //
+ // We also eagerly increment the iterator to the next position because
+ // the CGSCC passes below may delete the current RefSCC.
+ RCWorklist.insert(&*RCI++);
+
+ do {
+ LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
+ if (InvalidRefSCCSet.count(RC)) {
+ LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
+ continue;
+ }
+
+ assert(CWorklist.empty() &&
+ "Should always start with an empty SCC worklist");
+
+ LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
+ << "\n");
+
+ // Push the initial SCCs in reverse post-order as we'll pop off the
+ // back and so see this in post-order.
+ for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
+ CWorklist.insert(&C);
+
+ do {
+ LazyCallGraph::SCC *C = CWorklist.pop_back_val();
+ // Due to call graph mutations, we may have invalid SCCs or SCCs from
+ // other RefSCCs in the worklist. The invalid ones are dead and the
+ // other RefSCCs should be queued above, so we just need to skip both
+ // scenarios here.
+ if (InvalidSCCSet.count(C)) {
+ LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
+ continue;
+ }
+ if (&C->getOuterRefSCC() != RC) {
+ LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other "
+ "RefSCC...\n");
+ continue;
+ }
+
+ // Ensure we can proxy analysis updates from from the CGSCC analysis
+ // manager into the Function analysis manager by getting a proxy here.
+ // FIXME: This seems like a bit of a hack. We should find a cleaner
+ // or more costructive way to ensure this happens.
+ (void)CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG);
+
+ // Each time we visit a new SCC pulled off the worklist,
+ // a transformation of a child SCC may have also modified this parent
+ // and invalidated analyses. So we invalidate using the update record's
+ // cross-SCC preserved set. This preserved set is intersected by any
+ // CGSCC pass that handles invalidation (primarily pass managers) prior
+ // to marking its SCC as preserved. That lets us track everything that
+ // might need invalidation across SCCs without excessive invalidations
+ // on a single SCC.
+ //
+ // This essentially allows SCC passes to freely invalidate analyses
+ // of any ancestor SCC. If this becomes detrimental to successfully
+ // caching analyses, we could force each SCC pass to manually
+ // invalidate the analyses for any SCCs other than themselves which
+ // are mutated. However, that seems to lose the robustness of the
+ // pass-manager driven invalidation scheme.
+ //
+ // FIXME: This is redundant in one case -- the top of the worklist may
+ // *also* be the same SCC we just ran over (and invalidated for). In
+ // that case, we'll end up doing a redundant invalidation here as
+ // a consequence.
+ CGAM.invalidate(*C, UR.CrossSCCPA);
+
+ do {
+ // Check that we didn't miss any update scenario.
+ assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
+ assert(C->begin() != C->end() && "Cannot have an empty SCC!");
+ assert(&C->getOuterRefSCC() == RC &&
+ "Processing an SCC in a different RefSCC!");
+
+ UR.UpdatedRC = nullptr;
+ UR.UpdatedC = nullptr;
+
+ // Check the PassInstrumentation's BeforePass callbacks before
+ // running the pass, skip its execution completely if asked to
+ // (callback returns false).
+ if (!PI.runBeforePass<LazyCallGraph::SCC>(Pass, *C))
+ continue;
+
+ PreservedAnalyses PassPA = Pass.run(*C, CGAM, CG, UR);
+
+ if (UR.InvalidatedSCCs.count(C))
+ PI.runAfterPassInvalidated<LazyCallGraph::SCC>(Pass);
+ else
+ PI.runAfterPass<LazyCallGraph::SCC>(Pass, *C);
+
+ // Update the SCC and RefSCC if necessary.
+ C = UR.UpdatedC ? UR.UpdatedC : C;
+ RC = UR.UpdatedRC ? UR.UpdatedRC : RC;
+
+ // If the CGSCC pass wasn't able to provide a valid updated SCC,
+ // the current SCC may simply need to be skipped if invalid.
+ if (UR.InvalidatedSCCs.count(C)) {
+ LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
+ break;
+ }
+ // Check that we didn't miss any update scenario.
+ assert(C->begin() != C->end() && "Cannot have an empty SCC!");
+
+ // We handle invalidating the CGSCC analysis manager's information
+ // for the (potentially updated) SCC here. Note that any other SCCs
+ // whose structure has changed should have been invalidated by
+ // whatever was updating the call graph. This SCC gets invalidated
+ // late as it contains the nodes that were actively being
+ // processed.
+ CGAM.invalidate(*C, PassPA);
+
+ // Then intersect the preserved set so that invalidation of module
+ // analyses will eventually occur when the module pass completes.
+ // Also intersect with the cross-SCC preserved set to capture any
+ // cross-SCC invalidation.
+ UR.CrossSCCPA.intersect(PassPA);
+ PA.intersect(std::move(PassPA));
+
+ // The pass may have restructured the call graph and refined the
+ // current SCC and/or RefSCC. We need to update our current SCC and
+ // RefSCC pointers to follow these. Also, when the current SCC is
+ // refined, re-run the SCC pass over the newly refined SCC in order
+ // to observe the most precise SCC model available. This inherently
+ // cannot cycle excessively as it only happens when we split SCCs
+ // apart, at most converging on a DAG of single nodes.
+ // FIXME: If we ever start having RefSCC passes, we'll want to
+ // iterate there too.
+ if (UR.UpdatedC)
+ LLVM_DEBUG(dbgs()
+ << "Re-running SCC passes after a refinement of the "
+ "current SCC: "
+ << *UR.UpdatedC << "\n");
+
+ // Note that both `C` and `RC` may at this point refer to deleted,
+ // invalid SCC and RefSCCs respectively. But we will short circuit
+ // the processing when we check them in the loop above.
+ } while (UR.UpdatedC);
+ } while (!CWorklist.empty());
+
+ // We only need to keep internal inlined edge information within
+ // a RefSCC, clear it to save on space and let the next time we visit
+ // any of these functions have a fresh start.
+ InlinedInternalEdges.clear();
+ } while (!RCWorklist.empty());
+ }
+
+ // By definition we preserve the call garph, all SCC analyses, and the
+ // analysis proxies by handling them above and in any nested pass managers.
+ PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
+ PA.preserve<LazyCallGraphAnalysis>();
+ PA.preserve<CGSCCAnalysisManagerModuleProxy>();
+ PA.preserve<FunctionAnalysisManagerModuleProxy>();
+ return PA;
+}
+
// Clear out the debug logging macro.
#undef DEBUG_TYPE