return;
const Type *BaseType = ArrayTy->getElementType().getTypePtr();
- // It is possible that the type of the base expression after IgnoreParenCasts
- // is incomplete, even though the type of the base expression before
- // IgnoreParenCasts is complete (see PR39746 for an example). In this case we
- // have no information about whether the array access is out-of-bounds.
- if (BaseType->isIncompleteType())
- return;
Expr::EvalResult Result;
if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
ND = ME->getMemberDecl();
if (index.isUnsigned() || !index.isNegative()) {
+ // It is possible that the type of the base expression after
+ // IgnoreParenCasts is incomplete, even though the type of the base
+ // expression before IgnoreParenCasts is complete (see PR39746 for an
+ // example). In this case we have no information about whether the array
+ // access exceeds the array bounds. However we can still diagnose an array
+ // access which precedes the array bounds.
+ if (BaseType->isIncompleteType())
+ return;
+
llvm::APInt size = ArrayTy->getSize();
if (!size.isStrictlyPositive())
return;
namespace PR39746 {
struct S;
- extern S xxx[2];
+ extern S xxx[2]; // expected-note {{array 'xxx' declared here}}
class C {};
C &f() { return reinterpret_cast<C *>(xxx)[1]; } // no-warning
+ // We have no info on whether this is out-of-bounds.
C &g() { return reinterpret_cast<C *>(xxx)[2]; } // no-warning
+ // We can still diagnose this.
+ C &h() { return reinterpret_cast<C *>(xxx)[-1]; } // expected-warning {{array index -1 is before the beginning of the array}}
}