]> granicus.if.org Git - llvm/commitdiff
[InstCombine] extend rotate-left-by-constant canonicalization to funnel shift
authorSanjay Patel <spatel@rotateright.com>
Mon, 18 Mar 2019 14:10:11 +0000 (14:10 +0000)
committerSanjay Patel <spatel@rotateright.com>
Mon, 18 Mar 2019 14:10:11 +0000 (14:10 +0000)
Follow-up to:
rL356338

Rotates are a special case of funnel shift where the 2 input operands
are the same value, but that does not need to be a restriction for the
canonicalization when the shift amount is a constant.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@356369 91177308-0d34-0410-b5e6-96231b3b80d8

lib/Transforms/InstCombine/InstCombineCalls.cpp
test/Transforms/InstCombine/fsh.ll

index bdc235f247d6e5bfbb198c0ca151473bd727fdd1..938517e64c39d2c2ed94361da7f39ba2ebe5d676 100644 (file)
@@ -2006,28 +2006,29 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
         II->setArgOperand(2, ModuloC);
         return II;
       }
-      // Canonicalize rotate right by constant to rotate left. This is not
-      // entirely arbitrary. For historical reasons, the backend may recognize
-      // rotate left patterns but miss rotate right patterns.
-      if (II->getIntrinsicID() == Intrinsic::fshr && Op0 == Op1) {
-        // fshr X, X, C --> fshl X, X, (BitWidth - C)
+      // Canonicalize funnel shift right by constant to funnel shift left. This
+      // is not entirely arbitrary. For historical reasons, the backend may
+      // recognize rotate left patterns but miss rotate right patterns.
+      if (II->getIntrinsicID() == Intrinsic::fshr) {
+        // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
         assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
                ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
                "Shift amount expected to be modulo bitwidth");
         Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
         Module *Mod = II->getModule();
         Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
-        return CallInst::Create(Fshl, { Op0, Op0, LeftShiftC });
+        return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
       }
     }
 
+    // TODO: Pull this into the block above. We can handle semi-arbitrary vector
+    // shift amount constants as well as splats.
     const APInt *SA;
     if (match(II->getArgOperand(2), m_APInt(SA))) {
       uint64_t ShiftAmt = SA->urem(BitWidth);
       assert(ShiftAmt != 0 && "SimplifyCall should have handled zero shift");
-      // Normalize to funnel shift left.
-      if (II->getIntrinsicID() == Intrinsic::fshr)
-        ShiftAmt = BitWidth - ShiftAmt;
+      assert(II->getIntrinsicID() == Intrinsic::fshl &&
+             "All funnel shifts by simple constants should go left");
 
       // fshl(X, 0, C) -> shl X, C
       // fshl(X, undef, C) -> shl X, C
index 2a91a60e2c8e7276cfca04016e101401a2566c25..5aa3c63f1f5b1218155c2338e52a240096c8c2fd 100644 (file)
@@ -271,7 +271,7 @@ define <2 x i31> @fshl_op1_undef_vec(<2 x i31> %x) {
 
 define <2 x i32> @fshr_op0_undef_vec(<2 x i32> %x) {
 ; CHECK-LABEL: @fshr_op0_undef_vec(
-; CHECK-NEXT:    [[R:%.*]] = call <2 x i32> @llvm.fshr.v2i32(<2 x i32> undef, <2 x i32> [[X:%.*]], <2 x i32> <i32 31, i32 1>)
+; CHECK-NEXT:    [[R:%.*]] = call <2 x i32> @llvm.fshl.v2i32(<2 x i32> undef, <2 x i32> [[X:%.*]], <2 x i32> <i32 1, i32 31>)
 ; CHECK-NEXT:    ret <2 x i32> [[R]]
 ;
   %r = call <2 x i32> @llvm.fshr.v2i32(<2 x i32> undef, <2 x i32> %x, <2 x i32> <i32 -1, i32 33>)
@@ -280,7 +280,7 @@ define <2 x i32> @fshr_op0_undef_vec(<2 x i32> %x) {
 
 define <2 x i32> @fshr_op1_zero_vec(<2 x i32> %x) {
 ; CHECK-LABEL: @fshr_op1_zero_vec(
-; CHECK-NEXT:    [[R:%.*]] = call <2 x i32> @llvm.fshr.v2i32(<2 x i32> [[X:%.*]], <2 x i32> zeroinitializer, <2 x i32> <i32 31, i32 1>)
+; CHECK-NEXT:    [[R:%.*]] = call <2 x i32> @llvm.fshl.v2i32(<2 x i32> [[X:%.*]], <2 x i32> zeroinitializer, <2 x i32> <i32 1, i32 31>)
 ; CHECK-NEXT:    ret <2 x i32> [[R]]
 ;
   %r = call <2 x i32> @llvm.fshr.v2i32(<2 x i32> %x, <2 x i32> zeroinitializer, <2 x i32> <i32 -1, i32 33>)
@@ -355,7 +355,7 @@ define i32 @fshl_constant_shift_amount_modulo_bitwidth(i32 %x, i32 %y) {
 
 define i33 @fshr_constant_shift_amount_modulo_bitwidth(i33 %x, i33 %y) {
 ; CHECK-LABEL: @fshr_constant_shift_amount_modulo_bitwidth(
-; CHECK-NEXT:    [[R:%.*]] = call i33 @llvm.fshr.i33(i33 [[X:%.*]], i33 [[Y:%.*]], i33 1)
+; CHECK-NEXT:    [[R:%.*]] = call i33 @llvm.fshl.i33(i33 [[X:%.*]], i33 [[Y:%.*]], i33 32)
 ; CHECK-NEXT:    ret i33 [[R]]
 ;
   %r = call i33 @llvm.fshr.i33(i33 %x, i33 %y, i33 34)
@@ -376,7 +376,7 @@ define i33 @fshr_constant_shift_amount_modulo_bitwidth_constexpr(i33 %x, i33 %y)
 
 define <2 x i32> @fshr_constant_shift_amount_modulo_bitwidth_vec(<2 x i32> %x, <2 x i32> %y) {
 ; CHECK-LABEL: @fshr_constant_shift_amount_modulo_bitwidth_vec(
-; CHECK-NEXT:    [[R:%.*]] = call <2 x i32> @llvm.fshr.v2i32(<2 x i32> [[X:%.*]], <2 x i32> [[Y:%.*]], <2 x i32> <i32 2, i32 31>)
+; CHECK-NEXT:    [[R:%.*]] = call <2 x i32> @llvm.fshl.v2i32(<2 x i32> [[X:%.*]], <2 x i32> [[Y:%.*]], <2 x i32> <i32 30, i32 1>)
 ; CHECK-NEXT:    ret <2 x i32> [[R]]
 ;
   %r = call <2 x i32> @llvm.fshr.v2i32(<2 x i32> %x, <2 x i32> %y, <2 x i32> <i32 34, i32 -1>)
@@ -466,7 +466,7 @@ define i32 @fshl_both_ops_demanded(i32 %x, i32 %y) {
 
 define i33 @fshr_both_ops_demanded(i33 %x, i33 %y) {
 ; CHECK-LABEL: @fshr_both_ops_demanded(
-; CHECK-NEXT:    [[Z:%.*]] = call i33 @llvm.fshr.i33(i33 [[X:%.*]], i33 [[Y:%.*]], i33 26)
+; CHECK-NEXT:    [[Z:%.*]] = call i33 @llvm.fshl.i33(i33 [[X:%.*]], i33 [[Y:%.*]], i33 7)
 ; CHECK-NEXT:    [[R:%.*]] = and i33 [[Z]], 192
 ; CHECK-NEXT:    ret i33 [[R]]
 ;