foldShiftByConstOfShiftByConst(BinaryOperator &I, const APInt *COp1,
InstCombiner::BuilderTy *Builder) {
Value *Op0 = I.getOperand(0);
- uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
+ unsigned TypeBits = Op0->getType()->getScalarSizeInBits();
// Find out if this is a shift of a shift by a constant.
BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
- if (!ShiftOp || !ShiftOp->isShift() ||
- !isa<ConstantInt>(ShiftOp->getOperand(1)))
+ if (!ShiftOp || !ShiftOp->isShift())
+ return nullptr;
+
+ const APInt *ShAmt1;
+ if (!match(ShiftOp->getOperand(1), m_APInt(ShAmt1)))
return nullptr;
+ // Check for (X << c1) << c2 and (X >> c1) >> c2
+ if (I.getOpcode() == ShiftOp->getOpcode()) {
+ unsigned AmtSum = (*ShAmt1 + *COp1).getZExtValue();
+ // If this is an oversized composite shift, then unsigned shifts become
+ // zero (handled in InstSimplify) and ashr saturates.
+ if (AmtSum >= TypeBits) {
+ if (I.getOpcode() != Instruction::AShr)
+ return nullptr;
+ AmtSum = TypeBits - 1; // Saturate to 31 for i32 ashr.
+ }
+
+ return BinaryOperator::Create(I.getOpcode(), ShiftOp->getOperand(0),
+ ConstantInt::get(I.getType(), AmtSum));
+ }
+
// This is a constant shift of a constant shift. Be careful about hiding
// shl instructions behind bit masks. They are used to represent multiplies
// by a constant, and it is important that simple arithmetic expressions
// Combinations of right and left shifts will still be optimized in
// DAGCombine where scalar evolution no longer applies.
- ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
+ // FIXME: Everything under here should be extended to work with vector types.
+
+ auto *ShiftAmt1C = dyn_cast<ConstantInt>(ShiftOp->getOperand(1));
+ if (!ShiftAmt1C)
+ return nullptr;
+
uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
uint32_t ShiftAmt2 = COp1->getLimitedValue(TypeBits);
assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
if (ShiftAmt1 == 0)
return nullptr; // Will be simplified in the future.
- Value *X = ShiftOp->getOperand(0);
+ Value *X = ShiftOp->getOperand(0);
IntegerType *Ty = cast<IntegerType>(I.getType());
-
- // Check for (X << c1) << c2 and (X >> c1) >> c2
- if (I.getOpcode() == ShiftOp->getOpcode()) {
- uint32_t AmtSum = ShiftAmt1 + ShiftAmt2; // Fold into one big shift.
- // If this is an oversized composite shift, then unsigned shifts become
- // zero (handled in InstSimplify) and ashr saturates.
- if (AmtSum >= TypeBits) {
- if (I.getOpcode() != Instruction::AShr)
- return nullptr;
- AmtSum = TypeBits - 1; // Saturate to 31 for i32 ashr.
- }
-
- return BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, AmtSum));
- }
-
if (ShiftAmt1 == ShiftAmt2) {
// If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
if (I.getOpcode() == Instruction::LShr &&
ret i32 %sh2
}
-; FIXME:
; (X >>s C1) >>s C2 --> X >>s (C1 + C2)
define <2 x i32> @ashr_ashr_splat_vec(<2 x i32> %x) {
; CHECK-LABEL: @ashr_ashr_splat_vec(
-; CHECK-NEXT: [[SH1:%.*]] = ashr <2 x i32> %x, <i32 5, i32 5>
-; CHECK-NEXT: [[SH2:%.*]] = ashr <2 x i32> [[SH1]], <i32 7, i32 7>
+; CHECK-NEXT: [[SH2:%.*]] = ashr <2 x i32> %x, <i32 12, i32 12>
; CHECK-NEXT: ret <2 x i32> [[SH2]]
;
%sh1 = ashr <2 x i32> %x, <i32 5, i32 5>
ret <2 x i32> %sh2
}
-; FIXME:
; (X >>s C1) >>s C2 --> X >>s (Bitwidth - 1)
define <2 x i32> @ashr_overshift_splat_vec(<2 x i32> %x) {
; CHECK-LABEL: @ashr_overshift_splat_vec(
-; CHECK-NEXT: [[SH1:%.*]] = ashr <2 x i32> %x, <i32 15, i32 15>
-; CHECK-NEXT: [[SH2:%.*]] = ashr <2 x i32> [[SH1]], <i32 17, i32 17>
+; CHECK-NEXT: [[SH2:%.*]] = ashr <2 x i32> %x, <i32 31, i32 31>
; CHECK-NEXT: ret <2 x i32> [[SH2]]
;
%sh1 = ashr <2 x i32> %x, <i32 15, i32 15>