} else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
ParmVarDecl *PVD = (ParmVarDecl *)FTI.ArgInfo[i].Param;
-
- // Function parameters cannot have abstract class types.
- if (RequireNonAbstractType(PVD->getLocation(), PVD->getType(),
- diag::err_abstract_type_in_decl,
- 1 /* parameter type */))
- InvalidDecl = true;
Params.push_back(PVD);
}
}
// FIXME: If a source translation tool needs to see the original type, then
// we need to consider storing both types (in ParmVarDecl)...
//
+
+ // Parameters can not be abstract class types.
+ if (RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
+ diag::err_abstract_type_in_decl,
+ 1 /* parameter type */))
+ D.setInvalidType(true);
+
if (parmDeclType->isArrayType()) {
// int x[restrict 4] -> int *restrict
parmDeclType = Context.getArrayDecayedType(parmDeclType);
if (!getLangOptions().CPlusPlus)
return false;
+
+ if (const ArrayType *AT = Context.getAsArrayType(T))
+ return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID);
const RecordType *RT = T->getAsRecordType();
if (!RT)
diag::err_invalid_incomplete_type_use, FullRange))
return ExprError();
+ if (RequireNonAbstractType(TyBeginLoc, Ty,
+ diag::err_allocation_of_abstract_type, 0))
+ return ExprError();
+
exprs.release();
return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc));
}
C c; // expected-error {{field type 'C' is an abstract class}}
};
+void t3(const C&);
+
+void f() {
+ C(); // expected-error {{allocation of an object of abstract type 'C'}}
+ t3(C()); // expected-error {{allocation of an object of abstract type 'C'}}
+}
+
+C e[2]; // expected-error {{variable type 'C' is an abstract class}}
+
+void t4(C c[2]); // expected-error {{parameter type 'C' is an abstract class}}
+
+void t5(void (*)(C)); // expected-error {{parameter type 'C' is an abstract class}}
+
+typedef void (*Func)(C); // expected-error {{parameter type 'C' is an abstract class}}
+void t6(Func);
+
+