const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
{
esp_err_t ret;
- bool did_flush, need_flush = false;
if (src_addr & 0xffff) {
return ESP_ERR_INVALID_ARG;
}
if (src_addr + size > g_rom_flashchip.chip_size) {
return ESP_ERR_INVALID_ARG;
}
+ // region which should be mapped
+ int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE;
+ int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE;
+ //prepare a linear pages array to feed into spi_flash_mmap_pages
+ int *pages=malloc(sizeof(int)*page_count);
+ if (pages==NULL) {
+ return ESP_ERR_NO_MEM;
+ }
+ for (int i = 0; i < page_count; i++) {
+ pages[i] = phys_page+i;
+ }
+ ret=spi_flash_mmap_pages(pages, page_count, memory, out_ptr, out_handle);
+ free(pages);
+ return ret;
+}
+
+esp_err_t IRAM_ATTR spi_flash_mmap_pages(int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
+ const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
+{
+ esp_err_t ret;
+ bool did_flush, need_flush = false;
+ if (!page_count) {
+ return ESP_ERR_INVALID_ARG;
+ }
+ for (int i = 0; i < page_count; i++) {
+ if (pages[i] < 0 || pages[i]*SPI_FLASH_MMU_PAGE_SIZE >= g_rom_flashchip.chip_size) {
+ return ESP_ERR_INVALID_ARG;
+ }
+ }
mmap_entry_t* new_entry = (mmap_entry_t*) malloc(sizeof(mmap_entry_t));
if (new_entry == 0) {
return ESP_ERR_NO_MEM;
spi_flash_disable_interrupts_caches_and_other_cpu();
- did_flush = spi_flash_ensure_unmodified_region(src_addr, size);
-
+ did_flush = 0;
+ for (int i = 0; i < page_count; i++) {
+ if (spi_flash_ensure_unmodified_region(pages[i]*SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMU_PAGE_SIZE)) {
+ did_flush = 1;
+ }
+ }
spi_flash_mmap_init();
// figure out the memory region where we should look for pages
int region_begin; // first page to check
region_size = 3 * 64 - region_begin;
region_addr = VADDR1_FIRST_USABLE_ADDR;
}
- // region which should be mapped
- int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE;
- int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE;
+ if (region_size < page_count) {
+ return ESP_ERR_NO_MEM;
+ }
// The following part searches for a range of MMU entries which can be used.
// Algorithm is essentially naïve strstr algorithm, except that unused MMU
// entries are treated as wildcards.
int start;
int end = region_begin + region_size - page_count;
for (start = region_begin; start < end; ++start) {
- int page = phys_page;
+ int pageno = 0;
int pos;
- for (pos = start; pos < start + page_count; ++pos, ++page) {
+ for (pos = start; pos < start + page_count; ++pos, ++pageno) {
int table_val = (int) DPORT_PRO_FLASH_MMU_TABLE[pos];
uint8_t refcnt = s_mmap_page_refcnt[pos];
- if (refcnt != 0 && table_val != page) {
+ if (refcnt != 0 && table_val != pages[pageno]) {
break;
}
}
*out_ptr = NULL;
ret = ESP_ERR_NO_MEM;
} else {
- // set up mapping using pages [start, start + page_count)
- uint32_t entry_val = (uint32_t) phys_page;
- for (int i = start; i != start + page_count; ++i, ++entry_val) {
+ // set up mapping using pages
+ uint32_t pageno = 0;
+ for (int i = start; i != start + page_count; ++i, ++pageno) {
// sanity check: we won't reconfigure entries with non-zero reference count
assert(s_mmap_page_refcnt[i] == 0 ||
- (DPORT_PRO_FLASH_MMU_TABLE[i] == entry_val &&
- DPORT_APP_FLASH_MMU_TABLE[i] == entry_val));
+ (DPORT_PRO_FLASH_MMU_TABLE[i] == pages[pageno] &&
+ DPORT_APP_FLASH_MMU_TABLE[i] == pages[pageno]));
if (s_mmap_page_refcnt[i] == 0) {
- if (DPORT_PRO_FLASH_MMU_TABLE[i] != entry_val || DPORT_APP_FLASH_MMU_TABLE[i] != entry_val) {
- DPORT_PRO_FLASH_MMU_TABLE[i] = entry_val;
- DPORT_APP_FLASH_MMU_TABLE[i] = entry_val;
+ if (DPORT_PRO_FLASH_MMU_TABLE[i] != pages[pageno] || DPORT_APP_FLASH_MMU_TABLE[i] != pages[pageno]) {
+ DPORT_PRO_FLASH_MMU_TABLE[i] = pages[pageno];
+ DPORT_APP_FLASH_MMU_TABLE[i] = pages[pageno];
need_flush = true;
}
}
esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
const void** out_ptr, spi_flash_mmap_handle_t* out_handle);
+/**
+ * @brief Map sequences of pages of flash memory into data or instruction address space
+ *
+ * This function allocates sufficient number of 64k MMU pages and configures
+ * them to map the indicated pages of flash memory contiguously into data address
+ * space or into instruction address space. In this respect, it works in a similar
+ * way as spi_flash_mmap but it allows mapping a (maybe non-contiguous) set of pages
+ * into a contiguous region of memory.
+ *
+ * @param pages An array of numbers indicating the 64K pages in flash to be mapped
+ * contiguously into memory. These indicate the indexes of the 64K pages,
+ * not the byte-size addresses as used in other functions.
+ * @param pagecount Size of the pages array
+ * @param memory Memory space where the region should be mapped
+ * @param out_ptr Output, pointer to the mapped memory region
+ * @param out_handle Output, handle which should be used for spi_flash_munmap call
+ *
+ * @return ESP_OK on success, ESP_ERR_NO_MEM if pages can not be allocated
+ */
+esp_err_t spi_flash_mmap_pages(int *pages, size_t pagecount, spi_flash_mmap_memory_t memory,
+ const void** out_ptr, spi_flash_mmap_handle_t* out_handle);
+
+
/**
* @brief Release region previously obtained using spi_flash_mmap
*
}
+TEST_CASE("Can mmap unordered pages into contiguous memory", "[spi_flash]")
+{
+ int nopages;
+ int *pages;
+ int startpage;
+
+ setup_mmap_tests();
+ nopages=(end-start)/SPI_FLASH_MMU_PAGE_SIZE;
+ pages=alloca(sizeof(int)*nopages);
+
+ startpage=start/SPI_FLASH_MMU_PAGE_SIZE;
+
+ //make inverse mapping: virt 0 -> page (nopages-1), virt 1 -> page (nopages-2), ...
+ for (int i=0; i<nopages; i++) {
+ pages[i]=startpage+(nopages-1)-i;
+ printf("Offset %x page %d\n", i*0x10000, pages[i]);
+ }
+
+ printf("Attempting mapping of unordered pages to contiguous memory area\n");
+
+ spi_flash_mmap_handle_t handle1;
+ const void *ptr1;
+ ESP_ERROR_CHECK( spi_flash_mmap_pages(pages, nopages, SPI_FLASH_MMAP_DATA, &ptr1, &handle1) );
+ printf("mmap_res: handle=%d ptr=%p\n", handle1, ptr1);
+
+ spi_flash_mmap_dump();
+
+ srand(0);
+ const uint32_t *data = (const uint32_t *) ptr1;
+ for (int block = 0; block < nopages; ++block) {
+ for (int sector = 0; sector < 16; ++sector) {
+ for (uint32_t word = 0; word < 1024; ++word) {
+ TEST_ASSERT_EQUAL_UINT32(rand(), data[(((nopages-1)-block) * 16 + sector) * 1024 + word]);
+ }
+ }
+ }
+
+ printf("Unmapping handle1\n");
+ spi_flash_munmap(handle1);
+ spi_flash_mmap_dump();
+}
+
+
TEST_CASE("flash_mmap invalidates just-written data", "[spi_flash]")
{
const void *ptr1;