+1.6 pre-beta
+============
+
+### Significant changes relative to 1.5.2:
+
+1. Added AVX2 SIMD implementations of the colorspace conversion, chroma
+downsampling and upsampling, and integer quantization algorithms. This speeds
+up the compression of RGB images by approximately 10-20% when using 64-bit code
+and 8-16% when using 32-bit code, and the decompression of RGB images by
+approximately 6-15% when using 64-bit code and 4-12% when using 32-bit code.
+(As tested on a 3 GHz Intel Core i7. Actual mileage may vary.)
+
+
1.5.2
=====
==========
libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2,
-NEON, AltiVec) to accelerate baseline JPEG compression and decompression on
-x86, x86-64, ARM, and PowerPC systems. On such systems, libjpeg-turbo is
+AVX2, NEON, AltiVec) to accelerate baseline JPEG compression and decompression
+on x86, x86-64, ARM, and PowerPC systems. On such systems, libjpeg-turbo is
generally 2-6x as fast as libjpeg, all else being equal. On other types of
systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by
virtue of its highly-optimized Huffman coding routines. In many cases, the
-libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2, NEON, AltiVec) to accelerate baseline JPEG compression and decompression on x86, x86-64, ARM, and PowerPC systems. On such systems, libjpeg-turbo is generally 2-6x as fast as libjpeg, all else being equal. On other types of systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by virtue of its highly-optimized Huffman coding routines. In many cases, the performance of libjpeg-turbo rivals that of proprietary high-speed JPEG codecs.
+libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2, AVX2, NEON, AltiVec) to accelerate baseline JPEG compression and decompression on x86, x86-64, ARM, and PowerPC systems. On such systems, libjpeg-turbo is generally 2-6x as fast as libjpeg, all else being equal. On other types of systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by virtue of its highly-optimized Huffman coding routines. In many cases, the performance of libjpeg-turbo rivals that of proprietary high-speed JPEG codecs.
libjpeg-turbo implements both the traditional libjpeg API as well as the less powerful but more straightforward TurboJPEG API. libjpeg-turbo also features colorspace extensions that allow it to compress from/decompress to 32-bit and big-endian pixel buffers (RGBX, XBGR, etc.), as well as a full-featured Java interface.
Installed-Size: {__SIZE}
Description: A SIMD-accelerated JPEG codec that provides both the libjpeg and TurboJPEG APIs
libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2,
- NEON, AltiVec) to accelerate baseline JPEG compression and decompression on
- x86, x86-64, ARM, and PowerPC systems. On such systems, libjpeg-turbo is
+ AVX2, NEON, AltiVec) to accelerate baseline JPEG compression and decompression
+ on x86, x86-64, ARM, and PowerPC systems. On such systems, libjpeg-turbo is
generally 2-6x as fast as libjpeg, all else being equal. On other types of
systems, libjpeg-turbo can still outperform libjpeg by a significant amount,
by virtue of its highly-optimized Huffman coding routines. In many cases, the
%description
libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2,
-NEON, AltiVec) to accelerate baseline JPEG compression and decompression on
-x86, x86-64, ARM, and PowerPC systems. On such systems, libjpeg-turbo is
+AVX2, NEON, AltiVec) to accelerate baseline JPEG compression and decompression
+on x86, x86-64, ARM, and PowerPC systems. On such systems, libjpeg-turbo is
generally 2-6x as fast as libjpeg, all else being equal. On other types of
systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by
virtue of its highly-optimized Huffman coding routines. In many cases, the