]> granicus.if.org Git - llvm/commitdiff
[SparsePropagation] Enable interprocedural analysis
authorMatthew Simpson <mssimpso@codeaurora.org>
Mon, 16 Oct 2017 17:44:17 +0000 (17:44 +0000)
committerMatthew Simpson <mssimpso@codeaurora.org>
Mon, 16 Oct 2017 17:44:17 +0000 (17:44 +0000)
This patch adds the ability to perform IPSCCP-like interprocedural analysis to
the generic sparse propagation solver. The patch gives clients the ability to
define their own custom LatticeKey types that the generic solver maps to custom
LatticeVal types. The custom lattice keys can be used, for example, to
distinguish among mappings for regular values, values returned from functions,
and values stored in global variables. Clients are responsible for defining how
to convert between LatticeKeys and LLVM Values by providing a specialization of
the LatticeKeyInfo template.

The added unit tests demonstrate how the generic solver can be used to perform
a simplified version of interprocedural constant propagation.

Differential Revision: https://reviews.llvm.org/D37353

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@315919 91177308-0d34-0410-b5e6-96231b3b80d8

include/llvm/Analysis/SparsePropagation.h
unittests/Analysis/CMakeLists.txt
unittests/Analysis/SparsePropagation.cpp [new file with mode: 0644]

index a51ac16c5bb9c3738551b4361c4408f6cbbafd7a..1b8df03b3a1bec45c332a6620a4b8ab526b6a597 100644 (file)
 
 namespace llvm {
 
-template <class LatticeVal> class SparseSolver;
+/// A template for translating between LLVM Values and LatticeKeys. Clients must
+/// provide a specialization of LatticeKeyInfo for their LatticeKey type.
+template <class LatticeKey> struct LatticeKeyInfo {
+  // static inline Value *getValueFromLatticeKey(LatticeKey Key);
+  // static inline LatticeKey getLatticeKeyFromValue(Value *V);
+};
+
+template <class LatticeKey, class LatticeVal,
+          class KeyInfo = LatticeKeyInfo<LatticeKey>>
+class SparseSolver;
 
 /// AbstractLatticeFunction - This class is implemented by the dataflow instance
 /// to specify what the lattice values are and how they handle merges etc.  This
 /// gives the client the power to compute lattice values from instructions,
 /// constants, etc.  The current requirement is that lattice values must be
-/// copyable.  At the moment, nothing tries to avoid copying.
-
-
-template <class LatticeVal> class AbstractLatticeFunction {
+/// copyable.  At the moment, nothing tries to avoid copying.  Additionally,
+/// lattice keys must be able to be used as keys of a mapping data structure.
+/// Internally, the generic solver currently uses a DenseMap to map lattice keys
+/// to lattice values.  If the lattice key is a non-standard type, a
+/// specialization of DenseMapInfo must be provided.
+template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
 private:
   LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
 
@@ -50,35 +61,21 @@ public:
   LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
   LatticeVal getUntrackedVal()   const { return UntrackedVal; }
 
-  /// IsUntrackedValue - If the specified Value is something that is obviously
-  /// uninteresting to the analysis (and would always return UntrackedVal),
-  /// this function can return true to avoid pointless work.
-  virtual bool IsUntrackedValue(Value *V) { return false; }
+  /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
+  /// to the analysis (i.e., it would always return UntrackedVal), this
+  /// function can return true to avoid pointless work.
+  virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
 
-  /// ComputeConstant - Given a constant value, compute and return a lattice
-  /// value corresponding to the specified constant.
-  virtual LatticeVal ComputeConstant(Constant *C) {
-    return getOverdefinedVal(); // always safe
+  /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
+  /// given LatticeKey.
+  virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
+    return getOverdefinedVal();
   }
 
   /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
   /// one that the we want to handle through ComputeInstructionState.
   virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
 
-  /// GetConstant - If the specified lattice value is representable as an LLVM
-  /// constant value, return it.  Otherwise return null.  The returned value
-  /// must be in the same LLVM type as Val.
-  virtual Constant *GetConstant(LatticeVal LV, Value *Val,
-                                SparseSolver<LatticeVal> &SS) {
-    return nullptr;
-  }
-
-  /// ComputeArgument - Given a formal argument value, compute and return a
-  /// lattice value corresponding to the specified argument.
-  virtual LatticeVal ComputeArgument(Argument *I) {
-    return getOverdefinedVal(); // always safe
-  }
-
   /// MergeValues - Compute and return the merge of the two specified lattice
   /// values.  Merging should only move one direction down the lattice to
   /// guarantee convergence (toward overdefined).
@@ -86,27 +83,40 @@ public:
     return getOverdefinedVal(); // always safe, never useful.
   }
 
-  /// ComputeInstructionState - Given an instruction and a vector of its operand
-  /// values, compute the result value of the instruction.
-  virtual LatticeVal ComputeInstructionState(Instruction &I,
-                                             SparseSolver<LatticeVal> &SS) {
-    return getOverdefinedVal(); // always safe, never useful.
+  /// ComputeInstructionState - Compute the LatticeKeys that change as a result
+  /// of executing instruction \p I. Their associated LatticeVals are store in
+  /// \p ChangedValues.
+  virtual void
+  ComputeInstructionState(Instruction &I,
+                          DenseMap<LatticeKey, LatticeVal> &ChangedValues,
+                          SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
+
+  /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
+  virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
+
+  /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
+  virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
+
+  /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
+  /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
+  /// returned value must have the same type. This function is used by the
+  /// generic solver in attempting to resolve branch and switch conditions.
+  virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
+    return nullptr;
   }
-
-  /// PrintValue - Render the specified lattice value to the specified stream.
-  virtual void PrintValue(LatticeVal V, raw_ostream &OS);
 };
 
 /// SparseSolver - This class is a general purpose solver for Sparse Conditional
 /// Propagation with a programmable lattice function.
-template <class LatticeVal> class SparseSolver {
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+class SparseSolver {
 
   /// LatticeFunc - This is the object that knows the lattice and how to
   /// compute transfer functions.
-  AbstractLatticeFunction<LatticeVal> *LatticeFunc;
+  AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
 
-  /// ValueState - Holds the lattice state associated with LLVM values.
-  DenseMap<Value *, LatticeVal> ValueState;
+  /// ValueState - Holds the LatticeVals associated with LatticeKeys.
+  DenseMap<LatticeKey, LatticeVal> ValueState;
 
   /// BBExecutable - Holds the basic blocks that are executable.
   SmallPtrSet<BasicBlock *, 16> BBExecutable;
@@ -124,28 +134,29 @@ template <class LatticeVal> class SparseSolver {
   std::set<Edge> KnownFeasibleEdges;
 
 public:
-  explicit SparseSolver(AbstractLatticeFunction<LatticeVal> *Lattice)
+  explicit SparseSolver(
+      AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
       : LatticeFunc(Lattice) {}
   SparseSolver(const SparseSolver &) = delete;
   SparseSolver &operator=(const SparseSolver &) = delete;
 
   /// Solve - Solve for constants and executable blocks.
-  void Solve(Function &F);
+  void Solve();
 
-  void Print(Function &F, raw_ostream &OS) const;
+  void Print(raw_ostream &OS) const;
 
   /// getExistingValueState - Return the LatticeVal object corresponding to the
   /// given value from the ValueState map. If the value is not in the map,
   /// UntrackedVal is returned, unlike the getValueState method.
-  LatticeVal getExistingValueState(Value *V) const {
-    auto I = ValueState.find(V);
+  LatticeVal getExistingValueState(LatticeKey Key) const {
+    auto I = ValueState.find(Key);
     return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
   }
 
   /// getValueState - Return the LatticeVal object corresponding to the given
   /// value from the ValueState map. If the value is not in the map, its state
   /// is initialized.
-  LatticeVal getValueState(Value *V);
+  LatticeVal getValueState(LatticeKey Key);
 
   /// isEdgeFeasible - Return true if the control flow edge from the 'From'
   /// basic block to the 'To' basic block is currently feasible.  If
@@ -162,15 +173,16 @@ public:
     return BBExecutable.count(BB);
   }
 
-private:
-  /// UpdateState - When the state for some instruction is potentially updated,
-  /// this function notices and adds I to the worklist if needed.
-  void UpdateState(Instruction &Inst, LatticeVal V);
-
   /// MarkBlockExecutable - This method can be used by clients to mark all of
   /// the blocks that are known to be intrinsically live in the processed unit.
   void MarkBlockExecutable(BasicBlock *BB);
 
+private:
+  /// UpdateState - When the state of some LatticeKey is potentially updated to
+  /// the given LatticeVal, this function notices and adds the LLVM value
+  /// corresponding the key to the work list, if needed.
+  void UpdateState(LatticeKey Key, LatticeVal LV);
+
   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
   /// work list if it is not already executable.
   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
@@ -189,9 +201,9 @@ private:
 //                  AbstractLatticeFunction Implementation
 //===----------------------------------------------------------------------===//
 
-template <class LatticeVal>
-void AbstractLatticeFunction<LatticeVal>::PrintValue(LatticeVal V,
-                                                     raw_ostream &OS) {
+template <class LatticeKey, class LatticeVal>
+void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
+    LatticeVal V, raw_ostream &OS) {
   if (V == UndefVal)
     OS << "undefined";
   else if (V == OverdefinedVal)
@@ -202,57 +214,59 @@ void AbstractLatticeFunction<LatticeVal>::PrintValue(LatticeVal V,
     OS << "unknown lattice value";
 }
 
+template <class LatticeKey, class LatticeVal>
+void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
+    LatticeKey Key, raw_ostream &OS) {
+  OS << "unknown lattice key";
+}
+
 //===----------------------------------------------------------------------===//
 //                          SparseSolver Implementation
 //===----------------------------------------------------------------------===//
 
-template <class LatticeVal>
-LatticeVal SparseSolver<LatticeVal>::getValueState(Value *V) {
-  auto I = ValueState.find(V);
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+LatticeVal
+SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
+  auto I = ValueState.find(Key);
   if (I != ValueState.end())
     return I->second; // Common case, in the map
 
-  LatticeVal LV;
-  if (LatticeFunc->IsUntrackedValue(V))
+  if (LatticeFunc->IsUntrackedValue(Key))
     return LatticeFunc->getUntrackedVal();
-  else if (Constant *C = dyn_cast<Constant>(V))
-    LV = LatticeFunc->ComputeConstant(C);
-  else if (Argument *A = dyn_cast<Argument>(V))
-    LV = LatticeFunc->ComputeArgument(A);
-  else if (!isa<Instruction>(V))
-    // All other non-instructions are overdefined.
-    LV = LatticeFunc->getOverdefinedVal();
-  else
-    // All instructions are underdefined by default.
-    LV = LatticeFunc->getUndefVal();
+  LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
 
   // If this value is untracked, don't add it to the map.
   if (LV == LatticeFunc->getUntrackedVal())
     return LV;
-  return ValueState[V] = LV;
+  return ValueState[Key] = LV;
 }
 
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::UpdateState(Instruction &Inst, LatticeVal V) {
-  auto I = ValueState.find(&Inst);
-  if (I != ValueState.end() && I->second == V)
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
+                                                                LatticeVal LV) {
+  auto I = ValueState.find(Key);
+  if (I != ValueState.end() && I->second == LV)
     return; // No change.
 
-  // An update.  Visit uses of I.
-  ValueState[&Inst] = V;
-  ValueWorkList.push_back(&Inst);
+  // Update the state of the given LatticeKey and add its corresponding LLVM
+  // value to the work list.
+  ValueState[Key] = LV;
+  if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
+    ValueWorkList.push_back(V);
 }
 
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::MarkBlockExecutable(BasicBlock *BB) {
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
+    BasicBlock *BB) {
+  if (!BBExecutable.insert(BB).second)
+    return;
   DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
-  BBExecutable.insert(BB);  // Basic block is executable!
   BBWorkList.push_back(BB); // Add the block to the work list!
 }
 
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::markEdgeExecutable(BasicBlock *Source,
-                                                  BasicBlock *Dest) {
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
+    BasicBlock *Source, BasicBlock *Dest) {
   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
     return; // This edge is already known to be executable!
 
@@ -270,8 +284,8 @@ void SparseSolver<LatticeVal>::markEdgeExecutable(BasicBlock *Source,
   }
 }
 
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::getFeasibleSuccessors(
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
     TerminatorInst &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
   Succs.resize(TI.getNumSuccessors());
   if (TI.getNumSuccessors() == 0)
@@ -285,9 +299,11 @@ void SparseSolver<LatticeVal>::getFeasibleSuccessors(
 
     LatticeVal BCValue;
     if (AggressiveUndef)
-      BCValue = getValueState(BI->getCondition());
+      BCValue =
+          getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
     else
-      BCValue = getExistingValueState(BI->getCondition());
+      BCValue = getExistingValueState(
+          KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
 
     if (BCValue == LatticeFunc->getOverdefinedVal() ||
         BCValue == LatticeFunc->getUntrackedVal()) {
@@ -300,7 +316,9 @@ void SparseSolver<LatticeVal>::getFeasibleSuccessors(
     if (BCValue == LatticeFunc->getUndefVal())
       return;
 
-    Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
+    Constant *C =
+        dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
+            BCValue, BI->getCondition()->getType()));
     if (!C || !isa<ConstantInt>(C)) {
       // Non-constant values can go either way.
       Succs[0] = Succs[1] = true;
@@ -312,10 +330,8 @@ void SparseSolver<LatticeVal>::getFeasibleSuccessors(
     return;
   }
 
-  if (isa<InvokeInst>(TI)) {
-    // Invoke instructions successors are always executable.
-    // TODO: Could ask the lattice function if the value can throw.
-    Succs[0] = Succs[1] = true;
+  if (TI.isExceptional()) {
+    Succs.assign(Succs.size(), true);
     return;
   }
 
@@ -327,9 +343,10 @@ void SparseSolver<LatticeVal>::getFeasibleSuccessors(
   SwitchInst &SI = cast<SwitchInst>(TI);
   LatticeVal SCValue;
   if (AggressiveUndef)
-    SCValue = getValueState(SI.getCondition());
+    SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
   else
-    SCValue = getExistingValueState(SI.getCondition());
+    SCValue = getExistingValueState(
+        KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
 
   if (SCValue == LatticeFunc->getOverdefinedVal() ||
       SCValue == LatticeFunc->getUntrackedVal()) {
@@ -342,7 +359,8 @@ void SparseSolver<LatticeVal>::getFeasibleSuccessors(
   if (SCValue == LatticeFunc->getUndefVal())
     return;
 
-  Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
+  Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
+      SCValue, SI.getCondition()->getType()));
   if (!C || !isa<ConstantInt>(C)) {
     // All destinations are executable!
     Succs.assign(TI.getNumSuccessors(), true);
@@ -352,9 +370,9 @@ void SparseSolver<LatticeVal>::getFeasibleSuccessors(
   Succs[Case.getSuccessorIndex()] = true;
 }
 
-template <class LatticeVal>
-bool SparseSolver<LatticeVal>::isEdgeFeasible(BasicBlock *From, BasicBlock *To,
-                                              bool AggressiveUndef) {
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
+    BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
   SmallVector<bool, 16> SuccFeasible;
   TerminatorInst *TI = From->getTerminator();
   getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
@@ -366,8 +384,9 @@ bool SparseSolver<LatticeVal>::isEdgeFeasible(BasicBlock *From, BasicBlock *To,
   return false;
 }
 
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::visitTerminatorInst(TerminatorInst &TI) {
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminatorInst(
+    TerminatorInst &TI) {
   SmallVector<bool, 16> SuccFeasible;
   getFeasibleSuccessors(TI, SuccFeasible, true);
 
@@ -379,19 +398,22 @@ void SparseSolver<LatticeVal>::visitTerminatorInst(TerminatorInst &TI) {
       markEdgeExecutable(BB, TI.getSuccessor(i));
 }
 
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::visitPHINode(PHINode &PN) {
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
   // The lattice function may store more information on a PHINode than could be
   // computed from its incoming values.  For example, SSI form stores its sigma
   // functions as PHINodes with a single incoming value.
   if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
-    LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this);
-    if (IV != LatticeFunc->getUntrackedVal())
-      UpdateState(PN, IV);
+    DenseMap<LatticeKey, LatticeVal> ChangedValues;
+    LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
+    for (auto &ChangedValue : ChangedValues)
+      if (ChangedValue.second != LatticeFunc->getUntrackedVal())
+        UpdateState(ChangedValue.first, ChangedValue.second);
     return;
   }
 
-  LatticeVal PNIV = getValueState(&PN);
+  LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
+  LatticeVal PNIV = getValueState(Key);
   LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
 
   // If this value is already overdefined (common) just return.
@@ -401,7 +423,7 @@ void SparseSolver<LatticeVal>::visitPHINode(PHINode &PN) {
   // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
   // and slow us down a lot.  Just mark them overdefined.
   if (PN.getNumIncomingValues() > 64) {
-    UpdateState(PN, Overdefined);
+    UpdateState(Key, Overdefined);
     return;
   }
 
@@ -414,7 +436,8 @@ void SparseSolver<LatticeVal>::visitPHINode(PHINode &PN) {
       continue;
 
     // Merge in this value.
-    LatticeVal OpVal = getValueState(PN.getIncomingValue(i));
+    LatticeVal OpVal =
+        getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
     if (OpVal != PNIV)
       PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
 
@@ -423,11 +446,11 @@ void SparseSolver<LatticeVal>::visitPHINode(PHINode &PN) {
   }
 
   // Update the PHI with the compute value, which is the merge of the inputs.
-  UpdateState(PN, PNIV);
+  UpdateState(Key, PNIV);
 }
 
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::visitInst(Instruction &I) {
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
   // PHIs are handled by the propagation logic, they are never passed into the
   // transfer functions.
   if (PHINode *PN = dyn_cast<PHINode>(&I))
@@ -435,17 +458,18 @@ void SparseSolver<LatticeVal>::visitInst(Instruction &I) {
 
   // Otherwise, ask the transfer function what the result is.  If this is
   // something that we care about, remember it.
-  LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
-  if (IV != LatticeFunc->getUntrackedVal())
-    UpdateState(I, IV);
+  DenseMap<LatticeKey, LatticeVal> ChangedValues;
+  LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
+  for (auto &ChangedValue : ChangedValues)
+    if (ChangedValue.second != LatticeFunc->getUntrackedVal())
+      UpdateState(ChangedValue.first, ChangedValue.second);
 
   if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
     visitTerminatorInst(*TI);
 }
 
-template <class LatticeVal> void SparseSolver<LatticeVal>::Solve(Function &F) {
-  MarkBlockExecutable(&F.getEntryBlock());
-
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
   // Process the work lists until they are empty!
   while (!BBWorkList.empty() || !ValueWorkList.empty()) {
     // Process the value work list.
@@ -478,22 +502,24 @@ template <class LatticeVal> void SparseSolver<LatticeVal>::Solve(Function &F) {
   }
 }
 
-template <class LatticeVal>
-void SparseSolver<LatticeVal>::Print(Function &F, raw_ostream &OS) const {
-  OS << "\nFUNCTION: " << F.getName() << "\n";
-  for (auto &BB : F) {
-    if (!BBExecutable.count(&BB))
-      OS << "INFEASIBLE: ";
-    OS << "\t";
-    if (BB.hasName())
-      OS << BB.getName() << ":\n";
-    else
-      OS << "; anon bb\n";
-    for (auto &I : BB) {
-      LatticeFunc->PrintValue(getExistingValueState(&I), OS);
-      OS << I << "\n";
-    }
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
+    raw_ostream &OS) const {
+  if (ValueState.empty())
+    return;
 
+  LatticeKey Key;
+  LatticeVal LV;
+
+  OS << "ValueState:\n";
+  for (auto &Entry : ValueState) {
+    std::tie(Key, LV) = Entry;
+    if (LV == LatticeFunc->getUntrackedVal())
+      continue;
+    OS << "\t";
+    LatticeFunc->PrintLatticeVal(LV, OS);
+    OS << ": ";
+    LatticeFunc->PrintLatticeKey(Key, OS);
     OS << "\n";
   }
 }
index fabef12126c0b65739bd4ff04b20592f9924183b..65f2aeda4180cbff03cb4f1646790c0a032a0421 100644 (file)
@@ -22,6 +22,7 @@ add_llvm_unittest(AnalysisTests
   OrderedBasicBlockTest.cpp
   ProfileSummaryInfoTest.cpp
   ScalarEvolutionTest.cpp
+  SparsePropagation.cpp
   TargetLibraryInfoTest.cpp
   TBAATest.cpp
   UnrollAnalyzer.cpp
diff --git a/unittests/Analysis/SparsePropagation.cpp b/unittests/Analysis/SparsePropagation.cpp
new file mode 100644 (file)
index 0000000..298b140
--- /dev/null
@@ -0,0 +1,544 @@
+//===- SparsePropagation.cpp - Unit tests for the generic solver ----------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/SparsePropagation.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/IRBuilder.h"
+#include "gtest/gtest.h"
+using namespace llvm;
+
+namespace {
+/// To enable interprocedural analysis, we assign LLVM values to the following
+/// groups. The register group represents SSA registers, the return group
+/// represents the return values of functions, and the memory group represents
+/// in-memory values. An LLVM Value can technically be in more than one group.
+/// It's necessary to distinguish these groups so we can, for example, track a
+/// global variable separately from the value stored at its location.
+enum class IPOGrouping { Register, Return, Memory };
+
+/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
+/// The PointerIntPair header provides a DenseMapInfo specialization, so using
+/// these as LatticeKeys is fine.
+using TestLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
+} // namespace
+
+namespace llvm {
+/// A specialization of LatticeKeyInfo for TestLatticeKeys. The generic solver
+/// must translate between LatticeKeys and LLVM Values when adding Values to
+/// its work list and inspecting the state of control-flow related values.
+template <> struct LatticeKeyInfo<TestLatticeKey> {
+  static inline Value *getValueFromLatticeKey(TestLatticeKey Key) {
+    return Key.getPointer();
+  }
+  static inline TestLatticeKey getLatticeKeyFromValue(Value *V) {
+    return TestLatticeKey(V, IPOGrouping::Register);
+  }
+};
+} // namespace llvm
+
+namespace {
+/// This class defines a simple test lattice value that could be used for
+/// solving problems similar to constant propagation. The value is maintained
+/// as a PointerIntPair.
+class TestLatticeVal {
+public:
+  /// The states of the lattices value. Only the ConstantVal state is
+  /// interesting; the rest are special states used by the generic solver. The
+  /// UntrackedVal state differs from the other three in that the generic
+  /// solver uses it to avoid doing unnecessary work. In particular, when a
+  /// value moves to the UntrackedVal state, it's users are not notified.
+  enum TestLatticeStateTy {
+    UndefinedVal,
+    ConstantVal,
+    OverdefinedVal,
+    UntrackedVal
+  };
+
+  TestLatticeVal() : LatticeVal(nullptr, UndefinedVal) {}
+  TestLatticeVal(Constant *C, TestLatticeStateTy State)
+      : LatticeVal(C, State) {}
+
+  /// Return true if this lattice value is in the Constant state. This is used
+  /// for checking the solver results.
+  bool isConstant() const { return LatticeVal.getInt() == ConstantVal; }
+
+  /// Return true if this lattice value is in the Overdefined state. This is
+  /// used for checking the solver results.
+  bool isOverdefined() const { return LatticeVal.getInt() == OverdefinedVal; }
+
+  bool operator==(const TestLatticeVal &RHS) const {
+    return LatticeVal == RHS.LatticeVal;
+  }
+
+  bool operator!=(const TestLatticeVal &RHS) const {
+    return LatticeVal != RHS.LatticeVal;
+  }
+
+private:
+  /// A simple lattice value type for problems similar to constant propagation.
+  /// It holds the constant value and the lattice state.
+  PointerIntPair<const Constant *, 2, TestLatticeStateTy> LatticeVal;
+};
+
+/// This class defines a simple test lattice function that could be used for
+/// solving problems similar to constant propagation. The test lattice differs
+/// from a "real" lattice in a few ways. First, it initializes all return
+/// values, values stored in global variables, and arguments in the undefined
+/// state. This means that there are no limitations on what we can track
+/// interprocedurally. For simplicity, all global values in the tests will be
+/// given internal linkage, since this is not something this lattice function
+/// tracks. Second, it only handles the few instructions necessary for the
+/// tests.
+class TestLatticeFunc
+    : public AbstractLatticeFunction<TestLatticeKey, TestLatticeVal> {
+public:
+  /// Construct a new test lattice function with special values for the
+  /// Undefined, Overdefined, and Untracked states.
+  TestLatticeFunc()
+      : AbstractLatticeFunction(
+            TestLatticeVal(nullptr, TestLatticeVal::UndefinedVal),
+            TestLatticeVal(nullptr, TestLatticeVal::OverdefinedVal),
+            TestLatticeVal(nullptr, TestLatticeVal::UntrackedVal)) {}
+
+  /// Compute and return a TestLatticeVal for the given TestLatticeKey. For the
+  /// test analysis, a LatticeKey will begin in the undefined state, unless it
+  /// represents an LLVM Constant in the register grouping.
+  TestLatticeVal ComputeLatticeVal(TestLatticeKey Key) override {
+    if (Key.getInt() == IPOGrouping::Register)
+      if (auto *C = dyn_cast<Constant>(Key.getPointer()))
+        return TestLatticeVal(C, TestLatticeVal::ConstantVal);
+    return getUndefVal();
+  }
+
+  /// Merge the two given lattice values. This merge should be equivalent to
+  /// what is done for constant propagation. That is, the resulting lattice
+  /// value is constant only if the two given lattice values are constant and
+  /// hold the same value.
+  TestLatticeVal MergeValues(TestLatticeVal X, TestLatticeVal Y) override {
+    if (X == getUntrackedVal() || Y == getUntrackedVal())
+      return getUntrackedVal();
+    if (X == getOverdefinedVal() || Y == getOverdefinedVal())
+      return getOverdefinedVal();
+    if (X == getUndefVal() && Y == getUndefVal())
+      return getUndefVal();
+    if (X == getUndefVal())
+      return Y;
+    if (Y == getUndefVal())
+      return X;
+    if (X == Y)
+      return X;
+    return getOverdefinedVal();
+  }
+
+  /// Compute the lattice values that change as a result of executing the given
+  /// instruction. We only handle the few instructions needed for the tests.
+  void ComputeInstructionState(
+      Instruction &I, DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
+      SparseSolver<TestLatticeKey, TestLatticeVal> &SS) override {
+    switch (I.getOpcode()) {
+    case Instruction::Call:
+      return visitCallSite(cast<CallInst>(&I), ChangedValues, SS);
+    case Instruction::Ret:
+      return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
+    case Instruction::Store:
+      return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
+    default:
+      return visitInst(I, ChangedValues, SS);
+    }
+  }
+
+private:
+  /// Handle call sites. The state of a called function's argument is the merge
+  /// of the current formal argument state with the call site's corresponding
+  /// actual argument state. The call site state is the merge of the call site
+  /// state with the returned value state of the called function.
+  void visitCallSite(CallSite CS,
+                     DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
+                     SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
+    Function *F = CS.getCalledFunction();
+    Instruction *I = CS.getInstruction();
+    auto RegI = TestLatticeKey(I, IPOGrouping::Register);
+    if (!F) {
+      ChangedValues[RegI] = getOverdefinedVal();
+      return;
+    }
+    SS.MarkBlockExecutable(&F->front());
+    for (Argument &A : F->args()) {
+      auto RegFormal = TestLatticeKey(&A, IPOGrouping::Register);
+      auto RegActual =
+          TestLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register);
+      ChangedValues[RegFormal] =
+          MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
+    }
+    auto RetF = TestLatticeKey(F, IPOGrouping::Return);
+    ChangedValues[RegI] =
+        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
+  }
+
+  /// Handle return instructions. The function's return state is the merge of
+  /// the returned value state and the function's current return state.
+  void visitReturn(ReturnInst &I,
+                   DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
+                   SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
+    Function *F = I.getParent()->getParent();
+    if (F->getReturnType()->isVoidTy())
+      return;
+    auto RegR = TestLatticeKey(I.getReturnValue(), IPOGrouping::Register);
+    auto RetF = TestLatticeKey(F, IPOGrouping::Return);
+    ChangedValues[RetF] =
+        MergeValues(SS.getValueState(RegR), SS.getValueState(RetF));
+  }
+
+  /// Handle store instructions. If the pointer operand of the store is a
+  /// global variable, we attempt to track the value. The global variable state
+  /// is the merge of the stored value state with the current global variable
+  /// state.
+  void visitStore(StoreInst &I,
+                  DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
+                  SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
+    auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
+    if (!GV)
+      return;
+    auto RegVal = TestLatticeKey(I.getValueOperand(), IPOGrouping::Register);
+    auto MemPtr = TestLatticeKey(GV, IPOGrouping::Memory);
+    ChangedValues[MemPtr] =
+        MergeValues(SS.getValueState(RegVal), SS.getValueState(MemPtr));
+  }
+
+  /// Handle all other instructions. All other instructions are marked
+  /// overdefined.
+  void visitInst(Instruction &I,
+                 DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
+                 SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
+    auto RegI = TestLatticeKey(&I, IPOGrouping::Register);
+    ChangedValues[RegI] = getOverdefinedVal();
+  }
+};
+
+/// This class defines the common data used for all of the tests. The tests
+/// should add code to the module and then run the solver.
+class SparsePropagationTest : public testing::Test {
+protected:
+  LLVMContext Context;
+  Module M;
+  IRBuilder<> Builder;
+  TestLatticeFunc Lattice;
+  SparseSolver<TestLatticeKey, TestLatticeVal> Solver;
+
+public:
+  SparsePropagationTest()
+      : M("", Context), Builder(Context), Solver(&Lattice) {}
+};
+} // namespace
+
+/// Test that we mark discovered functions executable.
+///
+/// define internal void @f() {
+///   call void @g()
+///   ret void
+/// }
+///
+/// define internal void @g() {
+///   call void @f()
+///   ret void
+/// }
+///
+/// For this test, we initially mark "f" executable, and the solver discovers
+/// "g" because of the call in "f". The mutually recursive call in "g" also
+/// tests that we don't add a block to the basic block work list if it is
+/// already executable. Doing so would put the solver into an infinite loop.
+TEST_F(SparsePropagationTest, MarkBlockExecutable) {
+  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
+                                 GlobalValue::InternalLinkage, "f", &M);
+  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
+                                 GlobalValue::InternalLinkage, "g", &M);
+  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
+  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
+  Builder.SetInsertPoint(FEntry);
+  Builder.CreateCall(G);
+  Builder.CreateRetVoid();
+  Builder.SetInsertPoint(GEntry);
+  Builder.CreateCall(F);
+  Builder.CreateRetVoid();
+
+  Solver.MarkBlockExecutable(FEntry);
+  Solver.Solve();
+
+  EXPECT_TRUE(Solver.isBlockExecutable(GEntry));
+}
+
+/// Test that we propagate information through global variables.
+///
+/// @gv = internal global i64
+///
+/// define internal void @f() {
+///   store i64 1, i64* @gv
+///   ret void
+/// }
+///
+/// define internal void @g() {
+///   store i64 1, i64* @gv
+///   ret void
+/// }
+///
+/// For this test, we initially mark both "f" and "g" executable, and the
+/// solver computes the lattice state of the global variable as constant.
+TEST_F(SparsePropagationTest, GlobalVariableConstant) {
+  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
+                                 GlobalValue::InternalLinkage, "f", &M);
+  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
+                                 GlobalValue::InternalLinkage, "g", &M);
+  GlobalVariable *GV =
+      new GlobalVariable(M, Builder.getInt64Ty(), false,
+                         GlobalValue::InternalLinkage, nullptr, "gv");
+  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
+  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
+  Builder.SetInsertPoint(FEntry);
+  Builder.CreateStore(Builder.getInt64(1), GV);
+  Builder.CreateRetVoid();
+  Builder.SetInsertPoint(GEntry);
+  Builder.CreateStore(Builder.getInt64(1), GV);
+  Builder.CreateRetVoid();
+
+  Solver.MarkBlockExecutable(FEntry);
+  Solver.MarkBlockExecutable(GEntry);
+  Solver.Solve();
+
+  auto MemGV = TestLatticeKey(GV, IPOGrouping::Memory);
+  EXPECT_TRUE(Solver.getExistingValueState(MemGV).isConstant());
+}
+
+/// Test that we propagate information through global variables.
+///
+/// @gv = internal global i64
+///
+/// define internal void @f() {
+///   store i64 0, i64* @gv
+///   ret void
+/// }
+///
+/// define internal void @g() {
+///   store i64 1, i64* @gv
+///   ret void
+/// }
+///
+/// For this test, we initially mark both "f" and "g" executable, and the
+/// solver computes the lattice state of the global variable as overdefined.
+TEST_F(SparsePropagationTest, GlobalVariableOverDefined) {
+  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
+                                 GlobalValue::InternalLinkage, "f", &M);
+  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
+                                 GlobalValue::InternalLinkage, "g", &M);
+  GlobalVariable *GV =
+      new GlobalVariable(M, Builder.getInt64Ty(), false,
+                         GlobalValue::InternalLinkage, nullptr, "gv");
+  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
+  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
+  Builder.SetInsertPoint(FEntry);
+  Builder.CreateStore(Builder.getInt64(0), GV);
+  Builder.CreateRetVoid();
+  Builder.SetInsertPoint(GEntry);
+  Builder.CreateStore(Builder.getInt64(1), GV);
+  Builder.CreateRetVoid();
+
+  Solver.MarkBlockExecutable(FEntry);
+  Solver.MarkBlockExecutable(GEntry);
+  Solver.Solve();
+
+  auto MemGV = TestLatticeKey(GV, IPOGrouping::Memory);
+  EXPECT_TRUE(Solver.getExistingValueState(MemGV).isOverdefined());
+}
+
+/// Test that we propagate information through function returns.
+///
+/// define internal i64 @f(i1* %cond) {
+/// if:
+///   %0 = load i1, i1* %cond
+///   br i1 %0, label %then, label %else
+///
+/// then:
+///   ret i64 1
+///
+/// else:
+///   ret i64 1
+/// }
+///
+/// For this test, we initially mark "f" executable, and the solver computes
+/// the return value of the function as constant.
+TEST_F(SparsePropagationTest, FunctionDefined) {
+  Function *F =
+      Function::Create(FunctionType::get(Builder.getInt64Ty(),
+                                         {Type::getInt1PtrTy(Context)}, false),
+                       GlobalValue::InternalLinkage, "f", &M);
+  BasicBlock *If = BasicBlock::Create(Context, "if", F);
+  BasicBlock *Then = BasicBlock::Create(Context, "then", F);
+  BasicBlock *Else = BasicBlock::Create(Context, "else", F);
+  F->arg_begin()->setName("cond");
+  Builder.SetInsertPoint(If);
+  LoadInst *Cond = Builder.CreateLoad(F->arg_begin());
+  Builder.CreateCondBr(Cond, Then, Else);
+  Builder.SetInsertPoint(Then);
+  Builder.CreateRet(Builder.getInt64(1));
+  Builder.SetInsertPoint(Else);
+  Builder.CreateRet(Builder.getInt64(1));
+
+  Solver.MarkBlockExecutable(If);
+  Solver.Solve();
+
+  auto RetF = TestLatticeKey(F, IPOGrouping::Return);
+  EXPECT_TRUE(Solver.getExistingValueState(RetF).isConstant());
+}
+
+/// Test that we propagate information through function returns.
+///
+/// define internal i64 @f(i1* %cond) {
+/// if:
+///   %0 = load i1, i1* %cond
+///   br i1 %0, label %then, label %else
+///
+/// then:
+///   ret i64 0
+///
+/// else:
+///   ret i64 1
+/// }
+///
+/// For this test, we initially mark "f" executable, and the solver computes
+/// the return value of the function as overdefined.
+TEST_F(SparsePropagationTest, FunctionOverDefined) {
+  Function *F =
+      Function::Create(FunctionType::get(Builder.getInt64Ty(),
+                                         {Type::getInt1PtrTy(Context)}, false),
+                       GlobalValue::InternalLinkage, "f", &M);
+  BasicBlock *If = BasicBlock::Create(Context, "if", F);
+  BasicBlock *Then = BasicBlock::Create(Context, "then", F);
+  BasicBlock *Else = BasicBlock::Create(Context, "else", F);
+  F->arg_begin()->setName("cond");
+  Builder.SetInsertPoint(If);
+  LoadInst *Cond = Builder.CreateLoad(F->arg_begin());
+  Builder.CreateCondBr(Cond, Then, Else);
+  Builder.SetInsertPoint(Then);
+  Builder.CreateRet(Builder.getInt64(0));
+  Builder.SetInsertPoint(Else);
+  Builder.CreateRet(Builder.getInt64(1));
+
+  Solver.MarkBlockExecutable(If);
+  Solver.Solve();
+
+  auto RetF = TestLatticeKey(F, IPOGrouping::Return);
+  EXPECT_TRUE(Solver.getExistingValueState(RetF).isOverdefined());
+}
+
+/// Test that we propagate information through arguments.
+///
+/// define internal void @f() {
+///   call void @g(i64 0, i64 1)
+///   call void @g(i64 1, i64 1)
+///   ret void
+/// }
+///
+/// define internal void @g(i64 %a, i64 %b) {
+///   ret void
+/// }
+///
+/// For this test, we initially mark "f" executable, and the solver discovers
+/// "g" because of the calls in "f". The solver computes the state of argument
+/// "a" as overdefined and the state of "b" as constant.
+///
+/// In addition, this test demonstrates that ComputeInstructionState can alter
+/// the state of multiple lattice values, in addition to the one associated
+/// with the instruction definition. Each call instruction in this test updates
+/// the state of arguments "a" and "b".
+TEST_F(SparsePropagationTest, ComputeInstructionState) {
+  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
+                                 GlobalValue::InternalLinkage, "f", &M);
+  Function *G = Function::Create(
+      FunctionType::get(Builder.getVoidTy(),
+                        {Builder.getInt64Ty(), Builder.getInt64Ty()}, false),
+      GlobalValue::InternalLinkage, "g", &M);
+  Argument *A = G->arg_begin();
+  Argument *B = std::next(G->arg_begin());
+  A->setName("a");
+  B->setName("b");
+  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
+  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
+  Builder.SetInsertPoint(FEntry);
+  Builder.CreateCall(G, {Builder.getInt64(0), Builder.getInt64(1)});
+  Builder.CreateCall(G, {Builder.getInt64(1), Builder.getInt64(1)});
+  Builder.CreateRetVoid();
+  Builder.SetInsertPoint(GEntry);
+  Builder.CreateRetVoid();
+
+  Solver.MarkBlockExecutable(FEntry);
+  Solver.Solve();
+
+  auto RegA = TestLatticeKey(A, IPOGrouping::Register);
+  auto RegB = TestLatticeKey(B, IPOGrouping::Register);
+  EXPECT_TRUE(Solver.getExistingValueState(RegA).isOverdefined());
+  EXPECT_TRUE(Solver.getExistingValueState(RegB).isConstant());
+}
+
+/// Test that we can handle exceptional terminator instructions.
+///
+/// declare internal void @p()
+///
+/// declare internal void @g()
+///
+/// define internal void @f() personality i8* bitcast (void ()* @p to i8*) {
+/// entry:
+///   invoke void @g()
+///           to label %exit unwind label %catch.pad
+///
+/// catch.pad:
+///   %0 = catchswitch within none [label %catch.body] unwind to caller
+///
+/// catch.body:
+///   %1 = catchpad within %0 []
+///   catchret from %1 to label %exit
+///
+/// exit:
+///   ret void
+/// }
+///
+/// For this test, we initially mark the entry block executable. The solver
+/// then discovers the rest of the blocks in the function are executable.
+TEST_F(SparsePropagationTest, ExceptionalTerminatorInsts) {
+  Function *P = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
+                                 GlobalValue::InternalLinkage, "p", &M);
+  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
+                                 GlobalValue::InternalLinkage, "g", &M);
+  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
+                                 GlobalValue::InternalLinkage, "f", &M);
+  Constant *C =
+      ConstantExpr::getCast(Instruction::BitCast, P, Builder.getInt8PtrTy());
+  F->setPersonalityFn(C);
+  BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
+  BasicBlock *Pad = BasicBlock::Create(Context, "catch.pad", F);
+  BasicBlock *Body = BasicBlock::Create(Context, "catch.body", F);
+  BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
+  Builder.SetInsertPoint(Entry);
+  Builder.CreateInvoke(G, Exit, Pad);
+  Builder.SetInsertPoint(Pad);
+  CatchSwitchInst *CatchSwitch =
+      Builder.CreateCatchSwitch(ConstantTokenNone::get(Context), nullptr, 1);
+  CatchSwitch->addHandler(Body);
+  Builder.SetInsertPoint(Body);
+  CatchPadInst *CatchPad = Builder.CreateCatchPad(CatchSwitch, {});
+  Builder.CreateCatchRet(CatchPad, Exit);
+  Builder.SetInsertPoint(Exit);
+  Builder.CreateRetVoid();
+
+  Solver.MarkBlockExecutable(Entry);
+  Solver.Solve();
+
+  EXPECT_TRUE(Solver.isBlockExecutable(Pad));
+  EXPECT_TRUE(Solver.isBlockExecutable(Body));
+  EXPECT_TRUE(Solver.isBlockExecutable(Exit));
+}