KnownOne = KnownOne.zext(BitWidth);
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
// The top bits are known to be zero.
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+ KnownZero.setBitsFrom(SrcBitWidth);
break;
}
case Instruction::SExt: {
APInt InputDemandedBits = DemandedMask &
APInt::getLowBitsSet(BitWidth, SrcBitWidth);
- APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
+ APInt NewBits(APInt::getBitsSetFrom(BitWidth, SrcBitWidth));
// If any of the sign extended bits are demanded, we know that the sign
// bit is demanded.
if ((NewBits & DemandedMask) != 0)
// If the shift is NUW/NSW, then it does demand the high bits.
ShlOperator *IOp = cast<ShlOperator>(I);
if (IOp->hasNoSignedWrap())
- DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
+ DemandedMaskIn.setHighBits(ShiftAmt+1);
else if (IOp->hasNoUnsignedWrap())
- DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
+ DemandedMaskIn.setHighBits(ShiftAmt);
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
KnownOne, Depth + 1))
KnownOne <<= ShiftAmt;
// low bits known zero.
if (ShiftAmt)
- KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+ KnownZero.setLowBits(ShiftAmt);
}
break;
case Instruction::LShr:
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (cast<LShrOperator>(I)->isExact())
- DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+ DemandedMaskIn.setLowBits(ShiftAmt);
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
KnownOne, Depth + 1))
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
- if (ShiftAmt) {
- // Compute the new bits that are at the top now.
- APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
- KnownZero |= HighBits; // high bits known zero.
- }
+ if (ShiftAmt)
+ KnownZero.setHighBits(ShiftAmt); // high bits known zero.
}
break;
case Instruction::AShr:
// If the shift is exact, then it does demand the low bits (and knows that
// they are zero).
if (cast<AShrOperator>(I)->isExact())
- DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+ DemandedMaskIn.setLowBits(ShiftAmt);
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
KnownOne, Depth + 1))
CxtI);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
- KnownZero.setBit(KnownZero.getBitWidth() - 1);
+ KnownZero.setSignBit();
}
break;
case Instruction::URem: {
return ConstantInt::getNullValue(VTy);
// We know that the upper bits are set to zero.
- KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - ArgWidth);
+ KnownZero.setBitsFrom(ArgWidth);
return nullptr;
}
case Intrinsic::x86_sse42_crc32_64_64:
- KnownZero = APInt::getHighBitsSet(64, 32);
+ KnownZero.setBitsFrom(32);
return nullptr;
}
}
unsigned ShrAmt = ShrOp1.getZExtValue();
KnownOne.clearAllBits();
- KnownZero = APInt::getLowBitsSet(KnownZero.getBitWidth(), ShlAmt - 1);
+ KnownZero.setLowBits(ShlAmt - 1);
KnownZero &= DemandedMask;
APInt BitMask1(APInt::getAllOnesValue(BitWidth));
case Intrinsic::x86_sse4a_extrqi:
case Intrinsic::x86_sse4a_insertq:
case Intrinsic::x86_sse4a_insertqi:
- UndefElts |= APInt::getHighBitsSet(VWidth, VWidth / 2);
+ UndefElts.setHighBits(VWidth / 2);
break;
case Intrinsic::amdgcn_buffer_load:
case Intrinsic::amdgcn_buffer_load_format: {