* rint.c
* rint() implementation
*
+ * By Pedro Gimeno Fortea, donated to the public domain
+ *
* IDENTIFICATION
* src/port/rint.c
*
*/
#include "c.h"
+#include <float.h>
#include <math.h>
+/*
+ * Round to nearest integer, with halfway cases going to the nearest even.
+ */
double
rint(double x)
{
- return (x >= 0.0) ? floor(x + 0.5) : ceil(x - 0.5);
+ double x_orig;
+ double r;
+
+ /* Per POSIX, NaNs must be returned unchanged. */
+ if (isnan(x))
+ return x;
+
+ if (x <= 0.0)
+ {
+ /* Both positive and negative zero should be returned unchanged. */
+ if (x == 0.0)
+ return x;
+
+ /*
+ * Subtracting 0.5 from a number very close to -0.5 can round to
+ * exactly -1.0, producing incorrect results, so we take the opposite
+ * approach: add 0.5 to the negative number, so that it goes closer to
+ * zero (or at most to +0.5, which is dealt with next), avoiding the
+ * precision issue.
+ */
+ x_orig = x;
+ x += 0.5;
+
+ /*
+ * Be careful to return minus zero when input+0.5 >= 0, as that's what
+ * rint() should return with negative input.
+ */
+ if (x >= 0.0)
+ return -0.0;
+
+ /*
+ * For very big numbers the input may have no decimals. That case is
+ * detected by testing x+0.5 == x+1.0; if that happens, the input is
+ * returned unchanged. This also covers the case of minus infinity.
+ */
+ if (x == x_orig + 1.0)
+ return x_orig;
+
+ /* Otherwise produce a rounded estimate. */
+ r = floor(x);
+
+ /*
+ * If the rounding did not produce exactly input+0.5 then we're done.
+ */
+ if (r != x)
+ return r;
+
+ /*
+ * The original fractional part was exactly 0.5 (since
+ * floor(input+0.5) == input+0.5). We need to round to nearest even.
+ * Dividing input+0.5 by 2, taking the floor and multiplying by 2
+ * yields the closest even number. This part assumes that division by
+ * 2 is exact, which should be OK because underflow is impossible
+ * here: x is an integer.
+ */
+ return floor(x * 0.5) * 2.0;
+ }
+ else
+ {
+ /*
+ * The positive case is similar but with signs inverted and using
+ * ceil() instead of floor().
+ */
+ x_orig = x;
+ x -= 0.5;
+ if (x <= 0.0)
+ return 0.0;
+ if (x == x_orig - 1.0)
+ return x_orig;
+ r = ceil(x);
+ if (r != x)
+ return r;
+ return ceil(x * 0.5) * 2.0;
+ }
}
SELECT (-32768)::int2 * (-1)::int2;
SELECT (-32768)::int2 / (-1)::int2;
SELECT (-32768)::int2 % (-1)::int2;
+
+-- check rounding when casting from float
+SELECT x, x::int2 AS int2_value
+FROM (VALUES (-2.5::float8),
+ (-1.5::float8),
+ (-0.5::float8),
+ (0.0::float8),
+ (0.5::float8),
+ (1.5::float8),
+ (2.5::float8)) t(x);
SELECT (-2147483648)::int4 * (-1)::int2;
SELECT (-2147483648)::int4 / (-1)::int2;
SELECT (-2147483648)::int4 % (-1)::int2;
+
+-- check rounding when casting from float
+SELECT x, x::int4 AS int4_value
+FROM (VALUES (-2.5::float8),
+ (-1.5::float8),
+ (-0.5::float8),
+ (0.0::float8),
+ (0.5::float8),
+ (1.5::float8),
+ (2.5::float8)) t(x);
SELECT (-9223372036854775808)::int8 * (-1)::int2;
SELECT (-9223372036854775808)::int8 / (-1)::int2;
SELECT (-9223372036854775808)::int8 % (-1)::int2;
+
+-- check rounding when casting from float
+SELECT x, x::int8 AS int8_value
+FROM (VALUES (-2.5::float8),
+ (-1.5::float8),
+ (-0.5::float8),
+ (0.0::float8),
+ (0.5::float8),
+ (1.5::float8),
+ (2.5::float8)) t(x);