*
**********************************************************************/
-
-/**********************************************************************
- *
- * PostGIS - Spatial Types for PostgreSQL
- * http://postgis.net
- * Copyright 2011 Nicklas Avén
- *
- * This is free software; you can redistribute and/or modify it under
- * the terms of the GNU General Public Licence. See the COPYING file.
- *
- **********************************************************************/
-
#include <string.h>
#include <stdlib.h>
#include "measures3d.h"
#include "lwgeom_log.h"
-
static inline int
-get_3dvector_from_points(POINT3DZ *p1,POINT3DZ *p2, VECTOR3D *v)
+get_3dvector_from_points(POINT3DZ *p1, POINT3DZ *p2, VECTOR3D *v)
{
- v->x=p2->x-p1->x;
- v->y=p2->y-p1->y;
- v->z=p2->z-p1->z;
+ v->x = p2->x - p1->x;
+ v->y = p2->y - p1->y;
+ v->z = p2->z - p1->z;
return (!FP_IS_ZERO(v->x) || !FP_IS_ZERO(v->y) || !FP_IS_ZERO(v->z));
}
static inline int
-get_3dcross_product(VECTOR3D *v1,VECTOR3D *v2, VECTOR3D *v)
+get_3dcross_product(VECTOR3D *v1, VECTOR3D *v2, VECTOR3D *v)
{
- v->x=(v1->y*v2->z)-(v1->z*v2->y);
- v->y=(v1->z*v2->x)-(v1->x*v2->z);
- v->z=(v1->x*v2->y)-(v1->y*v2->x);
+ v->x = (v1->y * v2->z) - (v1->z * v2->y);
+ v->y = (v1->z * v2->x) - (v1->x * v2->z);
+ v->z = (v1->x * v2->y) - (v1->y * v2->x);
return (!FP_IS_ZERO(v->x) || !FP_IS_ZERO(v->y) || !FP_IS_ZERO(v->z));
}
-
/**
This function is used to create a vertical line used for cases where one if the
geometries lacks z-values. The vertical line crosses the 2d point that is closest
and the z-range is from maxz to minz in the geometry that has z values.
*/
-static
-LWGEOM* create_v_line(const LWGEOM *lwgeom,double x, double y, int srid)
+static LWGEOM *
+create_v_line(const LWGEOM *lwgeom, double x, double y, int srid)
{
LWPOINT *lwpoints[2];
GBOX gbox;
int rv = lwgeom_calculate_gbox(lwgeom, &gbox);
- if ( rv == LW_FAILURE )
+ if (rv == LW_FAILURE)
return NULL;
lwpoints[0] = lwpoint_make3dz(srid, x, y, gbox.zmin);
lwpoints[1] = lwpoint_make3dz(srid, x, y, gbox.zmax);
- return (LWGEOM *)lwline_from_ptarray(srid, 2, lwpoints);
+ return (LWGEOM *)lwline_from_ptarray(srid, 2, lwpoints);
}
LWGEOM *
return lw_dist3d_distancepoint(lw1, lw2, lw1->srid, DIST_MIN);
}
-
/**
Function initializing 3dshortestline and 3dlongestline calculations.
*/
lw_dist3d_distanceline(const LWGEOM *lw1, const LWGEOM *lw2, int srid, int mode)
{
LWDEBUG(2, "lw_dist3d_distanceline is called");
- double x1,x2,y1,y2, z1, z2, x, y;
- double initdistance = ( mode == DIST_MIN ? FLT_MAX : -1.0);
+ double x1, x2, y1, y2, z1, z2, x, y;
+ double initdistance = (mode == DIST_MIN ? FLT_MAX : -1.0);
DISTPTS3D thedl;
LWPOINT *lwpoints[2];
LWGEOM *result;
thedl.distance = initdistance;
thedl.tolerance = 0.0;
- /*Check if we really have 3D geometries*/
- /*If not, send it to 2D-calculations which will give the same result*/
- /*as an infinite z-value at one or two of the geometries*/
- if(!lwgeom_has_z(lw1) || !lwgeom_has_z(lw2))
+ /* Check if we really have 3D geometries
+ * If not, send it to 2D-calculations which will give the same result
+ * as an infinite z-value at one or two of the geometries */
+ if (!lwgeom_has_z(lw1) || !lwgeom_has_z(lw2))
{
- lwnotice("One or both of the geometries is missing z-value. The unknown z-value will be regarded as \"any value\"");
+ lwnotice(
+ "One or both of the geometries is missing z-value. The unknown z-value will be regarded as \"any value\"");
- if(!lwgeom_has_z(lw1) && !lwgeom_has_z(lw2))
+ if (!lwgeom_has_z(lw1) && !lwgeom_has_z(lw2))
return lw_dist2d_distanceline(lw1, lw2, srid, mode);
DISTPTS thedl2d;
thedl2d.mode = mode;
thedl2d.distance = initdistance;
thedl2d.tolerance = 0.0;
- if (!lw_dist2d_comp( lw1,lw2,&thedl2d))
+ if (!lw_dist2d_comp(lw1, lw2, &thedl2d))
{
- /*should never get here. all cases ought to be error handled earlier*/
+ /* should never get here. all cases ought to be error handled earlier */
lwerror("Some unspecified error.");
result = (LWGEOM *)lwcollection_construct_empty(COLLECTIONTYPE, srid, 0, 0);
}
LWGEOM *vertical_line;
- if(!lwgeom_has_z(lw1))
+ if (!lwgeom_has_z(lw1))
{
- x=thedl2d.p1.x;
- y=thedl2d.p1.y;
+ x = thedl2d.p1.x;
+ y = thedl2d.p1.y;
- vertical_line = create_v_line(lw2,x,y,srid);
+ vertical_line = create_v_line(lw2, x, y, srid);
if (!lw_dist3d_recursive(vertical_line, lw2, &thedl))
{
- /*should never get here. all cases ought to be error handled earlier*/
+ /* should never get here. all cases ought to be error handled earlier */
lwfree(vertical_line);
lwerror("Some unspecified error.");
result = (LWGEOM *)lwcollection_construct_empty(COLLECTIONTYPE, srid, 0, 0);
}
lwfree(vertical_line);
}
- if(!lwgeom_has_z(lw2))
+ if (!lwgeom_has_z(lw2))
{
- x=thedl2d.p2.x;
- y=thedl2d.p2.y;
+ x = thedl2d.p2.x;
+ y = thedl2d.p2.y;
- vertical_line = create_v_line(lw1,x,y,srid);
+ vertical_line = create_v_line(lw1, x, y, srid);
if (!lw_dist3d_recursive(lw1, vertical_line, &thedl))
{
- /*should never get here. all cases ought to be error handled earlier*/
+ /* should never get here. all cases ought to be error handled earlier */
lwfree(vertical_line);
lwerror("Some unspecified error.");
return (LWGEOM *)lwcollection_construct_empty(COLLECTIONTYPE, srid, 0, 0);
}
lwfree(vertical_line);
}
-
}
else
{
if (!lw_dist3d_recursive(lw1, lw2, &thedl))
{
- /*should never get here. all cases ought to be error handled earlier*/
+ /* should never get here. all cases ought to be error handled earlier */
lwerror("Some unspecified error.");
result = (LWGEOM *)lwcollection_construct_empty(COLLECTIONTYPE, srid, 0, 0);
}
}
else
{
- x1=thedl.p1.x;
- y1=thedl.p1.y;
- z1=thedl.p1.z;
- x2=thedl.p2.x;
- y2=thedl.p2.y;
- z2=thedl.p2.z;
+ x1 = thedl.p1.x;
+ y1 = thedl.p1.y;
+ z1 = thedl.p1.z;
+ x2 = thedl.p2.x;
+ y2 = thedl.p2.y;
+ z2 = thedl.p2.z;
lwpoints[0] = lwpoint_make3dz(srid, x1, y1, z1);
lwpoints[1] = lwpoint_make3dz(srid, x2, y2, z2);
lw_dist3d_distancepoint(const LWGEOM *lw1, const LWGEOM *lw2, int srid, int mode)
{
- double x,y,z;
+ double x, y, z;
DISTPTS3D thedl;
double initdistance = FLT_MAX;
LWGEOM *result;
thedl.mode = mode;
- thedl.distance= initdistance;
+ thedl.distance = initdistance;
thedl.tolerance = 0;
LWDEBUG(2, "lw_dist3d_distancepoint is called");
- /*Check if we really have 3D geometries*/
- /*If not, send it to 2D-calculations which will give the same result*/
- /*as an infinite z-value at one or two of the geometries*/
- if(!lwgeom_has_z(lw1) || !lwgeom_has_z(lw2))
+ /* Check if we really have 3D geometries
+ * If not, send it to 2D-calculations which will give the same result
+ * as an infinite z-value at one or two of the geometries
+ */
+ if (!lwgeom_has_z(lw1) || !lwgeom_has_z(lw2))
{
- lwnotice("One or both of the geometries is missing z-value. The unknown z-value will be regarded as \"any value\"");
+ lwnotice(
+ "One or both of the geometries is missing z-value. The unknown z-value will be regarded as \"any value\"");
- if(!lwgeom_has_z(lw1) && !lwgeom_has_z(lw2))
+ if (!lwgeom_has_z(lw1) && !lwgeom_has_z(lw2))
return lw_dist2d_distancepoint(lw1, lw2, srid, mode);
-
DISTPTS thedl2d;
thedl2d.mode = mode;
thedl2d.distance = initdistance;
thedl2d.tolerance = 0.0;
- if (!lw_dist2d_comp( lw1,lw2,&thedl2d))
+ if (!lw_dist2d_comp(lw1, lw2, &thedl2d))
{
- /*should never get here. all cases ought to be error handled earlier*/
+ /* should never get here. all cases ought to be error handled earlier */
lwerror("Some unspecified error.");
return (LWGEOM *)lwcollection_construct_empty(COLLECTIONTYPE, srid, 0, 0);
}
LWGEOM *vertical_line;
- if(!lwgeom_has_z(lw1))
+ if (!lwgeom_has_z(lw1))
{
- x=thedl2d.p1.x;
- y=thedl2d.p1.y;
+ x = thedl2d.p1.x;
+ y = thedl2d.p1.y;
- vertical_line = create_v_line(lw2,x,y,srid);
+ vertical_line = create_v_line(lw2, x, y, srid);
if (!lw_dist3d_recursive(vertical_line, lw2, &thedl))
{
- /*should never get here. all cases ought to be error handled earlier*/
+ /* should never get here. all cases ought to be error handled earlier */
lwfree(vertical_line);
lwerror("Some unspecified error.");
return (LWGEOM *)lwcollection_construct_empty(COLLECTIONTYPE, srid, 0, 0);
lwfree(vertical_line);
}
- if(!lwgeom_has_z(lw2))
+ if (!lwgeom_has_z(lw2))
{
- x=thedl2d.p2.x;
- y=thedl2d.p2.y;
+ x = thedl2d.p2.x;
+ y = thedl2d.p2.y;
- vertical_line = create_v_line(lw1,x,y,srid);
+ vertical_line = create_v_line(lw1, x, y, srid);
if (!lw_dist3d_recursive(lw1, vertical_line, &thedl))
{
- /*should never get here. all cases ought to be error handled earlier*/
+ /* should never get here. all cases ought to be error handled earlier */
lwfree(vertical_line);
lwerror("Some unspecified error.");
result = (LWGEOM *)lwcollection_construct_empty(COLLECTIONTYPE, srid, 0, 0);
}
lwfree(vertical_line);
}
-
}
else
{
if (!lw_dist3d_recursive(lw1, lw2, &thedl))
{
- /*should never get here. all cases ought to be error handled earlier*/
+ /* should never get here. all cases ought to be error handled earlier */
lwerror("Some unspecified error.");
result = (LWGEOM *)lwcollection_construct_empty(COLLECTIONTYPE, srid, 0, 0);
}
}
else
{
- x=thedl.p1.x;
- y=thedl.p1.y;
- z=thedl.p1.z;
+ x = thedl.p1.x;
+ y = thedl.p1.y;
+ z = thedl.p1.z;
result = (LWGEOM *)lwpoint_make3dz(srid, x, y, z);
}
return result;
}
-
/**
Function initializing 3d max distance calculation
*/
double
lwgeom_maxdistance3d(const LWGEOM *lw1, const LWGEOM *lw2)
{
- LWDEBUG(2, "lwgeom_maxdistance3d is called");
-
- return lwgeom_maxdistance3d_tolerance( lw1, lw2, 0.0 );
+ return lwgeom_maxdistance3d_tolerance(lw1, lw2, 0.0);
}
/**
double
lwgeom_maxdistance3d_tolerance(const LWGEOM *lw1, const LWGEOM *lw2, double tolerance)
{
- if(!lwgeom_has_z(lw1) || !lwgeom_has_z(lw2))
+ if (!lwgeom_has_z(lw1) || !lwgeom_has_z(lw2))
{
- lwnotice("One or both of the geometries is missing z-value. The unknown z-value will be regarded as \"any value\"");
+ lwnotice(
+ "One or both of the geometries is missing z-value. The unknown z-value will be regarded as \"any value\"");
return lwgeom_maxdistance2d_tolerance(lw1, lw2, tolerance);
}
- /*double thedist;*/
DISTPTS3D thedl;
LWDEBUG(2, "lwgeom_maxdistance3d_tolerance is called");
thedl.mode = DIST_MAX;
- thedl.distance= -1;
+ thedl.distance = -1;
thedl.tolerance = tolerance;
if (lw_dist3d_recursive(lw1, lw2, &thedl))
- {
return thedl.distance;
- }
- /*should never get here. all cases ought to be error handled earlier*/
+
+ /* should never get here. all cases ought to be error handled earlier */
lwerror("Some unspecified error.");
return -1;
}
double
lwgeom_mindistance3d(const LWGEOM *lw1, const LWGEOM *lw2)
{
- LWDEBUG(2, "lwgeom_mindistance3d is called");
- return lwgeom_mindistance3d_tolerance( lw1, lw2, 0.0 );
+ return lwgeom_mindistance3d_tolerance(lw1, lw2, 0.0);
}
/**
double
lwgeom_mindistance3d_tolerance(const LWGEOM *lw1, const LWGEOM *lw2, double tolerance)
{
- if(!lwgeom_has_z(lw1) || !lwgeom_has_z(lw2))
+ if (!lwgeom_has_z(lw1) || !lwgeom_has_z(lw2))
{
- lwnotice("One or both of the geometries is missing z-value. The unknown z-value will be regarded as \"any value\"");
+ lwnotice(
+ "One or both of the geometries is missing z-value. The unknown z-value will be regarded as \"any value\"");
return lwgeom_mindistance2d_tolerance(lw1, lw2, tolerance);
}
DISTPTS3D thedl;
LWDEBUG(2, "lwgeom_mindistance3d_tolerance is called");
thedl.mode = DIST_MIN;
- thedl.distance= FLT_MAX;
+ thedl.distance = FLT_MAX;
thedl.tolerance = tolerance;
if (lw_dist3d_recursive(lw1, lw2, &thedl))
{
return thedl.distance;
}
- /*should never get here. all cases ought to be error handled earlier*/
+ /* should never get here. all cases ought to be error handled earlier */
lwerror("Some unspecified error.");
return FLT_MAX;
}
-
/*------------------------------------------------------------------------------------------------------------
End of Initializing functions
--------------------------------------------------------------------------------------------------------------*/
Functions preparing geometries for distance-calculations
--------------------------------------------------------------------------------------------------------------*/
-
/**
This is a recursive function delivering every possible combination of subgeometries
*/
-int lw_dist3d_recursive(const LWGEOM *lwg1,const LWGEOM *lwg2, DISTPTS3D *dl)
+int
+lw_dist3d_recursive(const LWGEOM *lwg1, const LWGEOM *lwg2, DISTPTS3D *dl)
{
int i, j;
- int n1=1;
- int n2=1;
+ int n1 = 1;
+ int n2 = 1;
LWGEOM *g1 = NULL;
LWGEOM *g2 = NULL;
LWCOLLECTION *c1 = NULL;
n2 = c2->ngeoms;
}
- for ( i = 0; i < n1; i++ )
+ for (i = 0; i < n1; i++)
{
if (lwgeom_is_collection(lwg1))
- {
g1 = c1->geoms[i];
- }
else
- {
- g1 = (LWGEOM*)lwg1;
- }
+ g1 = (LWGEOM *)lwg1;
- if (lwgeom_is_empty(g1)) return LW_TRUE;
+ if (lwgeom_is_empty(g1))
+ return LW_TRUE;
if (lwgeom_is_collection(g1))
{
LWDEBUG(3, "Found collection inside first geometry collection, recursing");
- if (!lw_dist3d_recursive(g1, lwg2, dl)) return LW_FALSE;
+ if (!lw_dist3d_recursive(g1, lwg2, dl))
+ return LW_FALSE;
continue;
}
- for ( j = 0; j < n2; j++ )
+ for (j = 0; j < n2; j++)
{
if (lwgeom_is_collection(lwg2))
- {
g2 = c2->geoms[j];
- }
else
- {
- g2 = (LWGEOM*)lwg2;
- }
+
+ g2 = (LWGEOM *)lwg2;
if (lwgeom_is_collection(g2))
{
LWDEBUG(3, "Found collection inside second geometry collection, recursing");
- if (!lw_dist3d_recursive(g1, g2, dl)) return LW_FALSE;
+ if (!lw_dist3d_recursive(g1, g2, dl))
+ return LW_FALSE;
continue;
}
+ /*If one of geometries is empty, return. True here only means continue searching. False would
+ * have stopped the process*/
+ if (lwgeom_is_empty(g1) || lwgeom_is_empty(g2))
+ return LW_TRUE;
- /*If one of geometries is empty, return. True here only means continue searching. False would have stopped the process*/
- if (lwgeom_is_empty(g1)||lwgeom_is_empty(g2)) return LW_TRUE;
-
-
- if (!lw_dist3d_distribute_bruteforce(g1, g2, dl)) return LW_FALSE;
- if (dl->distance<=dl->tolerance && dl->mode == DIST_MIN) return LW_TRUE; /*just a check if the answer is already given*/
+ if (!lw_dist3d_distribute_bruteforce(g1, g2, dl))
+ return LW_FALSE;
+ if (dl->distance <= dl->tolerance && dl->mode == DIST_MIN)
+ return LW_TRUE; /*just a check if the answer is already given*/
}
}
return LW_TRUE;
}
-
-
/**
This function distributes the brute-force for 3D so far the only type, tasks depending on type
lw_dist3d_distribute_bruteforce(const LWGEOM *lwg1, const LWGEOM *lwg2, DISTPTS3D *dl)
{
- int t1 = lwg1->type;
- int t2 = lwg2->type;
+ int t1 = lwg1->type;
+ int t2 = lwg2->type;
LWDEBUGF(2, "lw_dist3d_distribute_bruteforce is called with typ1=%d, type2=%d", lwg1->type, lwg2->type);
- if ( t1 == POINTTYPE )
+ if (t1 == POINTTYPE)
{
- if ( t2 == POINTTYPE )
+ if (t2 == POINTTYPE)
{
- dl->twisted=1;
+ dl->twisted = 1;
return lw_dist3d_point_point((LWPOINT *)lwg1, (LWPOINT *)lwg2, dl);
}
- else if ( t2 == LINETYPE )
+ else if (t2 == LINETYPE)
{
- dl->twisted=1;
+ dl->twisted = 1;
return lw_dist3d_point_line((LWPOINT *)lwg1, (LWLINE *)lwg2, dl);
}
- else if ( t2 == POLYGONTYPE )
+ else if (t2 == POLYGONTYPE)
{
- dl->twisted=1;
- return lw_dist3d_point_poly((LWPOINT *)lwg1, (LWPOLY *)lwg2,dl);
+ dl->twisted = 1;
+ return lw_dist3d_point_poly((LWPOINT *)lwg1, (LWPOLY *)lwg2, dl);
}
else
{
return LW_FALSE;
}
}
- else if ( t1 == LINETYPE )
+ else if (t1 == LINETYPE)
{
- if ( t2 == POINTTYPE )
+ if (t2 == POINTTYPE)
{
- dl->twisted=(-1);
- return lw_dist3d_point_line((LWPOINT *)lwg2,(LWLINE *)lwg1,dl);
+ dl->twisted = (-1);
+ return lw_dist3d_point_line((LWPOINT *)lwg2, (LWLINE *)lwg1, dl);
}
- else if ( t2 == LINETYPE )
+ else if (t2 == LINETYPE)
{
- dl->twisted=1;
- return lw_dist3d_line_line((LWLINE *)lwg1,(LWLINE *)lwg2,dl);
+ dl->twisted = 1;
+ return lw_dist3d_line_line((LWLINE *)lwg1, (LWLINE *)lwg2, dl);
}
- else if ( t2 == POLYGONTYPE )
+ else if (t2 == POLYGONTYPE)
{
- dl->twisted=1;
- return lw_dist3d_line_poly((LWLINE *)lwg1,(LWPOLY *)lwg2,dl);
+ dl->twisted = 1;
+ return lw_dist3d_line_poly((LWLINE *)lwg1, (LWPOLY *)lwg2, dl);
}
else
{
return LW_FALSE;
}
}
- else if ( t1 == POLYGONTYPE )
+ else if (t1 == POLYGONTYPE)
{
- if ( t2 == POLYGONTYPE )
+ if (t2 == POLYGONTYPE)
{
- dl->twisted=1;
- return lw_dist3d_poly_poly((LWPOLY *)lwg1, (LWPOLY *)lwg2,dl);
+ dl->twisted = 1;
+ return lw_dist3d_poly_poly((LWPOLY *)lwg1, (LWPOLY *)lwg2, dl);
}
- else if ( t2 == POINTTYPE )
+ else if (t2 == POINTTYPE)
{
- dl->twisted=-1;
- return lw_dist3d_point_poly((LWPOINT *)lwg2, (LWPOLY *)lwg1,dl);
+ dl->twisted = -1;
+ return lw_dist3d_point_poly((LWPOINT *)lwg2, (LWPOLY *)lwg1, dl);
}
- else if ( t2 == LINETYPE )
+ else if (t2 == LINETYPE)
{
- dl->twisted=-1;
- return lw_dist3d_line_poly((LWLINE *)lwg2,(LWPOLY *)lwg1,dl);
+ dl->twisted = -1;
+ return lw_dist3d_line_poly((LWLINE *)lwg2, (LWPOLY *)lwg1, dl);
}
else
{
}
}
-
-
/*------------------------------------------------------------------------------------------------------------
End of Preprocessing functions
--------------------------------------------------------------------------------------------------------------*/
-
/*------------------------------------------------------------------------------------------------------------
Brute force functions
So far the only way to do 3D-calculations
getPoint3dz_p(point1->point, 0, &p1);
getPoint3dz_p(point2->point, 0, &p2);
- return lw_dist3d_pt_pt(&p1, &p2,dl);
+ return lw_dist3d_pt_pt(&p1, &p2, dl);
}
/**
Computes point to polygon distance
For mindistance that means:
-1)find the plane of the polygon
-2)projecting the point to the plane of the polygon
-3)finding if that projected point is inside the polygon, if so the distance is measured to that projected point
+1) find the plane of the polygon
+2) projecting the point to the plane of the polygon
+3) finding if that projected point is inside the polygon, if so the distance is measured to that projected point
4) if not in polygon above, check the distance against the boundary of the polygon
for max distance it is always point against boundary
int
lw_dist3d_point_poly(LWPOINT *point, LWPOLY *poly, DISTPTS3D *dl)
{
- POINT3DZ p, projp;/*projp is "point projected on plane"*/
+ POINT3DZ p, projp; /*projp is "point projected on plane"*/
PLANE3D plane;
LWDEBUG(2, "lw_dist3d_point_poly is called");
getPoint3dz_p(point->point, 0, &p);
}
/*Find the plane of the polygon, the "holes" have to be on the same plane. so we only care about the boudary*/
- if(!define_plane(poly->rings[0], &plane))
+ if (!define_plane(poly->rings[0], &plane))
{
/* Polygon does not define a plane: Return distance point -> line */
return lw_dist3d_pt_ptarray(&p, poly->rings[0], dl);
/*get our point projected on the plane of the polygon*/
project_point_on_plane(&p, &plane, &projp);
- return lw_dist3d_pt_poly(&p, poly,&plane, &projp, dl);
+ return lw_dist3d_pt_poly(&p, poly, &plane, &projp, dl);
}
-
/**
line to line calculation
}
/**
-
line to polygon calculation
*/
-int lw_dist3d_line_poly(LWLINE *line, LWPOLY *poly, DISTPTS3D *dl)
+int
+lw_dist3d_line_poly(LWLINE *line, LWPOLY *poly, DISTPTS3D *dl)
{
PLANE3D plane;
LWDEBUG(2, "lw_dist3d_line_poly is called");
return lw_dist3d_ptarray_ptarray(line->points, poly->rings[0], dl);
}
- if(!define_plane(poly->rings[0], &plane))
+ if (!define_plane(poly->rings[0], &plane))
{
/* Polygon does not define a plane: Return distance line to line */
return lw_dist3d_ptarray_ptarray(line->points, poly->rings[0], dl);
}
- return lw_dist3d_ptarray_poly(line->points, poly,&plane, dl);
+ return lw_dist3d_ptarray_poly(line->points, poly, &plane, dl);
}
/**
-
polygon to polygon calculation
*/
-int lw_dist3d_poly_poly(LWPOLY *poly1, LWPOLY *poly2, DISTPTS3D *dl)
+int
+lw_dist3d_poly_poly(LWPOLY *poly1, LWPOLY *poly2, DISTPTS3D *dl)
{
PLANE3D plane1, plane2;
int planedef1, planedef2;
return lw_dist3d_ptarray_poly(poly2->rings[0], poly1, &plane1, dl);
}
- /*What we do here is to compare the boundary of one polygon with the other polygon
- and then take the second boundary comparing with the first polygon*/
- dl->twisted=1;
+ /* What we do here is to compare the boundary of one polygon with the other polygon
+ and then take the second boundary comparing with the first polygon */
+ dl->twisted = 1;
if (!lw_dist3d_ptarray_poly(poly1->rings[0], poly2, &plane2, dl))
return LW_FALSE;
- if (dl->distance < dl->tolerance) /*Just check if the answer already is given*/
+ if (dl->distance < dl->tolerance) /* Just check if the answer already is given*/
return LW_TRUE;
- dl->twisted=-1; /*because we switch the order of geometries we switch "twisted" to -1 which will give the right order of points in shortest line.*/
+ dl->twisted = -1; /* because we switch the order of geometries we switch "twisted" to -1 which will give the
+ right order of points in shortest line. */
return lw_dist3d_ptarray_poly(poly2->rings[0], poly1, &plane1, dl);
}
* Returns distance between point and pointarray
*/
int
-lw_dist3d_pt_ptarray(POINT3DZ *p, POINTARRAY *pa,DISTPTS3D *dl)
+lw_dist3d_pt_ptarray(POINT3DZ *p, POINTARRAY *pa, DISTPTS3D *dl)
{
uint32_t t;
- POINT3DZ start, end;
+ POINT3DZ start, end;
int twist = dl->twisted;
LWDEBUG(2, "lw_dist3d_pt_ptarray is called");
getPoint3dz_p(pa, 0, &start);
- for (t=1; t<pa->npoints; t++)
+ for (t = 1; t < pa->npoints; t++)
{
- dl->twisted=twist;
+ dl->twisted = twist;
getPoint3dz_p(pa, t, &end);
- if (!lw_dist3d_pt_seg(p, &start, &end,dl)) return LW_FALSE;
+ if (!lw_dist3d_pt_seg(p, &start, &end, dl))
+ return LW_FALSE;
- if (dl->distance<=dl->tolerance && dl->mode == DIST_MIN) return LW_TRUE; /*just a check if the answer is already given*/
+ if (dl->distance <= dl->tolerance && dl->mode == DIST_MIN)
+ return LW_TRUE; /*just a check if the answer is already given*/
start = end;
}
return LW_TRUE;
}
-
/**
-
If searching for min distance, this one finds the closest point on segment A-B from p.
if searching for max distance it just sends p-A and p-B to pt-pt calculation
*/
lw_dist3d_pt_seg(POINT3DZ *p, POINT3DZ *A, POINT3DZ *B, DISTPTS3D *dl)
{
POINT3DZ c;
- double r;
+ double r;
/*if start==end, then use pt distance */
- if ( ( A->x == B->x) && (A->y == B->y) && (A->z == B->z) )
+ if ((A->x == B->x) && (A->y == B->y) && (A->z == B->z))
{
- return lw_dist3d_pt_pt(p,A,dl);
+ return lw_dist3d_pt_pt(p, A, dl);
}
-
- r = ( (p->x-A->x) * (B->x-A->x) + (p->y-A->y) * (B->y-A->y) + ( p->z-A->z) * (B->z-A->z) )/( (B->x-A->x)*(B->x-A->x) +(B->y-A->y)*(B->y-A->y)+(B->z-A->z)*(B->z-A->z) );
+ r = ((p->x - A->x) * (B->x - A->x) + (p->y - A->y) * (B->y - A->y) + (p->z - A->z) * (B->z - A->z)) /
+ ((B->x - A->x) * (B->x - A->x) + (B->y - A->y) * (B->y - A->y) + (B->z - A->z) * (B->z - A->z));
/*This is for finding the 3Dmaxdistance.
the maxdistance have to be between two vertexes,
two vertexes vertex.*/
if (dl->mode == DIST_MAX)
{
- if (r>=0.5)
- {
- return lw_dist3d_pt_pt(p,A,dl);
- }
- if (r<0.5)
- {
- return lw_dist3d_pt_pt(p,B,dl);
- }
+ if (r >= 0.5)
+ return lw_dist3d_pt_pt(p, A, dl);
+ if (r < 0.5)
+ return lw_dist3d_pt_pt(p, B, dl);
}
- if (r<0) /*If the first vertex A is closest to the point p*/
- {
- return lw_dist3d_pt_pt(p,A,dl);
- }
- if (r>1) /*If the second vertex B is closest to the point p*/
- {
- return lw_dist3d_pt_pt(p,B,dl);
- }
+ if (r < 0) /*If the first vertex A is closest to the point p*/
+ return lw_dist3d_pt_pt(p, A, dl);
+ if (r > 1) /*If the second vertex B is closest to the point p*/
+ return lw_dist3d_pt_pt(p, B, dl);
/*else if the point p is closer to some point between a and b
then we find that point and send it to lw_dist3d_pt_pt*/
- c.x=A->x + r * (B->x-A->x);
- c.y=A->y + r * (B->y-A->y);
- c.z=A->z + r * (B->z-A->z);
+ c.x = A->x + r * (B->x - A->x);
+ c.y = A->y + r * (B->y - A->y);
+ c.z = A->z + r * (B->z - A->z);
- return lw_dist3d_pt_pt(p,&c,dl);
+ return lw_dist3d_pt_pt(p, &c, dl);
}
double
distance3d_pt_pt(const POINT3D *p1, const POINT3D *p2)
{
- double dx = p2->x - p1->x;
- double dy = p2->y - p1->y;
- double dz = p2->z - p1->z;
- return sqrt ( dx*dx + dy*dy + dz*dz);
+ double dx = p2->x - p1->x;
+ double dy = p2->y - p1->y;
+ double dz = p2->z - p1->z;
+ return sqrt(dx * dx + dy * dy + dz * dz);
}
-
/**
Compares incoming points and
depending on dl->mode (max or min)
*/
int
-lw_dist3d_pt_pt(POINT3DZ *thep1, POINT3DZ *thep2,DISTPTS3D *dl)
+lw_dist3d_pt_pt(POINT3DZ *thep1, POINT3DZ *thep2, DISTPTS3D *dl)
{
double dx = thep2->x - thep1->x;
double dy = thep2->y - thep1->y;
double dz = thep2->z - thep1->z;
- double dist = sqrt ( dx*dx + dy*dy + dz*dz);
- LWDEBUGF(2, "lw_dist3d_pt_pt called (with points: p1.x=%f, p1.y=%f,p1.z=%f,p2.x=%f, p2.y=%f,p2.z=%f)",thep1->x,thep1->y,thep1->z,thep2->x,thep2->y,thep2->z );
-
- if (((dl->distance - dist)*(dl->mode))>0) /*multiplication with mode to handle mindistance (mode=1) and maxdistance (mode = (-1)*/
+ double dist = sqrt(dx * dx + dy * dy + dz * dz);
+ LWDEBUGF(2,
+ "lw_dist3d_pt_pt called (with points: p1.x=%f, p1.y=%f,p1.z=%f,p2.x=%f, p2.y=%f,p2.z=%f)",
+ thep1->x,
+ thep1->y,
+ thep1->z,
+ thep2->x,
+ thep2->y,
+ thep2->z);
+
+ if (((dl->distance - dist) * (dl->mode)) >
+ 0) /*multiplication with mode to handle mindistance (mode=1) and maxdistance (mode = (-1)*/
{
dl->distance = dist;
- if (dl->twisted>0) /*To get the points in right order. twisted is updated between 1 and (-1) every time the order is changed earlier in the chain*/
+ if (dl->twisted > 0) /*To get the points in right order. twisted is updated between 1 and (-1) every
+ time the order is changed earlier in the chain*/
{
dl->p1 = *thep1;
dl->p2 = *thep2;
return LW_TRUE;
}
-
/**
Finds all combinations of segments between two pointarrays
*/
int
-lw_dist3d_ptarray_ptarray(POINTARRAY *l1, POINTARRAY *l2,DISTPTS3D *dl)
+lw_dist3d_ptarray_ptarray(POINTARRAY *l1, POINTARRAY *l2, DISTPTS3D *dl)
{
- uint32_t t,u;
- POINT3DZ start, end;
- POINT3DZ start2, end2;
+ uint32_t t, u;
+ POINT3DZ start, end;
+ POINT3DZ start2, end2;
int twist = dl->twisted;
- LWDEBUGF(2, "lw_dist3d_ptarray_ptarray called (points: %d-%d)",l1->npoints, l2->npoints);
-
+ LWDEBUGF(2, "lw_dist3d_ptarray_ptarray called (points: %d-%d)", l1->npoints, l2->npoints);
-
- if (dl->mode == DIST_MAX)/*If we are searching for maxdistance we go straight to point-point calculation since the maxdistance have to be between two vertexes*/
+ if (dl->mode == DIST_MAX) /*If we are searching for maxdistance we go straight to point-point calculation since
+ the maxdistance have to be between two vertexes*/
{
- for (t=0; t<l1->npoints; t++) /*for each segment in L1 */
+ for (t = 0; t < l1->npoints; t++) /*for each segment in L1 */
{
getPoint3dz_p(l1, t, &start);
- for (u=0; u<l2->npoints; u++) /*for each segment in L2 */
+ for (u = 0; u < l2->npoints; u++) /*for each segment in L2 */
{
getPoint3dz_p(l2, u, &start2);
- lw_dist3d_pt_pt(&start,&start2,dl);
- LWDEBUGF(4, "maxdist_ptarray_ptarray; seg %i * seg %i, dist = %g\n",t,u,dl->distance);
- LWDEBUGF(3, " seg%d-seg%d dist: %f, mindist: %f",
- t, u, dl->distance, dl->tolerance);
+ lw_dist3d_pt_pt(&start, &start2, dl);
}
}
}
else
{
getPoint3dz_p(l1, 0, &start);
- for (t=1; t<l1->npoints; t++) /*for each segment in L1 */
+ for (t = 1; t < l1->npoints; t++) /*for each segment in L1 */
{
getPoint3dz_p(l1, t, &end);
getPoint3dz_p(l2, 0, &start2);
- for (u=1; u<l2->npoints; u++) /*for each segment in L2 */
+ for (u = 1; u < l2->npoints; u++) /*for each segment in L2 */
{
getPoint3dz_p(l2, u, &end2);
- dl->twisted=twist;
- lw_dist3d_seg_seg(&start, &end, &start2, &end2,dl);
- LWDEBUGF(4, "mindist_ptarray_ptarray; seg %i * seg %i, dist = %g\n",t,u,dl->distance);
- LWDEBUGF(3, " seg%d-seg%d dist: %f, mindist: %f",
- t, u, dl->distance, dl->tolerance);
- if (dl->distance<=dl->tolerance && dl->mode == DIST_MIN) return LW_TRUE; /*just a check if the answer is already given*/
+ dl->twisted = twist;
+ lw_dist3d_seg_seg(&start, &end, &start2, &end2, dl);
+ LWDEBUGF(
+ 4, "mindist_ptarray_ptarray; seg %i * seg %i, dist = %g\n", t, u, dl->distance);
+ LWDEBUGF(3, " seg%d-seg%d dist: %f, mindist: %f", t, u, dl->distance, dl->tolerance);
+ if (dl->distance <= dl->tolerance && dl->mode == DIST_MIN)
+ return LW_TRUE; /*just a check if the answer is already given*/
start2 = end2;
}
start = end;
lw_dist3d_seg_seg(POINT3DZ *s1p1, POINT3DZ *s1p2, POINT3DZ *s2p1, POINT3DZ *s2p2, DISTPTS3D *dl)
{
VECTOR3D v1, v2, vl;
- double s1k, s2k; /*two variables representing where on Line 1 (s1k) and where on Line 2 (s2k) a connecting line between the two lines is perpendicular to both lines*/
+ double s1k, s2k; /*two variables representing where on Line 1 (s1k) and where on Line 2 (s2k) a connecting line
+ between the two lines is perpendicular to both lines*/
POINT3DZ p1, p2;
double a, b, c, d, e, D;
/*s1p1 and s1p2 are the same point */
- if ( ( s1p1->x == s1p2->x) && (s1p1->y == s1p2->y) && (s1p1->z == s1p2->z) )
+ if ((s1p1->x == s1p2->x) && (s1p1->y == s1p2->y) && (s1p1->z == s1p2->z))
{
- return lw_dist3d_pt_seg(s1p1,s2p1,s2p2,dl);
+ return lw_dist3d_pt_seg(s1p1, s2p1, s2p2, dl);
}
/*s2p1 and s2p2 are the same point */
- if ( ( s2p1->x == s2p2->x) && (s2p1->y == s2p2->y) && (s2p1->z == s2p2->z) )
+ if ((s2p1->x == s2p2->x) && (s2p1->y == s2p2->y) && (s2p1->z == s2p2->z))
{
- dl->twisted= ((dl->twisted) * (-1));
- return lw_dist3d_pt_seg(s2p1,s1p1,s1p2,dl);
+ dl->twisted = ((dl->twisted) * (-1));
+ return lw_dist3d_pt_seg(s2p1, s1p1, s1p2, dl);
}
-/*
- Here we use algorithm from softsurfer.com
- that can be found here
- http://softsurfer.com/Archive/algorithm_0106/algorithm_0106.htm
-*/
+ /*
+ Here we use algorithm from softsurfer.com
+ that can be found here
+ http://softsurfer.com/Archive/algorithm_0106/algorithm_0106.htm
+ */
if (!get_3dvector_from_points(s1p1, s1p2, &v1))
return LW_FALSE;
if (!get_3dvector_from_points(s2p1, s1p1, &vl))
return LW_FALSE;
- a = DOT(v1,v1);
- b = DOT(v1,v2);
- c = DOT(v2,v2);
- d = DOT(v1,vl);
- e = DOT(v2,vl);
- D = a*c - b*b;
-
-
- if (D <0.000000001)
- { /* the lines are almost parallel*/
- s1k = 0.0; /*If the lines are parallel we try by using the startpoint of first segment. If that gives a projected point on the second line outside segment 2 it wil be found that s2k is >1 or <0.*/
- if(b>c) /* use the largest denominator*/
- {
- s2k=d/b;
- }
+ a = DOT(v1, v1);
+ b = DOT(v1, v2);
+ c = DOT(v2, v2);
+ d = DOT(v1, vl);
+ e = DOT(v2, vl);
+ D = a * c - b * b;
+
+ if (D < 0.000000001)
+ { /* the lines are almost parallel*/
+ s1k =
+ 0.0; /*If the lines are parallel we try by using the startpoint of first segment. If that gives a
+ projected point on the second line outside segment 2 it wil be found that s2k is >1 or <0.*/
+ if (b > c) /* use the largest denominator*/
+ s2k = d / b;
else
- {
- s2k =e/c;
- }
+ s2k = e / c;
}
else
{
- s1k = (b*e - c*d) / D;
- s2k = (a*e - b*d) / D;
+ s1k = (b * e - c * d) / D;
+ s2k = (a * e - b * d) / D;
}
- /* Now we check if the projected closest point on the infinite lines is outside our segments. If so the combinations with start and end points will be tested*/
- if(s1k<0.0||s1k>1.0||s2k<0.0||s2k>1.0)
+ /* Now we check if the projected closest point on the infinite lines is outside our segments. If so the
+ * combinations with start and end points will be tested*/
+ if (s1k < 0.0 || s1k > 1.0 || s2k < 0.0 || s2k > 1.0)
{
- if(s1k<0.0)
+ if (s1k < 0.0)
{
-
if (!lw_dist3d_pt_seg(s1p1, s2p1, s2p2, dl))
- {
return LW_FALSE;
- }
}
- if(s1k>1.0)
+ if (s1k > 1.0)
{
-
if (!lw_dist3d_pt_seg(s1p2, s2p1, s2p2, dl))
- {
return LW_FALSE;
- }
}
- if(s2k<0.0)
+ if (s2k < 0.0)
{
- dl->twisted= ((dl->twisted) * (-1));
+ dl->twisted = ((dl->twisted) * (-1));
if (!lw_dist3d_pt_seg(s2p1, s1p1, s1p2, dl))
- {
return LW_FALSE;
- }
}
- if(s2k>1.0)
+ if (s2k > 1.0)
{
- dl->twisted= ((dl->twisted) * (-1));
+ dl->twisted = ((dl->twisted) * (-1));
if (!lw_dist3d_pt_seg(s2p2, s1p1, s1p2, dl))
- {
return LW_FALSE;
- }
}
}
else
- {/*Find the closest point on the edges of both segments*/
- p1.x=s1p1->x+s1k*(s1p2->x-s1p1->x);
- p1.y=s1p1->y+s1k*(s1p2->y-s1p1->y);
- p1.z=s1p1->z+s1k*(s1p2->z-s1p1->z);
+ { /*Find the closest point on the edges of both segments*/
+ p1.x = s1p1->x + s1k * (s1p2->x - s1p1->x);
+ p1.y = s1p1->y + s1k * (s1p2->y - s1p1->y);
+ p1.z = s1p1->z + s1k * (s1p2->z - s1p1->z);
- p2.x=s2p1->x+s2k*(s2p2->x-s2p1->x);
- p2.y=s2p1->y+s2k*(s2p2->y-s2p1->y);
- p2.z=s2p1->z+s2k*(s2p2->z-s2p1->z);
+ p2.x = s2p1->x + s2k * (s2p2->x - s2p1->x);
+ p2.y = s2p1->y + s2k * (s2p2->y - s2p1->y);
+ p2.z = s2p1->z + s2k * (s2p2->z - s2p1->z);
- if (!lw_dist3d_pt_pt(&p1,&p2,dl))/* Send the closest points to point-point calculation*/
+ if (!lw_dist3d_pt_pt(&p1, &p2, dl)) /* Send the closest points to point-point calculation*/
{
return LW_FALSE;
}
If the projected point is inside a hole of the polygon we check the distance to the boundary of that hole.
*/
int
-lw_dist3d_pt_poly(POINT3DZ *p, LWPOLY *poly, PLANE3D *plane,POINT3DZ *projp, DISTPTS3D *dl)
+lw_dist3d_pt_poly(POINT3DZ *p, LWPOLY *poly, PLANE3D *plane, POINT3DZ *projp, DISTPTS3D *dl)
{
uint32_t i;
- LWDEBUG(2, "lw_dist3d_point_poly called");
-
-
- if(pt_in_ring_3d(projp, poly->rings[0], plane))
+ if (pt_in_ring_3d(projp, poly->rings[0], plane))
{
- for (i=1; i<poly->nrings; i++)
+ for (i = 1; i < poly->nrings; i++)
{
/* Inside a hole. Distance = pt -> ring */
- if ( pt_in_ring_3d(projp, poly->rings[i], plane ))
+ if (pt_in_ring_3d(projp, poly->rings[i], plane))
{
- LWDEBUG(3, " inside an hole");
return lw_dist3d_pt_ptarray(p, poly->rings[i], dl);
}
}
- return lw_dist3d_pt_pt(p,projp,dl);/* If the projected point is inside the polygon the shortest distance is between that point and the inputed point*/
+ return lw_dist3d_pt_pt(p, projp, dl); /* If the projected point is inside the polygon the shortest
+ distance is between that point and the inputed point*/
}
else
{
- return lw_dist3d_pt_ptarray(p, poly->rings[0], dl); /*If the projected point is outside the polygon we search for the closest distance against the boundary instead*/
+ return lw_dist3d_pt_ptarray(
+ p, poly->rings[0], dl); /*If the projected point is outside the polygon we search for the closest
+ distance against the boundary instead*/
}
return LW_TRUE;
-
}
/**
Computes pointarray to polygon distance
*/
-int lw_dist3d_ptarray_poly(POINTARRAY *pa, LWPOLY *poly,PLANE3D *plane, DISTPTS3D *dl)
+int
+lw_dist3d_ptarray_poly(POINTARRAY *pa, LWPOLY *poly, PLANE3D *plane, DISTPTS3D *dl)
{
- uint32_t i,j,k;
+ uint32_t i, j, k;
double f, s1, s2;
VECTOR3D projp1_projp2;
- POINT3DZ p1, p2,projp1, projp2, intersectionp;
+ POINT3DZ p1, p2, projp1, projp2, intersectionp;
getPoint3dz_p(pa, 0, &p1);
s1 = project_point_on_plane(
&p1, plane, &projp1); /*the sign of s1 tells us on which side of the plane the point is. */
- lw_dist3d_pt_poly(&p1, poly, plane,&projp1, dl);
+ lw_dist3d_pt_poly(&p1, poly, plane, &projp1, dl);
if ((s1 == 0.0) && (dl->distance < dl->tolerance))
- {
return LW_TRUE;
- }
- for (i=1;i<pa->npoints;i++)
+ for (i = 1; i < pa->npoints; i++)
{
int intersects;
getPoint3dz_p(pa, i, &p2);
- s2=project_point_on_plane(&p2, plane, &projp2);
- lw_dist3d_pt_poly(&p2, poly, plane,&projp2, dl);
+ s2 = project_point_on_plane(&p2, plane, &projp2);
+ lw_dist3d_pt_poly(&p2, poly, plane, &projp2, dl);
if ((s2 == 0.0) && (dl->distance < dl->tolerance))
- {
return LW_TRUE;
- }
/*If s1and s2 has different signs that means they are on different sides of the plane of the polygon.
That means that the edge between the points crosses the plane and might intersect with the polygon*/
if ((s1 * s2) < 0)
{
- f=fabs(s1)/(fabs(s1)+fabs(s2)); /*The size of s1 and s2 is the distance from the point to the plane.*/
- get_3dvector_from_points(&projp1, &projp2,&projp1_projp2);
+ f = fabs(s1) /
+ (fabs(s1) +
+ fabs(s2)); /*The size of s1 and s2 is the distance from the point to the plane.*/
+ get_3dvector_from_points(&projp1, &projp2, &projp1_projp2);
/*get the point where the line segment crosses the plane*/
- intersectionp.x=projp1.x+f*projp1_projp2.x;
- intersectionp.y=projp1.y+f*projp1_projp2.y;
- intersectionp.z=projp1.z+f*projp1_projp2.z;
+ intersectionp.x = projp1.x + f * projp1_projp2.x;
+ intersectionp.y = projp1.y + f * projp1_projp2.y;
+ intersectionp.z = projp1.z + f * projp1_projp2.z;
intersects = LW_TRUE; /*We set intersects to true until the opposite is proved*/
- if(pt_in_ring_3d(&intersectionp, poly->rings[0], plane)) /*Inside outer ring*/
+ if (pt_in_ring_3d(&intersectionp, poly->rings[0], plane)) /*Inside outer ring*/
{
- for (k=1;k<poly->nrings; k++)
+ for (k = 1; k < poly->nrings; k++)
{
/* Inside a hole, so no intersection with the polygon*/
- if ( pt_in_ring_3d(&intersectionp, poly->rings[k], plane ))
+ if (pt_in_ring_3d(&intersectionp, poly->rings[k], plane))
{
- intersects=LW_FALSE;
+ intersects = LW_FALSE;
break;
}
}
- if(intersects)
+ if (intersects)
{
- dl->distance=0.0;
- dl->p1.x=intersectionp.x;
- dl->p1.y=intersectionp.y;
- dl->p1.z=intersectionp.z;
-
- dl->p2.x=intersectionp.x;
- dl->p2.y=intersectionp.y;
- dl->p2.z=intersectionp.z;
+ dl->distance = 0.0;
+ dl->p1.x = intersectionp.x;
+ dl->p1.y = intersectionp.y;
+ dl->p1.z = intersectionp.z;
+
+ dl->p2.x = intersectionp.x;
+ dl->p2.y = intersectionp.y;
+ dl->p2.z = intersectionp.z;
return LW_TRUE;
-
}
}
}
- projp1=projp2;
- s1=s2;
- p1=p2;
+ projp1 = projp2;
+ s1 = s2;
+ p1 = p2;
}
/*check or pointarray against boundary and inner boundaries of the polygon*/
- for (j=0;j<poly->nrings;j++)
+ for (j = 0; j < poly->nrings; j++)
{
lw_dist3d_ptarray_ptarray(pa, poly->rings[j], dl);
}
-return LW_TRUE;
+ return LW_TRUE;
}
/* Here we define the plane of a polygon (boundary pointarray of a polygon)
Finds a point on a plane from where the original point is perpendicular to the plane
*/
double
-project_point_on_plane(POINT3DZ *p, PLANE3D *pl, POINT3DZ *p0)
+project_point_on_plane(POINT3DZ *p, PLANE3D *pl, POINT3DZ *p0)
{
-/*In our plane definition we have a point on the plane and a normal vector (pl.pv), perpendicular to the plane
-this vector will be parallel to the line between our inputted point above the plane and the point we are searching for on the plane.
-So, we already have a direction from p to find p0, but we don't know the distance.
-*/
+ /*In our plane definition we have a point on the plane and a normal vector (pl.pv), perpendicular to the plane
+ this vector will be parallel to the line between our inputted point above the plane and the point we are
+ searching for on the plane. So, we already have a direction from p to find p0, but we don't know the distance.
+ */
VECTOR3D v1;
double f;
return f;
}
-
-
-
/**
* pt_in_ring_3d(): crossing number test for a point in a polygon
* input: p = a point,
* pa = vertex points of a ring V[n+1] with V[n]=V[0]
-* plane=the plane that the vertex points are lying on
+ * plane=the plane that the vertex points are lying on
* returns: 0 = outside, 1 = inside
*
* Our polygons have first and last point the same,
*
-* The difference in 3D variant is that we exclude the dimension that faces the plane least.
-* That is the dimension with the highest number in pv
+ * The difference in 3D variant is that we exclude the dimension that faces the plane least.
+ * That is the dimension with the highest number in pv
*/
int
-pt_in_ring_3d(const POINT3DZ *p, const POINTARRAY *ring,PLANE3D *plane)
+pt_in_ring_3d(const POINT3DZ *p, const POINTARRAY *ring, PLANE3D *plane)
{
- uint32_t cn = 0; /* the crossing number counter */
+ uint32_t cn = 0; /* the crossing number counter */
uint32_t i;
POINT3DZ v1, v2;
- POINT3DZ first, last;
+ POINT3DZ first, last;
getPoint3dz_p(ring, 0, &first);
- getPoint3dz_p(ring, ring->npoints-1, &last);
- if ( memcmp(&first, &last, sizeof(POINT3DZ)) )
+ getPoint3dz_p(ring, ring->npoints - 1, &last);
+ if (memcmp(&first, &last, sizeof(POINT3DZ)))
{
lwerror("pt_in_ring_3d: V[n] != V[0] (%g %g %g!= %g %g %g)",
- first.x, first.y, first.z, last.x, last.y, last.z);
+ first.x,
+ first.y,
+ first.z,
+ last.x,
+ last.y,
+ last.z);
return LW_FALSE;
}
/* loop through all edges of the polygon */
getPoint3dz_p(ring, 0, &v1);
-
- if(fabs(plane->pv.z)>=fabs(plane->pv.x)&&fabs(plane->pv.z)>=fabs(plane->pv.y)) /*If the z vector of the normal vector to the plane is larger than x and y vector we project the ring to the xy-plane*/
+ if (fabs(plane->pv.z) >= fabs(plane->pv.x) &&
+ fabs(plane->pv.z) >= fabs(plane->pv.y)) /*If the z vector of the normal vector to the plane is larger than x
+ and y vector we project the ring to the xy-plane*/
{
- for (i=0; i<ring->npoints-1; i++)
+ for (i = 0; i < ring->npoints - 1; i++)
{
double vt;
- getPoint3dz_p(ring, i+1, &v2);
+ getPoint3dz_p(ring, i + 1, &v2);
/* edge from vertex i to vertex i+1 */
- if
- (
+ if (
/* an upward crossing */
((v1.y <= p->y) && (v2.y > p->y))
/* a downward crossing */
- || ((v1.y > p->y) && (v2.y <= p->y))
- )
+ || ((v1.y > p->y) && (v2.y <= p->y)))
{
vt = (double)(p->y - v1.y) / (v2.y - v1.y);
v1 = v2;
}
}
- else if(fabs(plane->pv.y)>=fabs(plane->pv.x)&&fabs(plane->pv.y)>=fabs(plane->pv.z)) /*If the y vector of the normal vector to the plane is larger than x and z vector we project the ring to the xz-plane*/
+ else if (fabs(plane->pv.y) >= fabs(plane->pv.x) &&
+ fabs(plane->pv.y) >= fabs(plane->pv.z)) /*If the y vector of the normal vector to the plane is larger
+ than x and z vector we project the ring to the xz-plane*/
{
- for (i=0; i<ring->npoints-1; i++)
+ for (i = 0; i < ring->npoints - 1; i++)
+ {
+ double vt;
+ getPoint3dz_p(ring, i + 1, &v2);
+
+ /* edge from vertex i to vertex i+1 */
+ if (
+ /* an upward crossing */
+ ((v1.z <= p->z) && (v2.z > p->z))
+ /* a downward crossing */
+ || ((v1.z > p->z) && (v2.z <= p->z)))
{
- double vt;
- getPoint3dz_p(ring, i+1, &v2);
-
- /* edge from vertex i to vertex i+1 */
- if
- (
- /* an upward crossing */
- ((v1.z <= p->z) && (v2.z > p->z))
- /* a downward crossing */
- || ((v1.z > p->z) && (v2.z <= p->z))
- )
- {
- vt = (double)(p->z - v1.z) / (v2.z - v1.z);
+ vt = (double)(p->z - v1.z) / (v2.z - v1.z);
- /* P.x <intersect */
- if (p->x < v1.x + vt * (v2.x - v1.x))
- {
- /* a valid crossing of y=p.y right of p.x */
- ++cn;
- }
+ /* P.x <intersect */
+ if (p->x < v1.x + vt * (v2.x - v1.x))
+ {
+ /* a valid crossing of y=p.y right of p.x */
+ ++cn;
}
- v1 = v2;
}
+ v1 = v2;
+ }
}
- else /*Hopefully we only have the cases where x part of the normal vector is largest left*/
+ else /*Hopefully we only have the cases where x part of the normal vector is largest left*/
{
- for (i=0; i<ring->npoints-1; i++)
+ for (i = 0; i < ring->npoints - 1; i++)
+ {
+ double vt;
+ getPoint3dz_p(ring, i + 1, &v2);
+
+ /* edge from vertex i to vertex i+1 */
+ if (
+ /* an upward crossing */
+ ((v1.z <= p->z) && (v2.z > p->z))
+ /* a downward crossing */
+ || ((v1.z > p->z) && (v2.z <= p->z)))
{
- double vt;
- getPoint3dz_p(ring, i+1, &v2);
-
- /* edge from vertex i to vertex i+1 */
- if
- (
- /* an upward crossing */
- ((v1.z <= p->z) && (v2.z > p->z))
- /* a downward crossing */
- || ((v1.z > p->z) && (v2.z <= p->z))
- )
- {
- vt = (double)(p->z - v1.z) / (v2.z - v1.z);
+ vt = (double)(p->z - v1.z) / (v2.z - v1.z);
- /* P.x <intersect */
- if (p->y < v1.y + vt * (v2.y - v1.y))
- {
- /* a valid crossing of y=p.y right of p.x */
- ++cn;
- }
+ /* P.x <intersect */
+ if (p->y < v1.y + vt * (v2.y - v1.y))
+ {
+ /* a valid crossing of y=p.y right of p.x */
+ ++cn;
}
- v1 = v2;
}
+ v1 = v2;
+ }
}
- LWDEBUGF(3, "pt_in_ring_3d returning %d", cn&1);
+ LWDEBUGF(3, "pt_in_ring_3d returning %d", cn & 1);
- return (cn&1); /* 0 if even (out), and 1 if odd (in) */
+ return (cn & 1); /* 0 if even (out), and 1 if odd (in) */
}
-
-
/*------------------------------------------------------------------------------------------------------------
End of Brute force functions
--------------------------------------------------------------------------------------------------------------*/
-
-
-