--- /dev/null
+This directory contains source code to
+
+ SQLite: An Embeddable SQL Database Engine
+
+To compile the project, first create a directory in which to place
+the build products. It is recommended, but not required, that the
+build directory be separate from the source directory. Cd into the
+build directory and then from the build directory run the configure
+script found at the root of the source tree. Then run "make".
+
+For example:
+
+ tar xzf sqlite.tar.gz ;# Unpack the source tree into "sqlite"
+ mkdir bld ;# Build will occur in a sibling directory
+ cd bld ;# Change to the build directory
+ ../sqlite/configure ;# Run the configure script
+ make ;# Run the makefile.
+
+The configure script uses autoconf 2.50 and libtool. If the configure
+script does not work out for you, there is a generic makefile named
+"Makefile.linux-gcc" in the top directory of the source tree that you
+can copy and edit to suite your needs. Comments on the generic makefile
+show what changes are needed.
+
+The linux binaries on the website are created using the generic makefile,
+not the configure script. The configure script is unmaintained. (You
+can volunteer to take over maintenance of the configure script, if you want!)
+The windows binaries on the website are created using MinGW32 configured
+as a cross-compiler running under Linux. For details, see the ./publish.sh
+script at the top-level of the source tree.
+
+Contacts:
+
+ http://www.sqlite.org/
+ http://www.hwaci.com/sw/sqlite/
+ http://groups.yahoo.com/group/sqlite/
+ drh@hwaci.com
--- /dev/null
+/*
+** 2003 January 11
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used to implement the sqlite_set_authorizer()
+** API. This facility is an optional feature of the library. Embedded
+** systems that do not need this facility may omit it by recompiling
+** the library with -DSQLITE_OMIT_AUTHORIZATION=1
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+
+/*
+** All of the code in this file may be omitted by defining a single
+** macro.
+*/
+#ifndef SQLITE_OMIT_AUTHORIZATION
+
+/*
+** Set or clear the access authorization function.
+**
+** The access authorization function is be called during the compilation
+** phase to verify that the user has read and/or write access permission
+** various fields of the database. The first argument to the auth function
+** is a copy of the 3rd argument to this routine. The second argument
+** to the auth function is one of these constants:
+**
+** SQLITE_READ_COLUMN
+** SQLITE_WRITE_COLUMN
+** SQLITE_DELETE_ROW
+** SQLITE_INSERT_ROW
+**
+** The third and fourth arguments to the auth function are the name of
+** the table and the column that are being accessed. The auth function
+** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
+** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
+** means that the SQL statement will never-run - the sqlite_exec() call
+** will return with an error. SQLITE_IGNORE means that the SQL statement
+** should run but attempts to read the specified column will return NULL
+** and attempts to write the column will be ignored.
+**
+** Setting the auth function to NULL disables this hook. The default
+** setting of the auth function is NULL.
+*/
+int sqlite_set_authorizer(
+ sqlite *db,
+ int (*xAuth)(void*,int,const char*,const char*),
+ void *pArg
+){
+ db->xAuth = xAuth;
+ db->pAuthArg = pArg;
+ return SQLITE_OK;
+}
+
+/*
+** Write an error message into pParse->zErrMsg that explains that the
+** user-supplied authorization function returned an illegal value.
+*/
+static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
+ char zBuf[20];
+ sprintf(zBuf, "(%d)", rc);
+ sqliteSetString(&pParse->zErrMsg, "illegal return value ", zBuf,
+ " from the authorization function - should be SQLITE_OK, "
+ "SQLITE_IGNORE, or SQLITE_DENY", 0);
+ pParse->nErr++;
+ pParse->rc = SQLITE_MISUSE;
+}
+
+/*
+** The pExpr should be a TK_COLUMN expression. The table referred to
+** is in pTabList with an offset of base. Check to see if it is OK to read
+** this particular column.
+**
+** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
+** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
+** then generate an error.
+*/
+void sqliteAuthRead(
+ Parse *pParse, /* The parser context */
+ Expr *pExpr, /* The expression to check authorization on */
+ SrcList *pTabList, /* All table that pExpr might refer to */
+ int base /* Offset of pTabList relative to pExpr */
+){
+ sqlite *db = pParse->db;
+ int rc;
+ Table *pTab;
+ const char *zCol;
+ if( db->xAuth==0 ) return;
+ assert( pExpr->op==TK_COLUMN );
+ assert( pExpr->iTable>=base && pExpr->iTable<base+pTabList->nSrc );
+ pTab = pTabList->a[pExpr->iTable-base].pTab;
+ if( pTab==0 ) return;
+ if( pExpr->iColumn>=0 ){
+ assert( pExpr->iColumn<pTab->nCol );
+ zCol = pTab->aCol[pExpr->iColumn].zName;
+ }else if( pTab->iPKey>=0 ){
+ assert( pTab->iPKey<pTab->nCol );
+ zCol = pTab->aCol[pTab->iPKey].zName;
+ }else{
+ zCol = "ROWID";
+ }
+ rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol);
+ if( rc==SQLITE_IGNORE ){
+ pExpr->op = TK_NULL;
+ }else if( rc==SQLITE_DENY ){
+ sqliteSetString(&pParse->zErrMsg,"access to ",
+ pTab->zName, ".", zCol, " is prohibited", 0);
+ pParse->nErr++;
+ pParse->rc = SQLITE_AUTH;
+ }else if( rc!=SQLITE_OK ){
+ sqliteAuthBadReturnCode(pParse, rc);
+ }
+}
+
+/*
+** Do an authorization check using the code and arguments given. Return
+** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
+** is returned, then the error count and error message in pParse are
+** modified appropriately.
+*/
+int sqliteAuthCheck(
+ Parse *pParse,
+ int code,
+ const char *zArg1,
+ const char *zArg2
+){
+ sqlite *db = pParse->db;
+ int rc;
+ if( db->xAuth==0 ){
+ return SQLITE_OK;
+ }
+ rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2);
+ if( rc==SQLITE_DENY ){
+ sqliteSetString(&pParse->zErrMsg, "not authorized", 0);
+ pParse->rc = SQLITE_AUTH;
+ pParse->nErr++;
+ }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
+ rc = SQLITE_DENY;
+ sqliteAuthBadReturnCode(pParse, rc);
+ }
+ return rc;
+}
+
+#endif /* SQLITE_OMIT_AUTHORIZATION */
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** $Id$
+**
+** This file implements a external (disk-based) database using BTrees.
+** For a detailed discussion of BTrees, refer to
+**
+** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
+** "Sorting And Searching", pages 473-480. Addison-Wesley
+** Publishing Company, Reading, Massachusetts.
+**
+** The basic idea is that each page of the file contains N database
+** entries and N+1 pointers to subpages.
+**
+** ----------------------------------------------------------------
+** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
+** ----------------------------------------------------------------
+**
+** All of the keys on the page that Ptr(0) points to have values less
+** than Key(0). All of the keys on page Ptr(1) and its subpages have
+** values greater than Key(0) and less than Key(1). All of the keys
+** on Ptr(N+1) and its subpages have values greater than Key(N). And
+** so forth.
+**
+** Finding a particular key requires reading O(log(M)) pages from the
+** disk where M is the number of entries in the tree.
+**
+** In this implementation, a single file can hold one or more separate
+** BTrees. Each BTree is identified by the index of its root page. The
+** key and data for any entry are combined to form the "payload". Up to
+** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
+** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes
+** then surplus bytes are stored on overflow pages. The payload for an
+** entry and the preceding pointer are combined to form a "Cell". Each
+** page has a small header which contains the Ptr(N+1) pointer.
+**
+** The first page of the file contains a magic string used to verify that
+** the file really is a valid BTree database, a pointer to a list of unused
+** pages in the file, and some meta information. The root of the first
+** BTree begins on page 2 of the file. (Pages are numbered beginning with
+** 1, not 0.) Thus a minimum database contains 2 pages.
+*/
+#include "sqliteInt.h"
+#include "pager.h"
+#include "btree.h"
+#include <assert.h>
+
+/*
+** Macros used for byteswapping. B is a pointer to the Btree
+** structure. This is needed to access the Btree.needSwab boolean
+** in order to tell if byte swapping is needed or not.
+** X is an unsigned integer. SWAB16 byte swaps a 16-bit integer.
+** SWAB32 byteswaps a 32-bit integer.
+*/
+#define SWAB16(B,X) ((B)->needSwab? swab16(X) : (X))
+#define SWAB32(B,X) ((B)->needSwab? swab32(X) : (X))
+#define SWAB_ADD(B,X,A) \
+ if((B)->needSwab){ X=swab32(swab32(X)+A); }else{ X += (A); }
+
+/*
+** The following global variable - available only if SQLITE_TEST is
+** defined - is used to determine whether new databases are created in
+** native byte order or in non-native byte order. Non-native byte order
+** databases are created for testing purposes only. Under normal operation,
+** only native byte-order databases should be created, but we should be
+** able to read or write existing databases regardless of the byteorder.
+*/
+#ifdef SQLITE_TEST
+int btree_native_byte_order = 1;
+#else
+# define btree_native_byte_order 1
+#endif
+
+/*
+** Forward declarations of structures used only in this file.
+*/
+typedef struct PageOne PageOne;
+typedef struct MemPage MemPage;
+typedef struct PageHdr PageHdr;
+typedef struct Cell Cell;
+typedef struct CellHdr CellHdr;
+typedef struct FreeBlk FreeBlk;
+typedef struct OverflowPage OverflowPage;
+typedef struct FreelistInfo FreelistInfo;
+
+/*
+** All structures on a database page are aligned to 4-byte boundries.
+** This routine rounds up a number of bytes to the next multiple of 4.
+**
+** This might need to change for computer architectures that require
+** and 8-byte alignment boundry for structures.
+*/
+#define ROUNDUP(X) ((X+3) & ~3)
+
+/*
+** This is a magic string that appears at the beginning of every
+** SQLite database in order to identify the file as a real database.
+*/
+static const char zMagicHeader[] =
+ "** This file contains an SQLite 2.1 database **";
+#define MAGIC_SIZE (sizeof(zMagicHeader))
+
+/*
+** This is a magic integer also used to test the integrity of the database
+** file. This integer is used in addition to the string above so that
+** if the file is written on a little-endian architecture and read
+** on a big-endian architectures (or vice versa) we can detect the
+** problem.
+**
+** The number used was obtained at random and has no special
+** significance other than the fact that it represents a different
+** integer on little-endian and big-endian machines.
+*/
+#define MAGIC 0xdae37528
+
+/*
+** The first page of the database file contains a magic header string
+** to identify the file as an SQLite database file. It also contains
+** a pointer to the first free page of the file. Page 2 contains the
+** root of the principle BTree. The file might contain other BTrees
+** rooted on pages above 2.
+**
+** The first page also contains SQLITE_N_BTREE_META integers that
+** can be used by higher-level routines.
+**
+** Remember that pages are numbered beginning with 1. (See pager.c
+** for additional information.) Page 0 does not exist and a page
+** number of 0 is used to mean "no such page".
+*/
+struct PageOne {
+ char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
+ int iMagic; /* Integer to verify correct byte order */
+ Pgno freeList; /* First free page in a list of all free pages */
+ int nFree; /* Number of pages on the free list */
+ int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */
+};
+
+/*
+** Each database page has a header that is an instance of this
+** structure.
+**
+** PageHdr.firstFree is 0 if there is no free space on this page.
+** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a
+** FreeBlk structure that describes the first block of free space.
+** All free space is defined by a linked list of FreeBlk structures.
+**
+** Data is stored in a linked list of Cell structures. PageHdr.firstCell
+** is the index into MemPage.u.aDisk[] of the first cell on the page. The
+** Cells are kept in sorted order.
+**
+** A Cell contains all information about a database entry and a pointer
+** to a child page that contains other entries less than itself. In
+** other words, the i-th Cell contains both Ptr(i) and Key(i). The
+** right-most pointer of the page is contained in PageHdr.rightChild.
+*/
+struct PageHdr {
+ Pgno rightChild; /* Child page that comes after all cells on this page */
+ u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */
+ u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */
+};
+
+/*
+** Entries on a page of the database are called "Cells". Each Cell
+** has a header and data. This structure defines the header. The
+** key and data (collectively the "payload") follow this header on
+** the database page.
+**
+** A definition of the complete Cell structure is given below. The
+** header for the cell must be defined first in order to do some
+** of the sizing #defines that follow.
+*/
+struct CellHdr {
+ Pgno leftChild; /* Child page that comes before this cell */
+ u16 nKey; /* Number of bytes in the key */
+ u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */
+ u8 nKeyHi; /* Upper 8 bits of key size for keys larger than 64K bytes */
+ u8 nDataHi; /* Upper 8 bits of data size when the size is more than 64K */
+ u16 nData; /* Number of bytes of data */
+};
+
+/*
+** The key and data size are split into a lower 16-bit segment and an
+** upper 8-bit segment in order to pack them together into a smaller
+** space. The following macros reassembly a key or data size back
+** into an integer.
+*/
+#define NKEY(b,h) (SWAB16(b,h.nKey) + h.nKeyHi*65536)
+#define NDATA(b,h) (SWAB16(b,h.nData) + h.nDataHi*65536)
+
+/*
+** The minimum size of a complete Cell. The Cell must contain a header
+** and at least 4 bytes of payload.
+*/
+#define MIN_CELL_SIZE (sizeof(CellHdr)+4)
+
+/*
+** The maximum number of database entries that can be held in a single
+** page of the database.
+*/
+#define MX_CELL ((SQLITE_PAGE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE)
+
+/*
+** The amount of usable space on a single page of the BTree. This is the
+** page size minus the overhead of the page header.
+*/
+#define USABLE_SPACE (SQLITE_PAGE_SIZE - sizeof(PageHdr))
+
+/*
+** The maximum amount of payload (in bytes) that can be stored locally for
+** a database entry. If the entry contains more data than this, the
+** extra goes onto overflow pages.
+**
+** This number is chosen so that at least 4 cells will fit on every page.
+*/
+#define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3)
+
+/*
+** Data on a database page is stored as a linked list of Cell structures.
+** Both the key and the data are stored in aPayload[]. The key always comes
+** first. The aPayload[] field grows as necessary to hold the key and data,
+** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and
+** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
+** page number of the first overflow page.
+**
+** Though this structure is fixed in size, the Cell on the database
+** page varies in size. Every cell has a CellHdr and at least 4 bytes
+** of payload space. Additional payload bytes (up to the maximum of
+** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
+** needed.
+*/
+struct Cell {
+ CellHdr h; /* The cell header */
+ char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */
+ Pgno ovfl; /* The first overflow page */
+};
+
+/*
+** Free space on a page is remembered using a linked list of the FreeBlk
+** structures. Space on a database page is allocated in increments of
+** at least 4 bytes and is always aligned to a 4-byte boundry. The
+** linked list of FreeBlks is always kept in order by address.
+*/
+struct FreeBlk {
+ u16 iSize; /* Number of bytes in this block of free space */
+ u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */
+};
+
+/*
+** The number of bytes of payload that will fit on a single overflow page.
+*/
+#define OVERFLOW_SIZE (SQLITE_PAGE_SIZE-sizeof(Pgno))
+
+/*
+** When the key and data for a single entry in the BTree will not fit in
+** the MX_LOCAL_PAYLOAD bytes of space available on the database page,
+** then all extra bytes are written to a linked list of overflow pages.
+** Each overflow page is an instance of the following structure.
+**
+** Unused pages in the database are also represented by instances of
+** the OverflowPage structure. The PageOne.freeList field is the
+** page number of the first page in a linked list of unused database
+** pages.
+*/
+struct OverflowPage {
+ Pgno iNext;
+ char aPayload[OVERFLOW_SIZE];
+};
+
+/*
+** The PageOne.freeList field points to a linked list of overflow pages
+** hold information about free pages. The aPayload section of each
+** overflow page contains an instance of the following structure. The
+** aFree[] array holds the page number of nFree unused pages in the disk
+** file.
+*/
+struct FreelistInfo {
+ int nFree;
+ Pgno aFree[(OVERFLOW_SIZE-sizeof(int))/sizeof(Pgno)];
+};
+
+/*
+** For every page in the database file, an instance of the following structure
+** is stored in memory. The u.aDisk[] array contains the raw bits read from
+** the disk. The rest is auxiliary information held in memory only. The
+** auxiliary info is only valid for regular database pages - it is not
+** used for overflow pages and pages on the freelist.
+**
+** Of particular interest in the auxiliary info is the apCell[] entry. Each
+** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are
+** put in this array so that they can be accessed in constant time, rather
+** than in linear time which would be needed if we had to walk the linked
+** list on every access.
+**
+** Note that apCell[] contains enough space to hold up to two more Cells
+** than can possibly fit on one page. In the steady state, every apCell[]
+** points to memory inside u.aDisk[]. But in the middle of an insert
+** operation, some apCell[] entries may temporarily point to data space
+** outside of u.aDisk[]. This is a transient situation that is quickly
+** resolved. But while it is happening, it is possible for a database
+** page to hold as many as two more cells than it might otherwise hold.
+** The extra two entries in apCell[] are an allowance for this situation.
+**
+** The pParent field points back to the parent page. This allows us to
+** walk up the BTree from any leaf to the root. Care must be taken to
+** unref() the parent page pointer when this page is no longer referenced.
+** The pageDestructor() routine handles that chore.
+*/
+struct MemPage {
+ union {
+ char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
+ PageHdr hdr; /* Overlay page header */
+ } u;
+ u8 isInit; /* True if auxiliary data is initialized */
+ u8 idxShift; /* True if apCell[] indices have changed */
+ u8 isOverfull; /* Some apCell[] points outside u.aDisk[] */
+ MemPage *pParent; /* The parent of this page. NULL for root */
+ int idxParent; /* Index in pParent->apCell[] of this node */
+ int nFree; /* Number of free bytes in u.aDisk[] */
+ int nCell; /* Number of entries on this page */
+ Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */
+};
+
+/*
+** The in-memory image of a disk page has the auxiliary information appended
+** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
+** that extra information.
+*/
+#define EXTRA_SIZE (sizeof(MemPage)-SQLITE_PAGE_SIZE)
+
+/*
+** Everything we need to know about an open database
+*/
+struct Btree {
+ Pager *pPager; /* The page cache */
+ BtCursor *pCursor; /* A list of all open cursors */
+ PageOne *page1; /* First page of the database */
+ u8 inTrans; /* True if a transaction is in progress */
+ u8 inCkpt; /* True if there is a checkpoint on the transaction */
+ u8 readOnly; /* True if the underlying file is readonly */
+ u8 needSwab; /* Need to byte-swapping */
+};
+typedef Btree Bt;
+
+/*
+** A cursor is a pointer to a particular entry in the BTree.
+** The entry is identified by its MemPage and the index in
+** MemPage.apCell[] of the entry.
+*/
+struct BtCursor {
+ Btree *pBt; /* The Btree to which this cursor belongs */
+ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
+ BtCursor *pShared; /* Loop of cursors with the same root page */
+ Pgno pgnoRoot; /* The root page of this tree */
+ MemPage *pPage; /* Page that contains the entry */
+ int idx; /* Index of the entry in pPage->apCell[] */
+ u8 wrFlag; /* True if writable */
+ u8 eSkip; /* Determines if next step operation is a no-op */
+ u8 iMatch; /* compare result from last sqliteBtreeMoveto() */
+};
+
+/*
+** Legal values for BtCursor.eSkip.
+*/
+#define SKIP_NONE 0 /* Always step the cursor */
+#define SKIP_NEXT 1 /* The next sqliteBtreeNext() is a no-op */
+#define SKIP_PREV 2 /* The next sqliteBtreePrevious() is a no-op */
+#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
+
+/*
+** Routines for byte swapping.
+*/
+u16 swab16(u16 x){
+ return ((x & 0xff)<<8) | ((x>>8)&0xff);
+}
+u32 swab32(u32 x){
+ return ((x & 0xff)<<24) | ((x & 0xff00)<<8) |
+ ((x>>8) & 0xff00) | ((x>>24)&0xff);
+}
+
+/*
+** Compute the total number of bytes that a Cell needs on the main
+** database page. The number returned includes the Cell header,
+** local payload storage, and the pointer to overflow pages (if
+** applicable). Additional space allocated on overflow pages
+** is NOT included in the value returned from this routine.
+*/
+static int cellSize(Btree *pBt, Cell *pCell){
+ int n = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
+ if( n>MX_LOCAL_PAYLOAD ){
+ n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
+ }else{
+ n = ROUNDUP(n);
+ }
+ n += sizeof(CellHdr);
+ return n;
+}
+
+/*
+** Defragment the page given. All Cells are moved to the
+** beginning of the page and all free space is collected
+** into one big FreeBlk at the end of the page.
+*/
+static void defragmentPage(Btree *pBt, MemPage *pPage){
+ int pc, i, n;
+ FreeBlk *pFBlk;
+ char newPage[SQLITE_PAGE_SIZE];
+
+ assert( sqlitepager_iswriteable(pPage) );
+ assert( pPage->isInit );
+ pc = sizeof(PageHdr);
+ pPage->u.hdr.firstCell = SWAB16(pBt, pc);
+ memcpy(newPage, pPage->u.aDisk, pc);
+ for(i=0; i<pPage->nCell; i++){
+ Cell *pCell = pPage->apCell[i];
+
+ /* This routine should never be called on an overfull page. The
+ ** following asserts verify that constraint. */
+ assert( Addr(pCell) > Addr(pPage) );
+ assert( Addr(pCell) < Addr(pPage) + SQLITE_PAGE_SIZE );
+
+ n = cellSize(pBt, pCell);
+ pCell->h.iNext = SWAB16(pBt, pc + n);
+ memcpy(&newPage[pc], pCell, n);
+ pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
+ pc += n;
+ }
+ assert( pPage->nFree==SQLITE_PAGE_SIZE-pc );
+ memcpy(pPage->u.aDisk, newPage, pc);
+ if( pPage->nCell>0 ){
+ pPage->apCell[pPage->nCell-1]->h.iNext = 0;
+ }
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
+ pFBlk->iSize = SWAB16(pBt, SQLITE_PAGE_SIZE - pc);
+ pFBlk->iNext = 0;
+ pPage->u.hdr.firstFree = SWAB16(pBt, pc);
+ memset(&pFBlk[1], 0, SQLITE_PAGE_SIZE - pc - sizeof(FreeBlk));
+}
+
+/*
+** Allocate nByte bytes of space on a page. nByte must be a
+** multiple of 4.
+**
+** Return the index into pPage->u.aDisk[] of the first byte of
+** the new allocation. Or return 0 if there is not enough free
+** space on the page to satisfy the allocation request.
+**
+** If the page contains nBytes of free space but does not contain
+** nBytes of contiguous free space, then this routine automatically
+** calls defragementPage() to consolidate all free space before
+** allocating the new chunk.
+*/
+static int allocateSpace(Btree *pBt, MemPage *pPage, int nByte){
+ FreeBlk *p;
+ u16 *pIdx;
+ int start;
+ int cnt = 0;
+ int iSize;
+
+ assert( sqlitepager_iswriteable(pPage) );
+ assert( nByte==ROUNDUP(nByte) );
+ assert( pPage->isInit );
+ if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
+ pIdx = &pPage->u.hdr.firstFree;
+ p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
+ while( (iSize = SWAB16(pBt, p->iSize))<nByte ){
+ assert( cnt++ < SQLITE_PAGE_SIZE/4 );
+ if( p->iNext==0 ){
+ defragmentPage(pBt, pPage);
+ pIdx = &pPage->u.hdr.firstFree;
+ }else{
+ pIdx = &p->iNext;
+ }
+ p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
+ }
+ if( iSize==nByte ){
+ start = SWAB16(pBt, *pIdx);
+ *pIdx = p->iNext;
+ }else{
+ FreeBlk *pNew;
+ start = SWAB16(pBt, *pIdx);
+ pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
+ pNew->iNext = p->iNext;
+ pNew->iSize = SWAB16(pBt, iSize - nByte);
+ *pIdx = SWAB16(pBt, start + nByte);
+ }
+ pPage->nFree -= nByte;
+ return start;
+}
+
+/*
+** Return a section of the MemPage.u.aDisk[] to the freelist.
+** The first byte of the new free block is pPage->u.aDisk[start]
+** and the size of the block is "size" bytes. Size must be
+** a multiple of 4.
+**
+** Most of the effort here is involved in coalesing adjacent
+** free blocks into a single big free block.
+*/
+static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){
+ int end = start + size;
+ u16 *pIdx, idx;
+ FreeBlk *pFBlk;
+ FreeBlk *pNew;
+ FreeBlk *pNext;
+ int iSize;
+
+ assert( sqlitepager_iswriteable(pPage) );
+ assert( size == ROUNDUP(size) );
+ assert( start == ROUNDUP(start) );
+ assert( pPage->isInit );
+ pIdx = &pPage->u.hdr.firstFree;
+ idx = SWAB16(pBt, *pIdx);
+ while( idx!=0 && idx<start ){
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
+ iSize = SWAB16(pBt, pFBlk->iSize);
+ if( idx + iSize == start ){
+ pFBlk->iSize = SWAB16(pBt, iSize + size);
+ if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){
+ pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size];
+ if( pBt->needSwab ){
+ pFBlk->iSize = swab16(swab16(pNext->iSize)+iSize+size);
+ }else{
+ pFBlk->iSize += pNext->iSize;
+ }
+ pFBlk->iNext = pNext->iNext;
+ }
+ pPage->nFree += size;
+ return;
+ }
+ pIdx = &pFBlk->iNext;
+ idx = SWAB16(pBt, *pIdx);
+ }
+ pNew = (FreeBlk*)&pPage->u.aDisk[start];
+ if( idx != end ){
+ pNew->iSize = SWAB16(pBt, size);
+ pNew->iNext = SWAB16(pBt, idx);
+ }else{
+ pNext = (FreeBlk*)&pPage->u.aDisk[idx];
+ pNew->iSize = SWAB16(pBt, size + SWAB16(pBt, pNext->iSize));
+ pNew->iNext = pNext->iNext;
+ }
+ *pIdx = SWAB16(pBt, start);
+ pPage->nFree += size;
+}
+
+/*
+** Initialize the auxiliary information for a disk block.
+**
+** The pParent parameter must be a pointer to the MemPage which
+** is the parent of the page being initialized. The root of the
+** BTree (usually page 2) has no parent and so for that page,
+** pParent==NULL.
+**
+** Return SQLITE_OK on success. If we see that the page does
+** not contain a well-formed database page, then return
+** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
+** guarantee that the page is well-formed. It only shows that
+** we failed to detect any corruption.
+*/
+static int initPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
+ int idx; /* An index into pPage->u.aDisk[] */
+ Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */
+ FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */
+ int sz; /* The size of a Cell in bytes */
+ int freeSpace; /* Amount of free space on the page */
+
+ if( pPage->pParent ){
+ assert( pPage->pParent==pParent );
+ return SQLITE_OK;
+ }
+ if( pParent ){
+ pPage->pParent = pParent;
+ sqlitepager_ref(pParent);
+ }
+ if( pPage->isInit ) return SQLITE_OK;
+ pPage->isInit = 1;
+ pPage->nCell = 0;
+ freeSpace = USABLE_SPACE;
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx!=0 ){
+ if( idx>SQLITE_PAGE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
+ if( idx<sizeof(PageHdr) ) goto page_format_error;
+ if( idx!=ROUNDUP(idx) ) goto page_format_error;
+ pCell = (Cell*)&pPage->u.aDisk[idx];
+ sz = cellSize(pBt, pCell);
+ if( idx+sz > SQLITE_PAGE_SIZE ) goto page_format_error;
+ freeSpace -= sz;
+ pPage->apCell[pPage->nCell++] = pCell;
+ idx = SWAB16(pBt, pCell->h.iNext);
+ }
+ pPage->nFree = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
+ while( idx!=0 ){
+ int iNext;
+ if( idx>SQLITE_PAGE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
+ if( idx<sizeof(PageHdr) ) goto page_format_error;
+ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
+ pPage->nFree += SWAB16(pBt, pFBlk->iSize);
+ iNext = SWAB16(pBt, pFBlk->iNext);
+ if( iNext>0 && iNext <= idx ) goto page_format_error;
+ idx = iNext;
+ }
+ if( pPage->nCell==0 && pPage->nFree==0 ){
+ /* As a special case, an uninitialized root page appears to be
+ ** an empty database */
+ return SQLITE_OK;
+ }
+ if( pPage->nFree!=freeSpace ) goto page_format_error;
+ return SQLITE_OK;
+
+page_format_error:
+ return SQLITE_CORRUPT;
+}
+
+/*
+** Set up a raw page so that it looks like a database page holding
+** no entries.
+*/
+static void zeroPage(Btree *pBt, MemPage *pPage){
+ PageHdr *pHdr;
+ FreeBlk *pFBlk;
+ assert( sqlitepager_iswriteable(pPage) );
+ memset(pPage, 0, SQLITE_PAGE_SIZE);
+ pHdr = &pPage->u.hdr;
+ pHdr->firstCell = 0;
+ pHdr->firstFree = SWAB16(pBt, sizeof(*pHdr));
+ pFBlk = (FreeBlk*)&pHdr[1];
+ pFBlk->iNext = 0;
+ pPage->nFree = SQLITE_PAGE_SIZE - sizeof(*pHdr);
+ pFBlk->iSize = SWAB16(pBt, pPage->nFree);
+ pPage->nCell = 0;
+ pPage->isOverfull = 0;
+}
+
+/*
+** This routine is called when the reference count for a page
+** reaches zero. We need to unref the pParent pointer when that
+** happens.
+*/
+static void pageDestructor(void *pData){
+ MemPage *pPage = (MemPage*)pData;
+ if( pPage->pParent ){
+ MemPage *pParent = pPage->pParent;
+ pPage->pParent = 0;
+ sqlitepager_unref(pParent);
+ }
+}
+
+/*
+** Open a new database.
+**
+** Actually, this routine just sets up the internal data structures
+** for accessing the database. We do not open the database file
+** until the first page is loaded.
+**
+** zFilename is the name of the database file. If zFilename is NULL
+** a new database with a random name is created. This randomly named
+** database file will be deleted when sqliteBtreeClose() is called.
+*/
+int sqliteBtreeOpen(
+ const char *zFilename, /* Name of the file containing the BTree database */
+ int omitJournal, /* if TRUE then do not journal this file */
+ int nCache, /* How many pages in the page cache */
+ Btree **ppBtree /* Pointer to new Btree object written here */
+){
+ Btree *pBt;
+ int rc;
+
+ /*
+ ** The following asserts make sure that structures used by the btree are
+ ** the right size. This is to guard against size changes that result
+ ** when compiling on a different architecture.
+ */
+ assert( sizeof(u32)==4 );
+ assert( sizeof(u16)==2 );
+ assert( sizeof(Pgno)==4 );
+ assert( sizeof(PageHdr)==8 );
+ assert( sizeof(CellHdr)==12 );
+ assert( sizeof(FreeBlk)==4 );
+ assert( sizeof(OverflowPage)==SQLITE_PAGE_SIZE );
+ assert( sizeof(FreelistInfo)==OVERFLOW_SIZE );
+ assert( sizeof(ptr)==sizeof(char*) );
+ assert( sizeof(uptr)==sizeof(ptr) );
+
+ pBt = sqliteMalloc( sizeof(*pBt) );
+ if( pBt==0 ){
+ *ppBtree = 0;
+ return SQLITE_NOMEM;
+ }
+ if( nCache<10 ) nCache = 10;
+ rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
+ !omitJournal);
+ if( rc!=SQLITE_OK ){
+ if( pBt->pPager ) sqlitepager_close(pBt->pPager);
+ sqliteFree(pBt);
+ *ppBtree = 0;
+ return rc;
+ }
+ sqlitepager_set_destructor(pBt->pPager, pageDestructor);
+ pBt->pCursor = 0;
+ pBt->page1 = 0;
+ pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
+ *ppBtree = pBt;
+ return SQLITE_OK;
+}
+
+/*
+** Close an open database and invalidate all cursors.
+*/
+int sqliteBtreeClose(Btree *pBt){
+ while( pBt->pCursor ){
+ sqliteBtreeCloseCursor(pBt->pCursor);
+ }
+ sqlitepager_close(pBt->pPager);
+ sqliteFree(pBt);
+ return SQLITE_OK;
+}
+
+/*
+** Change the limit on the number of pages allowed in the cache.
+**
+** The maximum number of cache pages is set to the absolute
+** value of mxPage. If mxPage is negative, the pager will
+** operate asynchronously - it will not stop to do fsync()s
+** to insure data is written to the disk surface before
+** continuing. Transactions still work if synchronous is off,
+** and the database cannot be corrupted if this program
+** crashes. But if the operating system crashes or there is
+** an abrupt power failure when synchronous is off, the database
+** could be left in an inconsistent and unrecoverable state.
+** Synchronous is on by default so database corruption is not
+** normally a worry.
+*/
+int sqliteBtreeSetCacheSize(Btree *pBt, int mxPage){
+ sqlitepager_set_cachesize(pBt->pPager, mxPage);
+ return SQLITE_OK;
+}
+
+/*
+** Change the way data is synced to disk in order to increase or decrease
+** how well the database resists damage due to OS crashes and power
+** failures. Level 1 is the same as asynchronous (no syncs() occur and
+** there is a high probability of damage) Level 2 is the default. There
+** is a very low but non-zero probability of damage. Level 3 reduces the
+** probability of damage to near zero but with a write performance reduction.
+*/
+int sqliteBtreeSetSafetyLevel(Btree *pBt, int level){
+ sqlitepager_set_safety_level(pBt->pPager, level);
+ return SQLITE_OK;
+}
+
+/*
+** Get a reference to page1 of the database file. This will
+** also acquire a readlock on that file.
+**
+** SQLITE_OK is returned on success. If the file is not a
+** well-formed database file, then SQLITE_CORRUPT is returned.
+** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
+** is returned if we run out of memory. SQLITE_PROTOCOL is returned
+** if there is a locking protocol violation.
+*/
+static int lockBtree(Btree *pBt){
+ int rc;
+ if( pBt->page1 ) return SQLITE_OK;
+ rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Do some checking to help insure the file we opened really is
+ ** a valid database file.
+ */
+ if( sqlitepager_pagecount(pBt->pPager)>0 ){
+ PageOne *pP1 = pBt->page1;
+ if( strcmp(pP1->zMagic,zMagicHeader)!=0 ||
+ (pP1->iMagic!=MAGIC && swab32(pP1->iMagic)!=MAGIC) ){
+ rc = SQLITE_CORRUPT;
+ goto page1_init_failed;
+ }
+ pBt->needSwab = pP1->iMagic!=MAGIC;
+ }
+ return rc;
+
+page1_init_failed:
+ sqlitepager_unref(pBt->page1);
+ pBt->page1 = 0;
+ return rc;
+}
+
+/*
+** If there are no outstanding cursors and we are not in the middle
+** of a transaction but there is a read lock on the database, then
+** this routine unrefs the first page of the database file which
+** has the effect of releasing the read lock.
+**
+** If there are any outstanding cursors, this routine is a no-op.
+**
+** If there is a transaction in progress, this routine is a no-op.
+*/
+static void unlockBtreeIfUnused(Btree *pBt){
+ if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
+ sqlitepager_unref(pBt->page1);
+ pBt->page1 = 0;
+ pBt->inTrans = 0;
+ pBt->inCkpt = 0;
+ }
+}
+
+/*
+** Create a new database by initializing the first two pages of the
+** file.
+*/
+static int newDatabase(Btree *pBt){
+ MemPage *pRoot;
+ PageOne *pP1;
+ int rc;
+ if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
+ pP1 = pBt->page1;
+ rc = sqlitepager_write(pBt->page1);
+ if( rc ) return rc;
+ rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
+ if( rc ) return rc;
+ rc = sqlitepager_write(pRoot);
+ if( rc ){
+ sqlitepager_unref(pRoot);
+ return rc;
+ }
+ strcpy(pP1->zMagic, zMagicHeader);
+ if( btree_native_byte_order ){
+ pP1->iMagic = MAGIC;
+ pBt->needSwab = 0;
+ }else{
+ pP1->iMagic = swab32(MAGIC);
+ pBt->needSwab = 1;
+ }
+ zeroPage(pBt, pRoot);
+ sqlitepager_unref(pRoot);
+ return SQLITE_OK;
+}
+
+/*
+** Attempt to start a new transaction.
+**
+** A transaction must be started before attempting any changes
+** to the database. None of the following routines will work
+** unless a transaction is started first:
+**
+** sqliteBtreeCreateTable()
+** sqliteBtreeCreateIndex()
+** sqliteBtreeClearTable()
+** sqliteBtreeDropTable()
+** sqliteBtreeInsert()
+** sqliteBtreeDelete()
+** sqliteBtreeUpdateMeta()
+*/
+int sqliteBtreeBeginTrans(Btree *pBt){
+ int rc;
+ if( pBt->inTrans ) return SQLITE_ERROR;
+ if( pBt->readOnly ) return SQLITE_READONLY;
+ if( pBt->page1==0 ){
+ rc = lockBtree(pBt);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ rc = sqlitepager_begin(pBt->page1);
+ if( rc==SQLITE_OK ){
+ rc = newDatabase(pBt);
+ }
+ if( rc==SQLITE_OK ){
+ pBt->inTrans = 1;
+ pBt->inCkpt = 0;
+ }else{
+ unlockBtreeIfUnused(pBt);
+ }
+ return rc;
+}
+
+/*
+** Commit the transaction currently in progress.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+int sqliteBtreeCommit(Btree *pBt){
+ int rc;
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
+ pBt->inTrans = 0;
+ pBt->inCkpt = 0;
+ unlockBtreeIfUnused(pBt);
+ return rc;
+}
+
+/*
+** Rollback the transaction in progress. All cursors will be
+** invalided by this operation. Any attempt to use a cursor
+** that was open at the beginning of this operation will result
+** in an error.
+**
+** This will release the write lock on the database file. If there
+** are no active cursors, it also releases the read lock.
+*/
+int sqliteBtreeRollback(Btree *pBt){
+ int rc;
+ BtCursor *pCur;
+ if( pBt->inTrans==0 ) return SQLITE_OK;
+ pBt->inTrans = 0;
+ pBt->inCkpt = 0;
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager);
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pPage && pCur->pPage->isInit==0 ){
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = 0;
+ }
+ }
+ unlockBtreeIfUnused(pBt);
+ return rc;
+}
+
+/*
+** Set the checkpoint for the current transaction. The checkpoint serves
+** as a sub-transaction that can be rolled back independently of the
+** main transaction. You must start a transaction before starting a
+** checkpoint. The checkpoint is ended automatically if the transaction
+** commits or rolls back.
+**
+** Only one checkpoint may be active at a time. It is an error to try
+** to start a new checkpoint if another checkpoint is already active.
+*/
+int sqliteBtreeBeginCkpt(Btree *pBt){
+ int rc;
+ if( !pBt->inTrans || pBt->inCkpt ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_ckpt_begin(pBt->pPager);
+ pBt->inCkpt = 1;
+ return rc;
+}
+
+
+/*
+** Commit a checkpoint to transaction currently in progress. If no
+** checkpoint is active, this is a no-op.
+*/
+int sqliteBtreeCommitCkpt(Btree *pBt){
+ int rc;
+ if( pBt->inCkpt && !pBt->readOnly ){
+ rc = sqlitepager_ckpt_commit(pBt->pPager);
+ }else{
+ rc = SQLITE_OK;
+ }
+ pBt->inCkpt = 0;
+ return rc;
+}
+
+/*
+** Rollback the checkpoint to the current transaction. If there
+** is no active checkpoint or transaction, this routine is a no-op.
+**
+** All cursors will be invalided by this operation. Any attempt
+** to use a cursor that was open at the beginning of this operation
+** will result in an error.
+*/
+int sqliteBtreeRollbackCkpt(Btree *pBt){
+ int rc;
+ BtCursor *pCur;
+ if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
+ rc = sqlitepager_ckpt_rollback(pBt->pPager);
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pPage && pCur->pPage->isInit==0 ){
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = 0;
+ }
+ }
+ pBt->inCkpt = 0;
+ return rc;
+}
+
+/*
+** Create a new cursor for the BTree whose root is on the page
+** iTable. The act of acquiring a cursor gets a read lock on
+** the database file.
+**
+** If wrFlag==0, then the cursor can only be used for reading.
+** If wrFlag==1, then the cursor can be used for reading or for
+** writing if other conditions for writing are also met. These
+** are the conditions that must be met in order for writing to
+** be allowed:
+**
+** 1: The cursor must have been opened with wrFlag==1
+**
+** 2: No other cursors may be open with wrFlag==0 on the same table
+**
+** 3: The database must be writable (not on read-only media)
+**
+** 4: There must be an active transaction.
+**
+** Condition 2 warrants further discussion. If any cursor is opened
+** on a table with wrFlag==0, that prevents all other cursors from
+** writing to that table. This is a kind of "read-lock". When a cursor
+** is opened with wrFlag==0 it is guaranteed that the table will not
+** change as long as the cursor is open. This allows the cursor to
+** do a sequential scan of the table without having to worry about
+** entries being inserted or deleted during the scan. Cursors should
+** be opened with wrFlag==0 only if this read-lock property is needed.
+** That is to say, cursors should be opened with wrFlag==0 only if they
+** intend to use the sqliteBtreeNext() system call. All other cursors
+** should be opened with wrFlag==1 even if they never really intend
+** to write.
+**
+** No checking is done to make sure that page iTable really is the
+** root page of a b-tree. If it is not, then the cursor acquired
+** will not work correctly.
+*/
+int sqliteBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
+ int rc;
+ BtCursor *pCur, *pRing;
+
+ if( pBt->page1==0 ){
+ rc = lockBtree(pBt);
+ if( rc!=SQLITE_OK ){
+ *ppCur = 0;
+ return rc;
+ }
+ }
+ pCur = sqliteMalloc( sizeof(*pCur) );
+ if( pCur==0 ){
+ rc = SQLITE_NOMEM;
+ goto create_cursor_exception;
+ }
+ pCur->pgnoRoot = (Pgno)iTable;
+ rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
+ if( rc!=SQLITE_OK ){
+ goto create_cursor_exception;
+ }
+ rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0);
+ if( rc!=SQLITE_OK ){
+ goto create_cursor_exception;
+ }
+ pCur->pBt = pBt;
+ pCur->wrFlag = wrFlag;
+ pCur->idx = 0;
+ pCur->eSkip = SKIP_INVALID;
+ pCur->pNext = pBt->pCursor;
+ if( pCur->pNext ){
+ pCur->pNext->pPrev = pCur;
+ }
+ pCur->pPrev = 0;
+ pRing = pBt->pCursor;
+ while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
+ if( pRing ){
+ pCur->pShared = pRing->pShared;
+ pRing->pShared = pCur;
+ }else{
+ pCur->pShared = pCur;
+ }
+ pBt->pCursor = pCur;
+ *ppCur = pCur;
+ return SQLITE_OK;
+
+create_cursor_exception:
+ *ppCur = 0;
+ if( pCur ){
+ if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
+ sqliteFree(pCur);
+ }
+ unlockBtreeIfUnused(pBt);
+ return rc;
+}
+
+/*
+** Close a cursor. The read lock on the database file is released
+** when the last cursor is closed.
+*/
+int sqliteBtreeCloseCursor(BtCursor *pCur){
+ Btree *pBt = pCur->pBt;
+ if( pCur->pPrev ){
+ pCur->pPrev->pNext = pCur->pNext;
+ }else{
+ pBt->pCursor = pCur->pNext;
+ }
+ if( pCur->pNext ){
+ pCur->pNext->pPrev = pCur->pPrev;
+ }
+ if( pCur->pPage ){
+ sqlitepager_unref(pCur->pPage);
+ }
+ if( pCur->pShared!=pCur ){
+ BtCursor *pRing = pCur->pShared;
+ while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
+ pRing->pShared = pCur->pShared;
+ }
+ unlockBtreeIfUnused(pBt);
+ sqliteFree(pCur);
+ return SQLITE_OK;
+}
+
+/*
+** Make a temporary cursor by filling in the fields of pTempCur.
+** The temporary cursor is not on the cursor list for the Btree.
+*/
+static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
+ memcpy(pTempCur, pCur, sizeof(*pCur));
+ pTempCur->pNext = 0;
+ pTempCur->pPrev = 0;
+ if( pTempCur->pPage ){
+ sqlitepager_ref(pTempCur->pPage);
+ }
+}
+
+/*
+** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
+** function above.
+*/
+static void releaseTempCursor(BtCursor *pCur){
+ if( pCur->pPage ){
+ sqlitepager_unref(pCur->pPage);
+ }
+}
+
+/*
+** Set *pSize to the number of bytes of key in the entry the
+** cursor currently points to. Always return SQLITE_OK.
+** Failure is not possible. If the cursor is not currently
+** pointing to an entry (which can happen, for example, if
+** the database is empty) then *pSize is set to 0.
+*/
+int sqliteBtreeKeySize(BtCursor *pCur, int *pSize){
+ Cell *pCell;
+ MemPage *pPage;
+
+ pPage = pCur->pPage;
+ assert( pPage!=0 );
+ if( pCur->idx >= pPage->nCell ){
+ *pSize = 0;
+ }else{
+ pCell = pPage->apCell[pCur->idx];
+ *pSize = NKEY(pCur->pBt, pCell->h);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Read payload information from the entry that the pCur cursor is
+** pointing to. Begin reading the payload at "offset" and read
+** a total of "amt" bytes. Put the result in zBuf.
+**
+** This routine does not make a distinction between key and data.
+** It just reads bytes from the payload area.
+*/
+static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
+ char *aPayload;
+ Pgno nextPage;
+ int rc;
+ Btree *pBt = pCur->pBt;
+ assert( pCur!=0 && pCur->pPage!=0 );
+ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
+ aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
+ if( offset<MX_LOCAL_PAYLOAD ){
+ int a = amt;
+ if( a+offset>MX_LOCAL_PAYLOAD ){
+ a = MX_LOCAL_PAYLOAD - offset;
+ }
+ memcpy(zBuf, &aPayload[offset], a);
+ if( a==amt ){
+ return SQLITE_OK;
+ }
+ offset = 0;
+ zBuf += a;
+ amt -= a;
+ }else{
+ offset -= MX_LOCAL_PAYLOAD;
+ }
+ if( amt>0 ){
+ nextPage = SWAB32(pBt, pCur->pPage->apCell[pCur->idx]->ovfl);
+ }
+ while( amt>0 && nextPage ){
+ OverflowPage *pOvfl;
+ rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
+ if( rc!=0 ){
+ return rc;
+ }
+ nextPage = SWAB32(pBt, pOvfl->iNext);
+ if( offset<OVERFLOW_SIZE ){
+ int a = amt;
+ if( a + offset > OVERFLOW_SIZE ){
+ a = OVERFLOW_SIZE - offset;
+ }
+ memcpy(zBuf, &pOvfl->aPayload[offset], a);
+ offset = 0;
+ amt -= a;
+ zBuf += a;
+ }else{
+ offset -= OVERFLOW_SIZE;
+ }
+ sqlitepager_unref(pOvfl);
+ }
+ if( amt>0 ){
+ return SQLITE_CORRUPT;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Read part of the key associated with cursor pCur. A maximum
+** of "amt" bytes will be transfered into zBuf[]. The transfer
+** begins at "offset". The number of bytes actually read is
+** returned.
+**
+** Change: It used to be that the amount returned will be smaller
+** than the amount requested if there are not enough bytes in the key
+** to satisfy the request. But now, it must be the case that there
+** is enough data available to satisfy the request. If not, an exception
+** is raised. The change was made in an effort to boost performance
+** by eliminating unneeded tests.
+*/
+int sqliteBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
+ MemPage *pPage;
+
+ assert( amt>=0 );
+ assert( offset>=0 );
+ assert( pCur->pPage!=0 );
+ pPage = pCur->pPage;
+ if( pCur->idx >= pPage->nCell ){
+ return 0;
+ }
+ assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) );
+ getPayload(pCur, offset, amt, zBuf);
+ return amt;
+}
+
+/*
+** Set *pSize to the number of bytes of data in the entry the
+** cursor currently points to. Always return SQLITE_OK.
+** Failure is not possible. If the cursor is not currently
+** pointing to an entry (which can happen, for example, if
+** the database is empty) then *pSize is set to 0.
+*/
+int sqliteBtreeDataSize(BtCursor *pCur, int *pSize){
+ Cell *pCell;
+ MemPage *pPage;
+
+ pPage = pCur->pPage;
+ assert( pPage!=0 );
+ if( pCur->idx >= pPage->nCell ){
+ *pSize = 0;
+ }else{
+ pCell = pPage->apCell[pCur->idx];
+ *pSize = NDATA(pCur->pBt, pCell->h);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Read part of the data associated with cursor pCur. A maximum
+** of "amt" bytes will be transfered into zBuf[]. The transfer
+** begins at "offset". The number of bytes actually read is
+** returned. The amount returned will be smaller than the
+** amount requested if there are not enough bytes in the data
+** to satisfy the request.
+*/
+int sqliteBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
+ Cell *pCell;
+ MemPage *pPage;
+
+ assert( amt>=0 );
+ assert( offset>=0 );
+ assert( pCur->pPage!=0 );
+ pPage = pCur->pPage;
+ if( pCur->idx >= pPage->nCell ){
+ return 0;
+ }
+ pCell = pPage->apCell[pCur->idx];
+ assert( amt+offset <= NDATA(pCur->pBt, pCell->h) );
+ getPayload(pCur, offset + NKEY(pCur->pBt, pCell->h), amt, zBuf);
+ return amt;
+}
+
+/*
+** Compare an external key against the key on the entry that pCur points to.
+**
+** The external key is pKey and is nKey bytes long. The last nIgnore bytes
+** of the key associated with pCur are ignored, as if they do not exist.
+** (The normal case is for nIgnore to be zero in which case the entire
+** internal key is used in the comparison.)
+**
+** The comparison result is written to *pRes as follows:
+**
+** *pRes<0 This means pCur<pKey
+**
+** *pRes==0 This means pCur==pKey for all nKey bytes
+**
+** *pRes>0 This means pCur>pKey
+**
+** When one key is an exact prefix of the other, the shorter key is
+** considered less than the longer one. In order to be equal the
+** keys must be exactly the same length. (The length of the pCur key
+** is the actual key length minus nIgnore bytes.)
+*/
+int sqliteBtreeKeyCompare(
+ BtCursor *pCur, /* Pointer to entry to compare against */
+ const void *pKey, /* Key to compare against entry that pCur points to */
+ int nKey, /* Number of bytes in pKey */
+ int nIgnore, /* Ignore this many bytes at the end of pCur */
+ int *pResult /* Write the result here */
+){
+ Pgno nextPage;
+ int n, c, rc, nLocal;
+ Cell *pCell;
+ Btree *pBt = pCur->pBt;
+ const char *zKey = (const char*)pKey;
+
+ assert( pCur->pPage );
+ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
+ pCell = pCur->pPage->apCell[pCur->idx];
+ nLocal = NKEY(pBt, pCell->h) - nIgnore;
+ if( nLocal<0 ) nLocal = 0;
+ n = nKey<nLocal ? nKey : nLocal;
+ if( n>MX_LOCAL_PAYLOAD ){
+ n = MX_LOCAL_PAYLOAD;
+ }
+ c = memcmp(pCell->aPayload, zKey, n);
+ if( c!=0 ){
+ *pResult = c;
+ return SQLITE_OK;
+ }
+ zKey += n;
+ nKey -= n;
+ nLocal -= n;
+ nextPage = SWAB32(pBt, pCell->ovfl);
+ while( nKey>0 && nLocal>0 ){
+ OverflowPage *pOvfl;
+ if( nextPage==0 ){
+ return SQLITE_CORRUPT;
+ }
+ rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
+ if( rc ){
+ return rc;
+ }
+ nextPage = SWAB32(pBt, pOvfl->iNext);
+ n = nKey<nLocal ? nKey : nLocal;
+ if( n>OVERFLOW_SIZE ){
+ n = OVERFLOW_SIZE;
+ }
+ c = memcmp(pOvfl->aPayload, zKey, n);
+ sqlitepager_unref(pOvfl);
+ if( c!=0 ){
+ *pResult = c;
+ return SQLITE_OK;
+ }
+ nKey -= n;
+ nLocal -= n;
+ zKey += n;
+ }
+ if( c==0 ){
+ c = nLocal - nKey;
+ }
+ *pResult = c;
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor down to a new child page. The newPgno argument is the
+** page number of the child page in the byte order of the disk image.
+*/
+static int moveToChild(BtCursor *pCur, int newPgno){
+ int rc;
+ MemPage *pNewPage;
+ Btree *pBt = pCur->pBt;
+
+ newPgno = SWAB32(pBt, newPgno);
+ rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage);
+ if( rc ) return rc;
+ rc = initPage(pBt, pNewPage, newPgno, pCur->pPage);
+ if( rc ) return rc;
+ assert( pCur->idx>=pCur->pPage->nCell
+ || pCur->pPage->apCell[pCur->idx]->h.leftChild==SWAB32(pBt,newPgno) );
+ assert( pCur->idx<pCur->pPage->nCell
+ || pCur->pPage->u.hdr.rightChild==SWAB32(pBt,newPgno) );
+ pNewPage->idxParent = pCur->idx;
+ pCur->pPage->idxShift = 0;
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = pNewPage;
+ pCur->idx = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor up to the parent page.
+**
+** pCur->idx is set to the cell index that contains the pointer
+** to the page we are coming from. If we are coming from the
+** right-most child page then pCur->idx is set to one more than
+** the largest cell index.
+*/
+static void moveToParent(BtCursor *pCur){
+ Pgno oldPgno;
+ MemPage *pParent;
+ MemPage *pPage;
+ int idxParent;
+ pPage = pCur->pPage;
+ assert( pPage!=0 );
+ pParent = pPage->pParent;
+ assert( pParent!=0 );
+ idxParent = pPage->idxParent;
+ sqlitepager_ref(pParent);
+ sqlitepager_unref(pPage);
+ pCur->pPage = pParent;
+ assert( pParent->idxShift==0 );
+ if( pParent->idxShift==0 ){
+ pCur->idx = idxParent;
+#ifndef NDEBUG
+ /* Verify that pCur->idx is the correct index to point back to the child
+ ** page we just came from
+ */
+ oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
+ if( pCur->idx<pParent->nCell ){
+ assert( pParent->apCell[idxParent]->h.leftChild==oldPgno );
+ }else{
+ assert( pParent->u.hdr.rightChild==oldPgno );
+ }
+#endif
+ }else{
+ /* The MemPage.idxShift flag indicates that cell indices might have
+ ** changed since idxParent was set and hence idxParent might be out
+ ** of date. So recompute the parent cell index by scanning all cells
+ ** and locating the one that points to the child we just came from.
+ */
+ int i;
+ pCur->idx = pParent->nCell;
+ oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
+ for(i=0; i<pParent->nCell; i++){
+ if( pParent->apCell[i]->h.leftChild==oldPgno ){
+ pCur->idx = i;
+ break;
+ }
+ }
+ }
+}
+
+/*
+** Move the cursor to the root page
+*/
+static int moveToRoot(BtCursor *pCur){
+ MemPage *pNew;
+ int rc;
+ Btree *pBt = pCur->pBt;
+
+ rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
+ if( rc ) return rc;
+ rc = initPage(pBt, pNew, pCur->pgnoRoot, 0);
+ if( rc ) return rc;
+ sqlitepager_unref(pCur->pPage);
+ pCur->pPage = pNew;
+ pCur->idx = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor down to the left-most leaf entry beneath the
+** entry to which it is currently pointing.
+*/
+static int moveToLeftmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc;
+
+ while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
+ rc = moveToChild(pCur, pgno);
+ if( rc ) return rc;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Move the cursor down to the right-most leaf entry beneath the
+** page to which it is currently pointing. Notice the difference
+** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
+** finds the left-most entry beneath the *entry* whereas moveToRightmost()
+** finds the right-most entry beneath the *page*.
+*/
+static int moveToRightmost(BtCursor *pCur){
+ Pgno pgno;
+ int rc;
+
+ while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){
+ pCur->idx = pCur->pPage->nCell;
+ rc = moveToChild(pCur, pgno);
+ if( rc ) return rc;
+ }
+ pCur->idx = pCur->pPage->nCell - 1;
+ return SQLITE_OK;
+}
+
+/* Move the cursor to the first entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+int sqliteBtreeFirst(BtCursor *pCur, int *pRes){
+ int rc;
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
+ rc = moveToRoot(pCur);
+ if( rc ) return rc;
+ if( pCur->pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ *pRes = 0;
+ rc = moveToLeftmost(pCur);
+ pCur->eSkip = SKIP_NONE;
+ return rc;
+}
+
+/* Move the cursor to the last entry in the table. Return SQLITE_OK
+** on success. Set *pRes to 0 if the cursor actually points to something
+** or set *pRes to 1 if the table is empty.
+*/
+int sqliteBtreeLast(BtCursor *pCur, int *pRes){
+ int rc;
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
+ rc = moveToRoot(pCur);
+ if( rc ) return rc;
+ assert( pCur->pPage->isInit );
+ if( pCur->pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ *pRes = 0;
+ rc = moveToRightmost(pCur);
+ pCur->eSkip = SKIP_NONE;
+ return rc;
+}
+
+/* Move the cursor so that it points to an entry near pKey.
+** Return a success code.
+**
+** If an exact match is not found, then the cursor is always
+** left pointing at a leaf page which would hold the entry if it
+** were present. The cursor might point to an entry that comes
+** before or after the key.
+**
+** The result of comparing the key with the entry to which the
+** cursor is left pointing is stored in pCur->iMatch. The same
+** value is also written to *pRes if pRes!=NULL. The meaning of
+** this value is as follows:
+**
+** *pRes<0 The cursor is left pointing at an entry that
+** is smaller than pKey or if the table is empty
+** and the cursor is therefore left point to nothing.
+**
+** *pRes==0 The cursor is left pointing at an entry that
+** exactly matches pKey.
+**
+** *pRes>0 The cursor is left pointing at an entry that
+** is larger than pKey.
+*/
+int sqliteBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
+ int rc;
+ if( pCur->pPage==0 ) return SQLITE_ABORT;
+ pCur->eSkip = SKIP_NONE;
+ rc = moveToRoot(pCur);
+ if( rc ) return rc;
+ for(;;){
+ int lwr, upr;
+ Pgno chldPg;
+ MemPage *pPage = pCur->pPage;
+ int c = -1; /* pRes return if table is empty must be -1 */
+ lwr = 0;
+ upr = pPage->nCell-1;
+ while( lwr<=upr ){
+ pCur->idx = (lwr+upr)/2;
+ rc = sqliteBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
+ if( rc ) return rc;
+ if( c==0 ){
+ pCur->iMatch = c;
+ if( pRes ) *pRes = 0;
+ return SQLITE_OK;
+ }
+ if( c<0 ){
+ lwr = pCur->idx+1;
+ }else{
+ upr = pCur->idx-1;
+ }
+ }
+ assert( lwr==upr+1 );
+ assert( pPage->isInit );
+ if( lwr>=pPage->nCell ){
+ chldPg = pPage->u.hdr.rightChild;
+ }else{
+ chldPg = pPage->apCell[lwr]->h.leftChild;
+ }
+ if( chldPg==0 ){
+ pCur->iMatch = c;
+ if( pRes ) *pRes = c;
+ return SQLITE_OK;
+ }
+ pCur->idx = lwr;
+ rc = moveToChild(pCur, chldPg);
+ if( rc ) return rc;
+ }
+ /* NOT REACHED */
+}
+
+/*
+** Advance the cursor to the next entry in the database. If
+** successful then set *pRes=0. If the cursor
+** was already pointing to the last entry in the database before
+** this routine was called, then set *pRes=1.
+*/
+int sqliteBtreeNext(BtCursor *pCur, int *pRes){
+ int rc;
+ MemPage *pPage = pCur->pPage;
+ assert( pRes!=0 );
+ if( pPage==0 ){
+ *pRes = 1;
+ return SQLITE_ABORT;
+ }
+ assert( pPage->isInit );
+ assert( pCur->eSkip!=SKIP_INVALID );
+ if( pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ assert( pCur->idx<pPage->nCell );
+ if( pCur->eSkip==SKIP_NEXT ){
+ pCur->eSkip = SKIP_NONE;
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ pCur->eSkip = SKIP_NONE;
+ pCur->idx++;
+ if( pCur->idx>=pPage->nCell ){
+ if( pPage->u.hdr.rightChild ){
+ rc = moveToChild(pCur, pPage->u.hdr.rightChild);
+ if( rc ) return rc;
+ rc = moveToLeftmost(pCur);
+ *pRes = 0;
+ return rc;
+ }
+ do{
+ if( pPage->pParent==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ moveToParent(pCur);
+ pPage = pCur->pPage;
+ }while( pCur->idx>=pPage->nCell );
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ *pRes = 0;
+ if( pPage->u.hdr.rightChild==0 ){
+ return SQLITE_OK;
+ }
+ rc = moveToLeftmost(pCur);
+ return rc;
+}
+
+/*
+** Step the cursor to the back to the previous entry in the database. If
+** successful then set *pRes=0. If the cursor
+** was already pointing to the first entry in the database before
+** this routine was called, then set *pRes=1.
+*/
+int sqliteBtreePrevious(BtCursor *pCur, int *pRes){
+ int rc;
+ Pgno pgno;
+ MemPage *pPage;
+ pPage = pCur->pPage;
+ if( pPage==0 ){
+ *pRes = 1;
+ return SQLITE_ABORT;
+ }
+ assert( pPage->isInit );
+ assert( pCur->eSkip!=SKIP_INVALID );
+ if( pPage->nCell==0 ){
+ *pRes = 1;
+ return SQLITE_OK;
+ }
+ if( pCur->eSkip==SKIP_PREV ){
+ pCur->eSkip = SKIP_NONE;
+ *pRes = 0;
+ return SQLITE_OK;
+ }
+ pCur->eSkip = SKIP_NONE;
+ assert( pCur->idx>=0 );
+ if( (pgno = pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
+ rc = moveToChild(pCur, pgno);
+ if( rc ) return rc;
+ rc = moveToRightmost(pCur);
+ }else{
+ while( pCur->idx==0 ){
+ if( pPage->pParent==0 ){
+ if( pRes ) *pRes = 1;
+ return SQLITE_OK;
+ }
+ moveToParent(pCur);
+ pPage = pCur->pPage;
+ }
+ pCur->idx--;
+ rc = SQLITE_OK;
+ }
+ *pRes = 0;
+ return rc;
+}
+
+/*
+** Allocate a new page from the database file.
+**
+** The new page is marked as dirty. (In other words, sqlitepager_write()
+** has already been called on the new page.) The new page has also
+** been referenced and the calling routine is responsible for calling
+** sqlitepager_unref() on the new page when it is done.
+**
+** SQLITE_OK is returned on success. Any other return value indicates
+** an error. *ppPage and *pPgno are undefined in the event of an error.
+** Do not invoke sqlitepager_unref() on *ppPage if an error is returned.
+**
+** If the "nearby" parameter is not 0, then a (feeble) effort is made to
+** locate a page close to the page number "nearby". This can be used in an
+** attempt to keep related pages close to each other in the database file,
+** which in turn can make database access faster.
+*/
+static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
+ PageOne *pPage1 = pBt->page1;
+ int rc;
+ if( pPage1->freeList ){
+ OverflowPage *pOvfl;
+ FreelistInfo *pInfo;
+
+ rc = sqlitepager_write(pPage1);
+ if( rc ) return rc;
+ SWAB_ADD(pBt, pPage1->nFree, -1);
+ rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
+ (void**)&pOvfl);
+ if( rc ) return rc;
+ rc = sqlitepager_write(pOvfl);
+ if( rc ){
+ sqlitepager_unref(pOvfl);
+ return rc;
+ }
+ pInfo = (FreelistInfo*)pOvfl->aPayload;
+ if( pInfo->nFree==0 ){
+ *pPgno = SWAB32(pBt, pPage1->freeList);
+ pPage1->freeList = pOvfl->iNext;
+ *ppPage = (MemPage*)pOvfl;
+ }else{
+ int closest, n;
+ n = SWAB32(pBt, pInfo->nFree);
+ if( n>1 && nearby>0 ){
+ int i, dist;
+ closest = 0;
+ dist = SWAB32(pBt, pInfo->aFree[0]) - nearby;
+ if( dist<0 ) dist = -dist;
+ for(i=1; i<n; i++){
+ int d2 = SWAB32(pBt, pInfo->aFree[i]) - nearby;
+ if( d2<0 ) d2 = -d2;
+ if( d2<dist ) closest = i;
+ }
+ }else{
+ closest = 0;
+ }
+ SWAB_ADD(pBt, pInfo->nFree, -1);
+ *pPgno = SWAB32(pBt, pInfo->aFree[closest]);
+ pInfo->aFree[closest] = pInfo->aFree[n-1];
+ rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
+ sqlitepager_unref(pOvfl);
+ if( rc==SQLITE_OK ){
+ sqlitepager_dont_rollback(*ppPage);
+ rc = sqlitepager_write(*ppPage);
+ }
+ }
+ }else{
+ *pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
+ rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
+ if( rc ) return rc;
+ rc = sqlitepager_write(*ppPage);
+ }
+ return rc;
+}
+
+/*
+** Add a page of the database file to the freelist. Either pgno or
+** pPage but not both may be 0.
+**
+** sqlitepager_unref() is NOT called for pPage.
+*/
+static int freePage(Btree *pBt, void *pPage, Pgno pgno){
+ PageOne *pPage1 = pBt->page1;
+ OverflowPage *pOvfl = (OverflowPage*)pPage;
+ int rc;
+ int needUnref = 0;
+ MemPage *pMemPage;
+
+ if( pgno==0 ){
+ assert( pOvfl!=0 );
+ pgno = sqlitepager_pagenumber(pOvfl);
+ }
+ assert( pgno>2 );
+ assert( sqlitepager_pagenumber(pOvfl)==pgno );
+ pMemPage = (MemPage*)pPage;
+ pMemPage->isInit = 0;
+ if( pMemPage->pParent ){
+ sqlitepager_unref(pMemPage->pParent);
+ pMemPage->pParent = 0;
+ }
+ rc = sqlitepager_write(pPage1);
+ if( rc ){
+ return rc;
+ }
+ SWAB_ADD(pBt, pPage1->nFree, 1);
+ if( pPage1->nFree!=0 && pPage1->freeList!=0 ){
+ OverflowPage *pFreeIdx;
+ rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
+ (void**)&pFreeIdx);
+ if( rc==SQLITE_OK ){
+ FreelistInfo *pInfo = (FreelistInfo*)pFreeIdx->aPayload;
+ int n = SWAB32(pBt, pInfo->nFree);
+ if( n<(sizeof(pInfo->aFree)/sizeof(pInfo->aFree[0])) ){
+ rc = sqlitepager_write(pFreeIdx);
+ if( rc==SQLITE_OK ){
+ pInfo->aFree[n] = SWAB32(pBt, pgno);
+ SWAB_ADD(pBt, pInfo->nFree, 1);
+ sqlitepager_unref(pFreeIdx);
+ sqlitepager_dont_write(pBt->pPager, pgno);
+ return rc;
+ }
+ }
+ sqlitepager_unref(pFreeIdx);
+ }
+ }
+ if( pOvfl==0 ){
+ assert( pgno>0 );
+ rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
+ if( rc ) return rc;
+ needUnref = 1;
+ }
+ rc = sqlitepager_write(pOvfl);
+ if( rc ){
+ if( needUnref ) sqlitepager_unref(pOvfl);
+ return rc;
+ }
+ pOvfl->iNext = pPage1->freeList;
+ pPage1->freeList = SWAB32(pBt, pgno);
+ memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
+ if( needUnref ) rc = sqlitepager_unref(pOvfl);
+ return rc;
+}
+
+/*
+** Erase all the data out of a cell. This involves returning overflow
+** pages back the freelist.
+*/
+static int clearCell(Btree *pBt, Cell *pCell){
+ Pager *pPager = pBt->pPager;
+ OverflowPage *pOvfl;
+ Pgno ovfl, nextOvfl;
+ int rc;
+
+ if( NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h) <= MX_LOCAL_PAYLOAD ){
+ return SQLITE_OK;
+ }
+ ovfl = SWAB32(pBt, pCell->ovfl);
+ pCell->ovfl = 0;
+ while( ovfl ){
+ rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
+ if( rc ) return rc;
+ nextOvfl = SWAB32(pBt, pOvfl->iNext);
+ rc = freePage(pBt, pOvfl, ovfl);
+ if( rc ) return rc;
+ sqlitepager_unref(pOvfl);
+ ovfl = nextOvfl;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Create a new cell from key and data. Overflow pages are allocated as
+** necessary and linked to this cell.
+*/
+static int fillInCell(
+ Btree *pBt, /* The whole Btree. Needed to allocate pages */
+ Cell *pCell, /* Populate this Cell structure */
+ const void *pKey, int nKey, /* The key */
+ const void *pData,int nData /* The data */
+){
+ OverflowPage *pOvfl, *pPrior;
+ Pgno *pNext;
+ int spaceLeft;
+ int n, rc;
+ int nPayload;
+ const char *pPayload;
+ char *pSpace;
+ Pgno nearby = 0;
+
+ pCell->h.leftChild = 0;
+ pCell->h.nKey = SWAB16(pBt, nKey & 0xffff);
+ pCell->h.nKeyHi = nKey >> 16;
+ pCell->h.nData = SWAB16(pBt, nData & 0xffff);
+ pCell->h.nDataHi = nData >> 16;
+ pCell->h.iNext = 0;
+
+ pNext = &pCell->ovfl;
+ pSpace = pCell->aPayload;
+ spaceLeft = MX_LOCAL_PAYLOAD;
+ pPayload = pKey;
+ pKey = 0;
+ nPayload = nKey;
+ pPrior = 0;
+ while( nPayload>0 ){
+ if( spaceLeft==0 ){
+ rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext, nearby);
+ if( rc ){
+ *pNext = 0;
+ }else{
+ nearby = *pNext;
+ }
+ if( pPrior ) sqlitepager_unref(pPrior);
+ if( rc ){
+ clearCell(pBt, pCell);
+ return rc;
+ }
+ if( pBt->needSwab ) *pNext = swab32(*pNext);
+ pPrior = pOvfl;
+ spaceLeft = OVERFLOW_SIZE;
+ pSpace = pOvfl->aPayload;
+ pNext = &pOvfl->iNext;
+ }
+ n = nPayload;
+ if( n>spaceLeft ) n = spaceLeft;
+ memcpy(pSpace, pPayload, n);
+ nPayload -= n;
+ if( nPayload==0 && pData ){
+ pPayload = pData;
+ nPayload = nData;
+ pData = 0;
+ }else{
+ pPayload += n;
+ }
+ spaceLeft -= n;
+ pSpace += n;
+ }
+ *pNext = 0;
+ if( pPrior ){
+ sqlitepager_unref(pPrior);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Change the MemPage.pParent pointer on the page whose number is
+** given in the second argument so that MemPage.pParent holds the
+** pointer in the third argument.
+*/
+static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx){
+ MemPage *pThis;
+
+ if( pgno==0 ) return;
+ assert( pPager!=0 );
+ pThis = sqlitepager_lookup(pPager, pgno);
+ if( pThis && pThis->isInit ){
+ if( pThis->pParent!=pNewParent ){
+ if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
+ pThis->pParent = pNewParent;
+ if( pNewParent ) sqlitepager_ref(pNewParent);
+ }
+ pThis->idxParent = idx;
+ sqlitepager_unref(pThis);
+ }
+}
+
+/*
+** Reparent all children of the given page to be the given page.
+** In other words, for every child of pPage, invoke reparentPage()
+** to make sure that each child knows that pPage is its parent.
+**
+** This routine gets called after you memcpy() one page into
+** another.
+*/
+static void reparentChildPages(Btree *pBt, MemPage *pPage){
+ int i;
+ Pager *pPager = pBt->pPager;
+ for(i=0; i<pPage->nCell; i++){
+ reparentPage(pPager, SWAB32(pBt, pPage->apCell[i]->h.leftChild), pPage, i);
+ }
+ reparentPage(pPager, SWAB32(pBt, pPage->u.hdr.rightChild), pPage, i);
+ pPage->idxShift = 0;
+}
+
+/*
+** Remove the i-th cell from pPage. This routine effects pPage only.
+** The cell content is not freed or deallocated. It is assumed that
+** the cell content has been copied someplace else. This routine just
+** removes the reference to the cell from pPage.
+**
+** "sz" must be the number of bytes in the cell.
+**
+** Do not bother maintaining the integrity of the linked list of Cells.
+** Only the pPage->apCell[] array is important. The relinkCellList()
+** routine will be called soon after this routine in order to rebuild
+** the linked list.
+*/
+static void dropCell(Btree *pBt, MemPage *pPage, int idx, int sz){
+ int j;
+ assert( idx>=0 && idx<pPage->nCell );
+ assert( sz==cellSize(pBt, pPage->apCell[idx]) );
+ assert( sqlitepager_iswriteable(pPage) );
+ freeSpace(pBt, pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
+ for(j=idx; j<pPage->nCell-1; j++){
+ pPage->apCell[j] = pPage->apCell[j+1];
+ }
+ pPage->nCell--;
+ pPage->idxShift = 1;
+}
+
+/*
+** Insert a new cell on pPage at cell index "i". pCell points to the
+** content of the cell.
+**
+** If the cell content will fit on the page, then put it there. If it
+** will not fit, then just make pPage->apCell[i] point to the content
+** and set pPage->isOverfull.
+**
+** Do not bother maintaining the integrity of the linked list of Cells.
+** Only the pPage->apCell[] array is important. The relinkCellList()
+** routine will be called soon after this routine in order to rebuild
+** the linked list.
+*/
+static void insertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz){
+ int idx, j;
+ assert( i>=0 && i<=pPage->nCell );
+ assert( sz==cellSize(pBt, pCell) );
+ assert( sqlitepager_iswriteable(pPage) );
+ idx = allocateSpace(pBt, pPage, sz);
+ for(j=pPage->nCell; j>i; j--){
+ pPage->apCell[j] = pPage->apCell[j-1];
+ }
+ pPage->nCell++;
+ if( idx<=0 ){
+ pPage->isOverfull = 1;
+ pPage->apCell[i] = pCell;
+ }else{
+ memcpy(&pPage->u.aDisk[idx], pCell, sz);
+ pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
+ }
+ pPage->idxShift = 1;
+}
+
+/*
+** Rebuild the linked list of cells on a page so that the cells
+** occur in the order specified by the pPage->apCell[] array.
+** Invoke this routine once to repair damage after one or more
+** invocations of either insertCell() or dropCell().
+*/
+static void relinkCellList(Btree *pBt, MemPage *pPage){
+ int i;
+ u16 *pIdx;
+ assert( sqlitepager_iswriteable(pPage) );
+ pIdx = &pPage->u.hdr.firstCell;
+ for(i=0; i<pPage->nCell; i++){
+ int idx = Addr(pPage->apCell[i]) - Addr(pPage);
+ assert( idx>0 && idx<SQLITE_PAGE_SIZE );
+ *pIdx = SWAB16(pBt, idx);
+ pIdx = &pPage->apCell[i]->h.iNext;
+ }
+ *pIdx = 0;
+}
+
+/*
+** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[]
+** pointers that point into pFrom->u.aDisk[] must be adjusted to point
+** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might
+** not point to pFrom->u.aDisk[]. Those are unchanged.
+*/
+static void copyPage(MemPage *pTo, MemPage *pFrom){
+ uptr from, to;
+ int i;
+ memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_PAGE_SIZE);
+ pTo->pParent = 0;
+ pTo->isInit = 1;
+ pTo->nCell = pFrom->nCell;
+ pTo->nFree = pFrom->nFree;
+ pTo->isOverfull = pFrom->isOverfull;
+ to = Addr(pTo);
+ from = Addr(pFrom);
+ for(i=0; i<pTo->nCell; i++){
+ uptr x = Addr(pFrom->apCell[i]);
+ if( x>from && x<from+SQLITE_PAGE_SIZE ){
+ *((uptr*)&pTo->apCell[i]) = x + to - from;
+ }else{
+ pTo->apCell[i] = pFrom->apCell[i];
+ }
+ }
+}
+
+/*
+** The following parameters determine how many adjacent pages get involved
+** in a balancing operation. NN is the number of neighbors on either side
+** of the page that participate in the balancing operation. NB is the
+** total number of pages that participate, including the target page and
+** NN neighbors on either side.
+**
+** The minimum value of NN is 1 (of course). Increasing NN above 1
+** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
+** in exchange for a larger degradation in INSERT and UPDATE performance.
+** The value of NN appears to give the best results overall.
+*/
+#define NN 1 /* Number of neighbors on either side of pPage */
+#define NB (NN*2+1) /* Total pages involved in the balance */
+
+/*
+** This routine redistributes Cells on pPage and up to two siblings
+** of pPage so that all pages have about the same amount of free space.
+** Usually one sibling on either side of pPage is used in the balancing,
+** though both siblings might come from one side if pPage is the first
+** or last child of its parent. If pPage has fewer than two siblings
+** (something which can only happen if pPage is the root page or a
+** child of root) then all available siblings participate in the balancing.
+**
+** The number of siblings of pPage might be increased or decreased by
+** one in an effort to keep pages between 66% and 100% full. The root page
+** is special and is allowed to be less than 66% full. If pPage is
+** the root page, then the depth of the tree might be increased
+** or decreased by one, as necessary, to keep the root page from being
+** overfull or empty.
+**
+** This routine calls relinkCellList() on its input page regardless of
+** whether or not it does any real balancing. Client routines will typically
+** invoke insertCell() or dropCell() before calling this routine, so we
+** need to call relinkCellList() to clean up the mess that those other
+** routines left behind.
+**
+** pCur is left pointing to the same cell as when this routine was called
+** even if that cell gets moved to a different page. pCur may be NULL.
+** Set the pCur parameter to NULL if you do not care about keeping track
+** of a cell as that will save this routine the work of keeping track of it.
+**
+** Note that when this routine is called, some of the Cells on pPage
+** might not actually be stored in pPage->u.aDisk[]. This can happen
+** if the page is overfull. Part of the job of this routine is to
+** make sure all Cells for pPage once again fit in pPage->u.aDisk[].
+**
+** In the course of balancing the siblings of pPage, the parent of pPage
+** might become overfull or underfull. If that happens, then this routine
+** is called recursively on the parent.
+**
+** If this routine fails for any reason, it might leave the database
+** in a corrupted state. So if this routine fails, the database should
+** be rolled back.
+*/
+static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
+ MemPage *pParent; /* The parent of pPage */
+ int nCell; /* Number of cells in apCell[] */
+ int nOld; /* Number of pages in apOld[] */
+ int nNew; /* Number of pages in apNew[] */
+ int nDiv; /* Number of cells in apDiv[] */
+ int i, j, k; /* Loop counters */
+ int idx; /* Index of pPage in pParent->apCell[] */
+ int nxDiv; /* Next divider slot in pParent->apCell[] */
+ int rc; /* The return code */
+ int iCur; /* apCell[iCur] is the cell of the cursor */
+ MemPage *pOldCurPage; /* The cursor originally points to this page */
+ int subtotal; /* Subtotal of bytes in cells on one page */
+ MemPage *extraUnref = 0; /* A page that needs to be unref-ed */
+ MemPage *apOld[NB]; /* pPage and up to two siblings */
+ Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
+ MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */
+ Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */
+ int idxDiv[NB]; /* Indices of divider cells in pParent */
+ Cell *apDiv[NB]; /* Divider cells in pParent */
+ Cell aTemp[NB]; /* Temporary holding area for apDiv[] */
+ int cntNew[NB+1]; /* Index in apCell[] of cell after i-th page */
+ int szNew[NB+1]; /* Combined size of cells place on i-th page */
+ MemPage aOld[NB]; /* Temporary copies of pPage and its siblings */
+ Cell *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
+ int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
+
+ /*
+ ** Return without doing any work if pPage is neither overfull nor
+ ** underfull.
+ */
+ assert( sqlitepager_iswriteable(pPage) );
+ if( !pPage->isOverfull && pPage->nFree<SQLITE_PAGE_SIZE/2
+ && pPage->nCell>=2){
+ relinkCellList(pBt, pPage);
+ return SQLITE_OK;
+ }
+
+ /*
+ ** Find the parent of the page to be balanceed.
+ ** If there is no parent, it means this page is the root page and
+ ** special rules apply.
+ */
+ pParent = pPage->pParent;
+ if( pParent==0 ){
+ Pgno pgnoChild;
+ MemPage *pChild;
+ assert( pPage->isInit );
+ if( pPage->nCell==0 ){
+ if( pPage->u.hdr.rightChild ){
+ /*
+ ** The root page is empty. Copy the one child page
+ ** into the root page and return. This reduces the depth
+ ** of the BTree by one.
+ */
+ pgnoChild = SWAB32(pBt, pPage->u.hdr.rightChild);
+ rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
+ if( rc ) return rc;
+ memcpy(pPage, pChild, SQLITE_PAGE_SIZE);
+ pPage->isInit = 0;
+ rc = initPage(pBt, pPage, sqlitepager_pagenumber(pPage), 0);
+ assert( rc==SQLITE_OK );
+ reparentChildPages(pBt, pPage);
+ if( pCur && pCur->pPage==pChild ){
+ sqlitepager_unref(pChild);
+ pCur->pPage = pPage;
+ sqlitepager_ref(pPage);
+ }
+ freePage(pBt, pChild, pgnoChild);
+ sqlitepager_unref(pChild);
+ }else{
+ relinkCellList(pBt, pPage);
+ }
+ return SQLITE_OK;
+ }
+ if( !pPage->isOverfull ){
+ /* It is OK for the root page to be less than half full.
+ */
+ relinkCellList(pBt, pPage);
+ return SQLITE_OK;
+ }
+ /*
+ ** If we get to here, it means the root page is overfull.
+ ** When this happens, Create a new child page and copy the
+ ** contents of the root into the child. Then make the root
+ ** page an empty page with rightChild pointing to the new
+ ** child. Then fall thru to the code below which will cause
+ ** the overfull child page to be split.
+ */
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ rc = allocatePage(pBt, &pChild, &pgnoChild, sqlitepager_pagenumber(pPage));
+ if( rc ) return rc;
+ assert( sqlitepager_iswriteable(pChild) );
+ copyPage(pChild, pPage);
+ pChild->pParent = pPage;
+ pChild->idxParent = 0;
+ sqlitepager_ref(pPage);
+ pChild->isOverfull = 1;
+ if( pCur && pCur->pPage==pPage ){
+ sqlitepager_unref(pPage);
+ pCur->pPage = pChild;
+ }else{
+ extraUnref = pChild;
+ }
+ zeroPage(pBt, pPage);
+ pPage->u.hdr.rightChild = SWAB32(pBt, pgnoChild);
+ pParent = pPage;
+ pPage = pChild;
+ }
+ rc = sqlitepager_write(pParent);
+ if( rc ) return rc;
+ assert( pParent->isInit );
+
+ /*
+ ** Find the Cell in the parent page whose h.leftChild points back
+ ** to pPage. The "idx" variable is the index of that cell. If pPage
+ ** is the rightmost child of pParent then set idx to pParent->nCell
+ */
+ if( pParent->idxShift ){
+ Pgno pgno, swabPgno;
+ pgno = sqlitepager_pagenumber(pPage);
+ swabPgno = SWAB32(pBt, pgno);
+ for(idx=0; idx<pParent->nCell; idx++){
+ if( pParent->apCell[idx]->h.leftChild==swabPgno ){
+ break;
+ }
+ }
+ assert( idx<pParent->nCell || pParent->u.hdr.rightChild==swabPgno );
+ }else{
+ idx = pPage->idxParent;
+ }
+
+ /*
+ ** Initialize variables so that it will be safe to jump
+ ** directly to balance_cleanup at any moment.
+ */
+ nOld = nNew = 0;
+ sqlitepager_ref(pParent);
+
+ /*
+ ** Find sibling pages to pPage and the Cells in pParent that divide
+ ** the siblings. An attempt is made to find NN siblings on either
+ ** side of pPage. More siblings are taken from one side, however, if
+ ** pPage there are fewer than NN siblings on the other side. If pParent
+ ** has NB or fewer children then all children of pParent are taken.
+ */
+ nxDiv = idx - NN;
+ if( nxDiv + NB > pParent->nCell ){
+ nxDiv = pParent->nCell - NB + 1;
+ }
+ if( nxDiv<0 ){
+ nxDiv = 0;
+ }
+ nDiv = 0;
+ for(i=0, k=nxDiv; i<NB; i++, k++){
+ if( k<pParent->nCell ){
+ idxDiv[i] = k;
+ apDiv[i] = pParent->apCell[k];
+ nDiv++;
+ pgnoOld[i] = SWAB32(pBt, apDiv[i]->h.leftChild);
+ }else if( k==pParent->nCell ){
+ pgnoOld[i] = SWAB32(pBt, pParent->u.hdr.rightChild);
+ }else{
+ break;
+ }
+ rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
+ if( rc ) goto balance_cleanup;
+ rc = initPage(pBt, apOld[i], pgnoOld[i], pParent);
+ if( rc ) goto balance_cleanup;
+ apOld[i]->idxParent = k;
+ nOld++;
+ }
+
+ /*
+ ** Set iCur to be the index in apCell[] of the cell that the cursor
+ ** is pointing to. We will need this later on in order to keep the
+ ** cursor pointing at the same cell. If pCur points to a page that
+ ** has no involvement with this rebalancing, then set iCur to a large
+ ** number so that the iCur==j tests always fail in the main cell
+ ** distribution loop below.
+ */
+ if( pCur ){
+ iCur = 0;
+ for(i=0; i<nOld; i++){
+ if( pCur->pPage==apOld[i] ){
+ iCur += pCur->idx;
+ break;
+ }
+ iCur += apOld[i]->nCell;
+ if( i<nOld-1 && pCur->pPage==pParent && pCur->idx==idxDiv[i] ){
+ break;
+ }
+ iCur++;
+ }
+ pOldCurPage = pCur->pPage;
+ }
+
+ /*
+ ** Make copies of the content of pPage and its siblings into aOld[].
+ ** The rest of this function will use data from the copies rather
+ ** that the original pages since the original pages will be in the
+ ** process of being overwritten.
+ */
+ for(i=0; i<nOld; i++){
+ copyPage(&aOld[i], apOld[i]);
+ }
+
+ /*
+ ** Load pointers to all cells on sibling pages and the divider cells
+ ** into the local apCell[] array. Make copies of the divider cells
+ ** into aTemp[] and remove the the divider Cells from pParent.
+ */
+ nCell = 0;
+ for(i=0; i<nOld; i++){
+ MemPage *pOld = &aOld[i];
+ for(j=0; j<pOld->nCell; j++){
+ apCell[nCell] = pOld->apCell[j];
+ szCell[nCell] = cellSize(pBt, apCell[nCell]);
+ nCell++;
+ }
+ if( i<nOld-1 ){
+ szCell[nCell] = cellSize(pBt, apDiv[i]);
+ memcpy(&aTemp[i], apDiv[i], szCell[nCell]);
+ apCell[nCell] = &aTemp[i];
+ dropCell(pBt, pParent, nxDiv, szCell[nCell]);
+ assert( SWAB32(pBt, apCell[nCell]->h.leftChild)==pgnoOld[i] );
+ apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
+ nCell++;
+ }
+ }
+
+ /*
+ ** Figure out the number of pages needed to hold all nCell cells.
+ ** Store this number in "k". Also compute szNew[] which is the total
+ ** size of all cells on the i-th page and cntNew[] which is the index
+ ** in apCell[] of the cell that divides path i from path i+1.
+ ** cntNew[k] should equal nCell.
+ **
+ ** This little patch of code is critical for keeping the tree
+ ** balanced.
+ */
+ for(subtotal=k=i=0; i<nCell; i++){
+ subtotal += szCell[i];
+ if( subtotal > USABLE_SPACE ){
+ szNew[k] = subtotal - szCell[i];
+ cntNew[k] = i;
+ subtotal = 0;
+ k++;
+ }
+ }
+ szNew[k] = subtotal;
+ cntNew[k] = nCell;
+ k++;
+ for(i=k-1; i>0; i--){
+ while( szNew[i]<USABLE_SPACE/2 ){
+ cntNew[i-1]--;
+ assert( cntNew[i-1]>0 );
+ szNew[i] += szCell[cntNew[i-1]];
+ szNew[i-1] -= szCell[cntNew[i-1]-1];
+ }
+ }
+ assert( cntNew[0]>0 );
+
+ /*
+ ** Allocate k new pages. Reuse old pages where possible.
+ */
+ for(i=0; i<k; i++){
+ if( i<nOld ){
+ apNew[i] = apOld[i];
+ pgnoNew[i] = pgnoOld[i];
+ apOld[i] = 0;
+ sqlitepager_write(apNew[i]);
+ }else{
+ rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]);
+ if( rc ) goto balance_cleanup;
+ }
+ nNew++;
+ zeroPage(pBt, apNew[i]);
+ apNew[i]->isInit = 1;
+ }
+
+ /* Free any old pages that were not reused as new pages.
+ */
+ while( i<nOld ){
+ rc = freePage(pBt, apOld[i], pgnoOld[i]);
+ if( rc ) goto balance_cleanup;
+ sqlitepager_unref(apOld[i]);
+ apOld[i] = 0;
+ i++;
+ }
+
+ /*
+ ** Put the new pages in accending order. This helps to
+ ** keep entries in the disk file in order so that a scan
+ ** of the table is a linear scan through the file. That
+ ** in turn helps the operating system to deliver pages
+ ** from the disk more rapidly.
+ **
+ ** An O(n^2) insertion sort algorithm is used, but since
+ ** n is never more than NB (a small constant), that should
+ ** not be a problem.
+ **
+ ** When NB==3, this one optimization makes the database
+ ** about 25% faster for large insertions and deletions.
+ */
+ for(i=0; i<k-1; i++){
+ int minV = pgnoNew[i];
+ int minI = i;
+ for(j=i+1; j<k; j++){
+ if( pgnoNew[j]<minV ){
+ minI = j;
+ minV = pgnoNew[j];
+ }
+ }
+ if( minI>i ){
+ int t;
+ MemPage *pT;
+ t = pgnoNew[i];
+ pT = apNew[i];
+ pgnoNew[i] = pgnoNew[minI];
+ apNew[i] = apNew[minI];
+ pgnoNew[minI] = t;
+ apNew[minI] = pT;
+ }
+ }
+
+ /*
+ ** Evenly distribute the data in apCell[] across the new pages.
+ ** Insert divider cells into pParent as necessary.
+ */
+ j = 0;
+ for(i=0; i<nNew; i++){
+ MemPage *pNew = apNew[i];
+ while( j<cntNew[i] ){
+ assert( pNew->nFree>=szCell[j] );
+ if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
+ insertCell(pBt, pNew, pNew->nCell, apCell[j], szCell[j]);
+ j++;
+ }
+ assert( pNew->nCell>0 );
+ assert( !pNew->isOverfull );
+ relinkCellList(pBt, pNew);
+ if( i<nNew-1 && j<nCell ){
+ pNew->u.hdr.rightChild = apCell[j]->h.leftChild;
+ apCell[j]->h.leftChild = SWAB32(pBt, pgnoNew[i]);
+ if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
+ insertCell(pBt, pParent, nxDiv, apCell[j], szCell[j]);
+ j++;
+ nxDiv++;
+ }
+ }
+ assert( j==nCell );
+ apNew[nNew-1]->u.hdr.rightChild = aOld[nOld-1].u.hdr.rightChild;
+ if( nxDiv==pParent->nCell ){
+ pParent->u.hdr.rightChild = SWAB32(pBt, pgnoNew[nNew-1]);
+ }else{
+ pParent->apCell[nxDiv]->h.leftChild = SWAB32(pBt, pgnoNew[nNew-1]);
+ }
+ if( pCur ){
+ if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
+ assert( pCur->pPage==pOldCurPage );
+ pCur->idx += nNew - nOld;
+ }else{
+ assert( pOldCurPage!=0 );
+ sqlitepager_ref(pCur->pPage);
+ sqlitepager_unref(pOldCurPage);
+ }
+ }
+
+ /*
+ ** Reparent children of all cells.
+ */
+ for(i=0; i<nNew; i++){
+ reparentChildPages(pBt, apNew[i]);
+ }
+ reparentChildPages(pBt, pParent);
+
+ /*
+ ** balance the parent page.
+ */
+ rc = balance(pBt, pParent, pCur);
+
+ /*
+ ** Cleanup before returning.
+ */
+balance_cleanup:
+ if( extraUnref ){
+ sqlitepager_unref(extraUnref);
+ }
+ for(i=0; i<nOld; i++){
+ if( apOld[i]!=0 && apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]);
+ }
+ for(i=0; i<nNew; i++){
+ sqlitepager_unref(apNew[i]);
+ }
+ if( pCur && pCur->pPage==0 ){
+ pCur->pPage = pParent;
+ pCur->idx = 0;
+ }else{
+ sqlitepager_unref(pParent);
+ }
+ return rc;
+}
+
+/*
+** This routine checks all cursors that point to the same table
+** as pCur points to. If any of those cursors were opened with
+** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
+** cursors point to the same table were opened with wrFlag==1
+** then this routine returns SQLITE_OK.
+**
+** In addition to checking for read-locks (where a read-lock
+** means a cursor opened with wrFlag==0) this routine also moves
+** all cursors other than pCur so that they are pointing to the
+** first Cell on root page. This is necessary because an insert
+** or delete might change the number of cells on a page or delete
+** a page entirely and we do not want to leave any cursors
+** pointing to non-existant pages or cells.
+*/
+static int checkReadLocks(BtCursor *pCur){
+ BtCursor *p;
+ assert( pCur->wrFlag );
+ for(p=pCur->pShared; p!=pCur; p=p->pShared){
+ assert( p );
+ assert( p->pgnoRoot==pCur->pgnoRoot );
+ if( p->wrFlag==0 ) return SQLITE_LOCKED;
+ if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){
+ moveToRoot(p);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Insert a new record into the BTree. The key is given by (pKey,nKey)
+** and the data is given by (pData,nData). The cursor is used only to
+** define what database the record should be inserted into. The cursor
+** is left pointing at the new record.
+*/
+int sqliteBtreeInsert(
+ BtCursor *pCur, /* Insert data into the table of this cursor */
+ const void *pKey, int nKey, /* The key of the new record */
+ const void *pData, int nData /* The data of the new record */
+){
+ Cell newCell;
+ int rc;
+ int loc;
+ int szNew;
+ MemPage *pPage;
+ Btree *pBt = pCur->pBt;
+
+ if( pCur->pPage==0 ){
+ return SQLITE_ABORT; /* A rollback destroyed this cursor */
+ }
+ if( !pBt->inTrans || nKey+nData==0 ){
+ /* Must start a transaction before doing an insert */
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ assert( !pBt->readOnly );
+ if( !pCur->wrFlag ){
+ return SQLITE_PERM; /* Cursor not open for writing */
+ }
+ if( checkReadLocks(pCur) ){
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+ }
+ rc = sqliteBtreeMoveto(pCur, pKey, nKey, &loc);
+ if( rc ) return rc;
+ pPage = pCur->pPage;
+ assert( pPage->isInit );
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
+ if( rc ) return rc;
+ szNew = cellSize(pBt, &newCell);
+ if( loc==0 ){
+ newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
+ rc = clearCell(pBt, pPage->apCell[pCur->idx]);
+ if( rc ) return rc;
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pPage->apCell[pCur->idx]));
+ }else if( loc<0 && pPage->nCell>0 ){
+ assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
+ pCur->idx++;
+ }else{
+ assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
+ }
+ insertCell(pBt, pPage, pCur->idx, &newCell, szNew);
+ rc = balance(pCur->pBt, pPage, pCur);
+ /* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
+ /* fflush(stdout); */
+ pCur->eSkip = SKIP_INVALID;
+ return rc;
+}
+
+/*
+** Delete the entry that the cursor is pointing to.
+**
+** The cursor is left pointing at either the next or the previous
+** entry. If the cursor is left pointing to the next entry, then
+** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
+** sqliteBtreeNext() to be a no-op. That way, you can always call
+** sqliteBtreeNext() after a delete and the cursor will be left
+** pointing to the first entry after the deleted entry. Similarly,
+** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
+** the entry prior to the deleted entry so that a subsequent call to
+** sqliteBtreePrevious() will always leave the cursor pointing at the
+** entry immediately before the one that was deleted.
+*/
+int sqliteBtreeDelete(BtCursor *pCur){
+ MemPage *pPage = pCur->pPage;
+ Cell *pCell;
+ int rc;
+ Pgno pgnoChild;
+ Btree *pBt = pCur->pBt;
+
+ assert( pPage->isInit );
+ if( pCur->pPage==0 ){
+ return SQLITE_ABORT; /* A rollback destroyed this cursor */
+ }
+ if( !pBt->inTrans ){
+ /* Must start a transaction before doing a delete */
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ assert( !pBt->readOnly );
+ if( pCur->idx >= pPage->nCell ){
+ return SQLITE_ERROR; /* The cursor is not pointing to anything */
+ }
+ if( !pCur->wrFlag ){
+ return SQLITE_PERM; /* Did not open this cursor for writing */
+ }
+ if( checkReadLocks(pCur) ){
+ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
+ }
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ pCell = pPage->apCell[pCur->idx];
+ pgnoChild = SWAB32(pBt, pCell->h.leftChild);
+ clearCell(pBt, pCell);
+ if( pgnoChild ){
+ /*
+ ** The entry we are about to delete is not a leaf so if we do not
+ ** do something we will leave a hole on an internal page.
+ ** We have to fill the hole by moving in a cell from a leaf. The
+ ** next Cell after the one to be deleted is guaranteed to exist and
+ ** to be a leaf so we can use it.
+ */
+ BtCursor leafCur;
+ Cell *pNext;
+ int szNext;
+ int notUsed;
+ getTempCursor(pCur, &leafCur);
+ rc = sqliteBtreeNext(&leafCur, ¬Used);
+ if( rc!=SQLITE_OK ){
+ return SQLITE_CORRUPT;
+ }
+ rc = sqlitepager_write(leafCur.pPage);
+ if( rc ) return rc;
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
+ pNext = leafCur.pPage->apCell[leafCur.idx];
+ szNext = cellSize(pBt, pNext);
+ pNext->h.leftChild = SWAB32(pBt, pgnoChild);
+ insertCell(pBt, pPage, pCur->idx, pNext, szNext);
+ rc = balance(pBt, pPage, pCur);
+ if( rc ) return rc;
+ pCur->eSkip = SKIP_NEXT;
+ dropCell(pBt, leafCur.pPage, leafCur.idx, szNext);
+ rc = balance(pBt, leafCur.pPage, pCur);
+ releaseTempCursor(&leafCur);
+ }else{
+ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
+ if( pCur->idx>=pPage->nCell ){
+ pCur->idx = pPage->nCell-1;
+ if( pCur->idx<0 ){
+ pCur->idx = 0;
+ pCur->eSkip = SKIP_NEXT;
+ }else{
+ pCur->eSkip = SKIP_PREV;
+ }
+ }else{
+ pCur->eSkip = SKIP_NEXT;
+ }
+ rc = balance(pBt, pPage, pCur);
+ }
+ return rc;
+}
+
+/*
+** Create a new BTree table. Write into *piTable the page
+** number for the root page of the new table.
+**
+** In the current implementation, BTree tables and BTree indices are the
+** the same. But in the future, we may change this so that BTree tables
+** are restricted to having a 4-byte integer key and arbitrary data and
+** BTree indices are restricted to having an arbitrary key and no data.
+*/
+int sqliteBtreeCreateTable(Btree *pBt, int *piTable){
+ MemPage *pRoot;
+ Pgno pgnoRoot;
+ int rc;
+ if( !pBt->inTrans ){
+ /* Must start a transaction first */
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ if( pBt->readOnly ){
+ return SQLITE_READONLY;
+ }
+ rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0);
+ if( rc ) return rc;
+ assert( sqlitepager_iswriteable(pRoot) );
+ zeroPage(pBt, pRoot);
+ sqlitepager_unref(pRoot);
+ *piTable = (int)pgnoRoot;
+ return SQLITE_OK;
+}
+
+/*
+** Create a new BTree index. Write into *piTable the page
+** number for the root page of the new index.
+**
+** In the current implementation, BTree tables and BTree indices are the
+** the same. But in the future, we may change this so that BTree tables
+** are restricted to having a 4-byte integer key and arbitrary data and
+** BTree indices are restricted to having an arbitrary key and no data.
+*/
+int sqliteBtreeCreateIndex(Btree *pBt, int *piIndex){
+ return sqliteBtreeCreateTable(pBt, piIndex);
+}
+
+/*
+** Erase the given database page and all its children. Return
+** the page to the freelist.
+*/
+static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
+ MemPage *pPage;
+ int rc;
+ Cell *pCell;
+ int idx;
+
+ rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
+ if( rc ) return rc;
+ rc = sqlitepager_write(pPage);
+ if( rc ) return rc;
+ rc = initPage(pBt, pPage, pgno, 0);
+ if( rc ) return rc;
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx>0 ){
+ pCell = (Cell*)&pPage->u.aDisk[idx];
+ idx = SWAB16(pBt, pCell->h.iNext);
+ if( pCell->h.leftChild ){
+ rc = clearDatabasePage(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
+ if( rc ) return rc;
+ }
+ rc = clearCell(pBt, pCell);
+ if( rc ) return rc;
+ }
+ if( pPage->u.hdr.rightChild ){
+ rc = clearDatabasePage(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
+ if( rc ) return rc;
+ }
+ if( freePageFlag ){
+ rc = freePage(pBt, pPage, pgno);
+ }else{
+ zeroPage(pBt, pPage);
+ }
+ sqlitepager_unref(pPage);
+ return rc;
+}
+
+/*
+** Delete all information from a single table in the database.
+*/
+int sqliteBtreeClearTable(Btree *pBt, int iTable){
+ int rc;
+ BtCursor *pCur;
+ if( !pBt->inTrans ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pgnoRoot==(Pgno)iTable ){
+ if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
+ moveToRoot(pCur);
+ }
+ }
+ rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
+ if( rc ){
+ sqliteBtreeRollback(pBt);
+ }
+ return rc;
+}
+
+/*
+** Erase all information in a table and add the root of the table to
+** the freelist. Except, the root of the principle table (the one on
+** page 2) is never added to the freelist.
+*/
+int sqliteBtreeDropTable(Btree *pBt, int iTable){
+ int rc;
+ MemPage *pPage;
+ BtCursor *pCur;
+ if( !pBt->inTrans ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
+ if( pCur->pgnoRoot==(Pgno)iTable ){
+ return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
+ }
+ }
+ rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
+ if( rc ) return rc;
+ rc = sqliteBtreeClearTable(pBt, iTable);
+ if( rc ) return rc;
+ if( iTable>2 ){
+ rc = freePage(pBt, pPage, iTable);
+ }else{
+ zeroPage(pBt, pPage);
+ }
+ sqlitepager_unref(pPage);
+ return rc;
+}
+
+/*
+** Read the meta-information out of a database file.
+*/
+int sqliteBtreeGetMeta(Btree *pBt, int *aMeta){
+ PageOne *pP1;
+ int rc;
+ int i;
+
+ rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
+ if( rc ) return rc;
+ aMeta[0] = SWAB32(pBt, pP1->nFree);
+ for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
+ aMeta[i+1] = SWAB32(pBt, pP1->aMeta[i]);
+ }
+ sqlitepager_unref(pP1);
+ return SQLITE_OK;
+}
+
+/*
+** Write meta-information back into the database.
+*/
+int sqliteBtreeUpdateMeta(Btree *pBt, int *aMeta){
+ PageOne *pP1;
+ int rc, i;
+ if( !pBt->inTrans ){
+ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
+ }
+ pP1 = pBt->page1;
+ rc = sqlitepager_write(pP1);
+ if( rc ) return rc;
+ for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
+ pP1->aMeta[i] = SWAB32(pBt, aMeta[i+1]);
+ }
+ return SQLITE_OK;
+}
+
+/******************************************************************************
+** The complete implementation of the BTree subsystem is above this line.
+** All the code the follows is for testing and troubleshooting the BTree
+** subsystem. None of the code that follows is used during normal operation.
+******************************************************************************/
+
+/*
+** Print a disassembly of the given page on standard output. This routine
+** is used for debugging and testing only.
+*/
+#ifdef SQLITE_TEST
+int sqliteBtreePageDump(Btree *pBt, int pgno, int recursive){
+ int rc;
+ MemPage *pPage;
+ int i, j;
+ int nFree;
+ u16 idx;
+ char range[20];
+ unsigned char payload[20];
+ rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
+ if( rc ){
+ return rc;
+ }
+ if( recursive ) printf("PAGE %d:\n", pgno);
+ i = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx>0 && idx<=SQLITE_PAGE_SIZE-MIN_CELL_SIZE ){
+ Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
+ int sz = cellSize(pBt, pCell);
+ sprintf(range,"%d..%d", idx, idx+sz-1);
+ sz = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
+ if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
+ memcpy(payload, pCell->aPayload, sz);
+ for(j=0; j<sz; j++){
+ if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
+ }
+ payload[sz] = 0;
+ printf(
+ "cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
+ i, range, (int)pCell->h.leftChild,
+ NKEY(pBt, pCell->h), NDATA(pBt, pCell->h),
+ payload
+ );
+ if( pPage->isInit && pPage->apCell[i]!=pCell ){
+ printf("**** apCell[%d] does not match on prior entry ****\n", i);
+ }
+ i++;
+ idx = SWAB16(pBt, pCell->h.iNext);
+ }
+ if( idx!=0 ){
+ printf("ERROR: next cell index out of range: %d\n", idx);
+ }
+ printf("right_child: %d\n", SWAB32(pBt, pPage->u.hdr.rightChild));
+ nFree = 0;
+ i = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
+ while( idx>0 && idx<SQLITE_PAGE_SIZE ){
+ FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx];
+ sprintf(range,"%d..%d", idx, idx+p->iSize-1);
+ nFree += SWAB16(pBt, p->iSize);
+ printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
+ i, range, SWAB16(pBt, p->iSize), nFree);
+ idx = SWAB16(pBt, p->iNext);
+ i++;
+ }
+ if( idx!=0 ){
+ printf("ERROR: next freeblock index out of range: %d\n", idx);
+ }
+ if( recursive && pPage->u.hdr.rightChild!=0 ){
+ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
+ while( idx>0 && idx<SQLITE_PAGE_SIZE-MIN_CELL_SIZE ){
+ Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
+ sqliteBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
+ idx = SWAB16(pBt, pCell->h.iNext);
+ }
+ sqliteBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
+ }
+ sqlitepager_unref(pPage);
+ return SQLITE_OK;
+}
+#endif
+
+#ifdef SQLITE_TEST
+/*
+** Fill aResult[] with information about the entry and page that the
+** cursor is pointing to.
+**
+** aResult[0] = The page number
+** aResult[1] = The entry number
+** aResult[2] = Total number of entries on this page
+** aResult[3] = Size of this entry
+** aResult[4] = Number of free bytes on this page
+** aResult[5] = Number of free blocks on the page
+** aResult[6] = Page number of the left child of this entry
+** aResult[7] = Page number of the right child for the whole page
+**
+** This routine is used for testing and debugging only.
+*/
+int sqliteBtreeCursorDump(BtCursor *pCur, int *aResult){
+ int cnt, idx;
+ MemPage *pPage = pCur->pPage;
+ Btree *pBt = pCur->pBt;
+ aResult[0] = sqlitepager_pagenumber(pPage);
+ aResult[1] = pCur->idx;
+ aResult[2] = pPage->nCell;
+ if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
+ aResult[3] = cellSize(pBt, pPage->apCell[pCur->idx]);
+ aResult[6] = SWAB32(pBt, pPage->apCell[pCur->idx]->h.leftChild);
+ }else{
+ aResult[3] = 0;
+ aResult[6] = 0;
+ }
+ aResult[4] = pPage->nFree;
+ cnt = 0;
+ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
+ while( idx>0 && idx<SQLITE_PAGE_SIZE ){
+ cnt++;
+ idx = SWAB16(pBt, ((FreeBlk*)&pPage->u.aDisk[idx])->iNext);
+ }
+ aResult[5] = cnt;
+ aResult[7] = SWAB32(pBt, pPage->u.hdr.rightChild);
+ return SQLITE_OK;
+}
+#endif
+
+#ifdef SQLITE_TEST
+/*
+** Return the pager associated with a BTree. This routine is used for
+** testing and debugging only.
+*/
+Pager *sqliteBtreePager(Btree *pBt){
+ return pBt->pPager;
+}
+#endif
+
+/*
+** This structure is passed around through all the sanity checking routines
+** in order to keep track of some global state information.
+*/
+typedef struct IntegrityCk IntegrityCk;
+struct IntegrityCk {
+ Btree *pBt; /* The tree being checked out */
+ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
+ int nPage; /* Number of pages in the database */
+ int *anRef; /* Number of times each page is referenced */
+ int nTreePage; /* Number of BTree pages */
+ int nByte; /* Number of bytes of data stored on BTree pages */
+ char *zErrMsg; /* An error message. NULL of no errors seen. */
+};
+
+/*
+** Append a message to the error message string.
+*/
+static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
+ if( pCheck->zErrMsg ){
+ char *zOld = pCheck->zErrMsg;
+ pCheck->zErrMsg = 0;
+ sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, 0);
+ sqliteFree(zOld);
+ }else{
+ sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, 0);
+ }
+}
+
+/*
+** Add 1 to the reference count for page iPage. If this is the second
+** reference to the page, add an error message to pCheck->zErrMsg.
+** Return 1 if there are 2 ore more references to the page and 0 if
+** if this is the first reference to the page.
+**
+** Also check that the page number is in bounds.
+*/
+static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
+ if( iPage==0 ) return 1;
+ if( iPage>pCheck->nPage || iPage<0 ){
+ char zBuf[100];
+ sprintf(zBuf, "invalid page number %d", iPage);
+ checkAppendMsg(pCheck, zContext, zBuf);
+ return 1;
+ }
+ if( pCheck->anRef[iPage]==1 ){
+ char zBuf[100];
+ sprintf(zBuf, "2nd reference to page %d", iPage);
+ checkAppendMsg(pCheck, zContext, zBuf);
+ return 1;
+ }
+ return (pCheck->anRef[iPage]++)>1;
+}
+
+/*
+** Check the integrity of the freelist or of an overflow page list.
+** Verify that the number of pages on the list is N.
+*/
+static void checkList(
+ IntegrityCk *pCheck, /* Integrity checking context */
+ int isFreeList, /* True for a freelist. False for overflow page list */
+ int iPage, /* Page number for first page in the list */
+ int N, /* Expected number of pages in the list */
+ char *zContext /* Context for error messages */
+){
+ int i;
+ char zMsg[100];
+ while( N-- > 0 ){
+ OverflowPage *pOvfl;
+ if( iPage<1 ){
+ sprintf(zMsg, "%d pages missing from overflow list", N+1);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ break;
+ }
+ if( checkRef(pCheck, iPage, zContext) ) break;
+ if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
+ sprintf(zMsg, "failed to get page %d", iPage);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ break;
+ }
+ if( isFreeList ){
+ FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload;
+ int n = SWAB32(pCheck->pBt, pInfo->nFree);
+ for(i=0; i<n; i++){
+ checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zMsg);
+ }
+ N -= n;
+ }
+ iPage = SWAB32(pCheck->pBt, pOvfl->iNext);
+ sqlitepager_unref(pOvfl);
+ }
+}
+
+/*
+** Return negative if zKey1<zKey2.
+** Return zero if zKey1==zKey2.
+** Return positive if zKey1>zKey2.
+*/
+static int keyCompare(
+ const char *zKey1, int nKey1,
+ const char *zKey2, int nKey2
+){
+ int min = nKey1>nKey2 ? nKey2 : nKey1;
+ int c = memcmp(zKey1, zKey2, min);
+ if( c==0 ){
+ c = nKey1 - nKey2;
+ }
+ return c;
+}
+
+/*
+** Do various sanity checks on a single page of a tree. Return
+** the tree depth. Root pages return 0. Parents of root pages
+** return 1, and so forth.
+**
+** These checks are done:
+**
+** 1. Make sure that cells and freeblocks do not overlap
+** but combine to completely cover the page.
+** 2. Make sure cell keys are in order.
+** 3. Make sure no key is less than or equal to zLowerBound.
+** 4. Make sure no key is greater than or equal to zUpperBound.
+** 5. Check the integrity of overflow pages.
+** 6. Recursively call checkTreePage on all children.
+** 7. Verify that the depth of all children is the same.
+** 8. Make sure this page is at least 33% full or else it is
+** the root of the tree.
+*/
+static int checkTreePage(
+ IntegrityCk *pCheck, /* Context for the sanity check */
+ int iPage, /* Page number of the page to check */
+ MemPage *pParent, /* Parent page */
+ char *zParentContext, /* Parent context */
+ char *zLowerBound, /* All keys should be greater than this, if not NULL */
+ int nLower, /* Number of characters in zLowerBound */
+ char *zUpperBound, /* All keys should be less than this, if not NULL */
+ int nUpper /* Number of characters in zUpperBound */
+){
+ MemPage *pPage;
+ int i, rc, depth, d2, pgno;
+ char *zKey1, *zKey2;
+ int nKey1, nKey2;
+ BtCursor cur;
+ Btree *pBt;
+ char zMsg[100];
+ char zContext[100];
+ char hit[SQLITE_PAGE_SIZE];
+
+ /* Check that the page exists
+ */
+ cur.pBt = pBt = pCheck->pBt;
+ if( iPage==0 ) return 0;
+ if( checkRef(pCheck, iPage, zParentContext) ) return 0;
+ sprintf(zContext, "On tree page %d: ", iPage);
+ if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
+ sprintf(zMsg, "unable to get the page. error code=%d", rc);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ return 0;
+ }
+ if( (rc = initPage(pBt, pPage, (Pgno)iPage, pParent))!=0 ){
+ sprintf(zMsg, "initPage() returns error code %d", rc);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ sqlitepager_unref(pPage);
+ return 0;
+ }
+
+ /* Check out all the cells.
+ */
+ depth = 0;
+ if( zLowerBound ){
+ zKey1 = sqliteMalloc( nLower+1 );
+ memcpy(zKey1, zLowerBound, nLower);
+ zKey1[nLower] = 0;
+ }else{
+ zKey1 = 0;
+ }
+ nKey1 = nLower;
+ cur.pPage = pPage;
+ for(i=0; i<pPage->nCell; i++){
+ Cell *pCell = pPage->apCell[i];
+ int sz;
+
+ /* Check payload overflow pages
+ */
+ nKey2 = NKEY(pBt, pCell->h);
+ sz = nKey2 + NDATA(pBt, pCell->h);
+ sprintf(zContext, "On page %d cell %d: ", iPage, i);
+ if( sz>MX_LOCAL_PAYLOAD ){
+ int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
+ checkList(pCheck, 0, SWAB32(pBt, pCell->ovfl), nPage, zContext);
+ }
+
+ /* Check that keys are in the right order
+ */
+ cur.idx = i;
+ zKey2 = sqliteMallocRaw( nKey2+1 );
+ getPayload(&cur, 0, nKey2, zKey2);
+ if( zKey1 && keyCompare(zKey1, nKey1, zKey2, nKey2)>=0 ){
+ checkAppendMsg(pCheck, zContext, "Key is out of order");
+ }
+
+ /* Check sanity of left child page.
+ */
+ pgno = SWAB32(pBt, pCell->h.leftChild);
+ d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zKey2,nKey2);
+ if( i>0 && d2!=depth ){
+ checkAppendMsg(pCheck, zContext, "Child page depth differs");
+ }
+ depth = d2;
+ sqliteFree(zKey1);
+ zKey1 = zKey2;
+ nKey1 = nKey2;
+ }
+ pgno = SWAB32(pBt, pPage->u.hdr.rightChild);
+ sprintf(zContext, "On page %d at right child: ", iPage);
+ checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zUpperBound,nUpper);
+ sqliteFree(zKey1);
+
+ /* Check for complete coverage of the page
+ */
+ memset(hit, 0, sizeof(hit));
+ memset(hit, 1, sizeof(PageHdr));
+ for(i=SWAB16(pBt, pPage->u.hdr.firstCell); i>0 && i<SQLITE_PAGE_SIZE; ){
+ Cell *pCell = (Cell*)&pPage->u.aDisk[i];
+ int j;
+ for(j=i+cellSize(pBt, pCell)-1; j>=i; j--) hit[j]++;
+ i = SWAB16(pBt, pCell->h.iNext);
+ }
+ for(i=SWAB16(pBt,pPage->u.hdr.firstFree); i>0 && i<SQLITE_PAGE_SIZE; ){
+ FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i];
+ int j;
+ for(j=i+SWAB16(pBt,pFBlk->iSize)-1; j>=i; j--) hit[j]++;
+ i = SWAB16(pBt,pFBlk->iNext);
+ }
+ for(i=0; i<SQLITE_PAGE_SIZE; i++){
+ if( hit[i]==0 ){
+ sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage);
+ checkAppendMsg(pCheck, zMsg, 0);
+ break;
+ }else if( hit[i]>1 ){
+ sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
+ checkAppendMsg(pCheck, zMsg, 0);
+ break;
+ }
+ }
+
+ /* Check that free space is kept to a minimum
+ */
+#if 0
+ if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_PAGE_SIZE/4 ){
+ sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
+ SQLITE_PAGE_SIZE/3);
+ checkAppendMsg(pCheck, zContext, zMsg);
+ }
+#endif
+
+ /* Update freespace totals.
+ */
+ pCheck->nTreePage++;
+ pCheck->nByte += USABLE_SPACE - pPage->nFree;
+
+ sqlitepager_unref(pPage);
+ return depth;
+}
+
+/*
+** This routine does a complete check of the given BTree file. aRoot[] is
+** an array of pages numbers were each page number is the root page of
+** a table. nRoot is the number of entries in aRoot.
+**
+** If everything checks out, this routine returns NULL. If something is
+** amiss, an error message is written into memory obtained from malloc()
+** and a pointer to that error message is returned. The calling function
+** is responsible for freeing the error message when it is done.
+*/
+char *sqliteBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
+ int i;
+ int nRef;
+ IntegrityCk sCheck;
+
+ nRef = *sqlitepager_stats(pBt->pPager);
+ if( lockBtree(pBt)!=SQLITE_OK ){
+ return sqliteStrDup("Unable to acquire a read lock on the database");
+ }
+ sCheck.pBt = pBt;
+ sCheck.pPager = pBt->pPager;
+ sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
+ if( sCheck.nPage==0 ){
+ unlockBtreeIfUnused(pBt);
+ return 0;
+ }
+ sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
+ sCheck.anRef[1] = 1;
+ for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
+ sCheck.zErrMsg = 0;
+
+ /* Check the integrity of the freelist
+ */
+ checkList(&sCheck, 1, SWAB32(pBt, pBt->page1->freeList),
+ SWAB32(pBt, pBt->page1->nFree), "Main freelist: ");
+
+ /* Check all the tables.
+ */
+ for(i=0; i<nRoot; i++){
+ if( aRoot[i]==0 ) continue;
+ checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
+ }
+
+ /* Make sure every page in the file is referenced
+ */
+ for(i=1; i<=sCheck.nPage; i++){
+ if( sCheck.anRef[i]==0 ){
+ char zBuf[100];
+ sprintf(zBuf, "Page %d is never used", i);
+ checkAppendMsg(&sCheck, zBuf, 0);
+ }
+ }
+
+ /* Make sure this analysis did not leave any unref() pages
+ */
+ unlockBtreeIfUnused(pBt);
+ if( nRef != *sqlitepager_stats(pBt->pPager) ){
+ char zBuf[100];
+ sprintf(zBuf,
+ "Outstanding page count goes from %d to %d during this analysis",
+ nRef, *sqlitepager_stats(pBt->pPager)
+ );
+ checkAppendMsg(&sCheck, zBuf, 0);
+ }
+
+ /* Clean up and report errors.
+ */
+ sqliteFree(sCheck.anRef);
+ return sCheck.zErrMsg;
+}
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite B-Tree file
+** subsystem. See comments in the source code for a detailed description
+** of what each interface routine does.
+**
+** @(#) $Id$
+*/
+#ifndef _BTREE_H_
+#define _BTREE_H_
+
+typedef struct Btree Btree;
+typedef struct BtCursor BtCursor;
+
+int sqliteBtreeOpen(const char *zFilename, int mode, int nPg, Btree **ppBtree);
+int sqliteBtreeClose(Btree*);
+int sqliteBtreeSetCacheSize(Btree*, int);
+int sqliteBtreeSetSafetyLevel(Btree*, int);
+
+int sqliteBtreeBeginTrans(Btree*);
+int sqliteBtreeCommit(Btree*);
+int sqliteBtreeRollback(Btree*);
+int sqliteBtreeBeginCkpt(Btree*);
+int sqliteBtreeCommitCkpt(Btree*);
+int sqliteBtreeRollbackCkpt(Btree*);
+
+int sqliteBtreeCreateTable(Btree*, int*);
+int sqliteBtreeCreateIndex(Btree*, int*);
+int sqliteBtreeDropTable(Btree*, int);
+int sqliteBtreeClearTable(Btree*, int);
+
+int sqliteBtreeCursor(Btree*, int iTable, int wrFlag, BtCursor **ppCur);
+int sqliteBtreeMoveto(BtCursor*, const void *pKey, int nKey, int *pRes);
+int sqliteBtreeDelete(BtCursor*);
+int sqliteBtreeInsert(BtCursor*, const void *pKey, int nKey,
+ const void *pData, int nData);
+int sqliteBtreeFirst(BtCursor*, int *pRes);
+int sqliteBtreeLast(BtCursor*, int *pRes);
+int sqliteBtreeNext(BtCursor*, int *pRes);
+int sqliteBtreePrevious(BtCursor*, int *pRes);
+int sqliteBtreeKeySize(BtCursor*, int *pSize);
+int sqliteBtreeKey(BtCursor*, int offset, int amt, char *zBuf);
+int sqliteBtreeKeyCompare(BtCursor*, const void *pKey, int nKey,
+ int nIgnore, int *pRes);
+int sqliteBtreeDataSize(BtCursor*, int *pSize);
+int sqliteBtreeData(BtCursor*, int offset, int amt, char *zBuf);
+int sqliteBtreeCloseCursor(BtCursor*);
+
+#define SQLITE_N_BTREE_META 10
+int sqliteBtreeGetMeta(Btree*, int*);
+int sqliteBtreeUpdateMeta(Btree*, int*);
+
+char *sqliteBtreeIntegrityCheck(Btree*, int*, int);
+
+#ifdef SQLITE_TEST
+int sqliteBtreePageDump(Btree*, int, int);
+int sqliteBtreeCursorDump(BtCursor*, int*);
+struct Pager *sqliteBtreePager(Btree*);
+int btree_native_byte_order;
+#endif
+
+#endif /* _BTREE_H_ */
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the SQLite parser
+** when syntax rules are reduced. The routines in this file handle the
+** following kinds of SQL syntax:
+**
+** CREATE TABLE
+** DROP TABLE
+** CREATE INDEX
+** DROP INDEX
+** creating ID lists
+** COPY
+** VACUUM
+** BEGIN TRANSACTION
+** COMMIT
+** ROLLBACK
+** PRAGMA
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+#include <ctype.h>
+
+/*
+** This routine is called when a new SQL statement is beginning to
+** be parsed. Check to see if the schema for the database needs
+** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
+** If it does, then read it.
+*/
+void sqliteBeginParse(Parse *pParse, int explainFlag){
+ sqlite *db = pParse->db;
+ pParse->explain = explainFlag;
+ if((db->flags & SQLITE_Initialized)==0 && pParse->initFlag==0 ){
+ int rc = sqliteInit(db, &pParse->zErrMsg);
+ if( rc!=SQLITE_OK ){
+ pParse->rc = rc;
+ pParse->nErr++;
+ }
+ }
+}
+
+/*
+** This is a fake callback procedure used when sqlite_exec() is
+** invoked with a NULL callback pointer. If we pass a NULL callback
+** pointer into sqliteVdbeExec() it will return at every OP_Callback,
+** which we do not want it to do. So we substitute a pointer to this
+** procedure in place of the NULL.
+*/
+static int fakeCallback(void *NotUsed, int n, char **az1, char **az2){
+ return 0;
+}
+
+/*
+** This routine is called after a single SQL statement has been
+** parsed and we want to execute the VDBE code to implement
+** that statement. Prior action routines should have already
+** constructed VDBE code to do the work of the SQL statement.
+** This routine just has to execute the VDBE code.
+**
+** Note that if an error occurred, it might be the case that
+** no VDBE code was generated.
+*/
+void sqliteExec(Parse *pParse){
+ int rc = SQLITE_OK;
+ sqlite *db = pParse->db;
+ Vdbe *v = pParse->pVdbe;
+ int (*xCallback)(void*,int,char**,char**);
+
+ if( sqlite_malloc_failed ) return;
+ xCallback = pParse->xCallback;
+ if( xCallback==0 && pParse->useCallback ) xCallback = fakeCallback;
+ if( v && pParse->nErr==0 ){
+ FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
+ sqliteVdbeTrace(v, trace);
+ sqliteVdbeMakeReady(v, xCallback, pParse->pArg, pParse->explain);
+ if( pParse->useCallback ){
+ if( pParse->explain ){
+ rc = sqliteVdbeList(v);
+ db->next_cookie = db->schema_cookie;
+ }else{
+ sqliteVdbeExec(v);
+ }
+ rc = sqliteVdbeFinalize(v, &pParse->zErrMsg);
+ if( rc ) pParse->nErr++;
+ pParse->pVdbe = 0;
+ pParse->rc = rc;
+ if( rc ) pParse->nErr++;
+ }else{
+ pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
+ }
+ pParse->colNamesSet = 0;
+ pParse->schemaVerified = 0;
+ }else if( pParse->useCallback==0 ){
+ pParse->rc = SQLITE_ERROR;
+ }
+ pParse->nTab = 0;
+ pParse->nMem = 0;
+ pParse->nSet = 0;
+ pParse->nAgg = 0;
+}
+
+/*
+** Locate the in-memory structure that describes
+** a particular database table given the name
+** of that table. Return NULL if not found.
+*/
+Table *sqliteFindTable(sqlite *db, const char *zName){
+ Table *p;
+ p = sqliteHashFind(&db->tblHash, zName, strlen(zName)+1);
+ return p;
+}
+
+/*
+** Locate the in-memory structure that describes
+** a particular index given the name of that index.
+** Return NULL if not found.
+*/
+Index *sqliteFindIndex(sqlite *db, const char *zName){
+ Index *p;
+ p = sqliteHashFind(&db->idxHash, zName, strlen(zName)+1);
+ return p;
+}
+
+/*
+** Remove the given index from the index hash table, and free
+** its memory structures.
+**
+** The index is removed from the database hash tables but
+** it is not unlinked from the Table that it indexes.
+** Unlinking from the Table must be done by the calling function.
+*/
+static void sqliteDeleteIndex(sqlite *db, Index *p){
+ Index *pOld;
+ assert( db!=0 && p->zName!=0 );
+ pOld = sqliteHashInsert(&db->idxHash, p->zName, strlen(p->zName)+1, 0);
+ if( pOld!=0 && pOld!=p ){
+ sqliteHashInsert(&db->idxHash, pOld->zName, strlen(pOld->zName)+1, pOld);
+ }
+ sqliteFree(p);
+}
+
+/*
+** Unlink the given index from its table, then remove
+** the index from the index hash table and free its memory
+** structures.
+*/
+void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
+ if( pIndex->pTable->pIndex==pIndex ){
+ pIndex->pTable->pIndex = pIndex->pNext;
+ }else{
+ Index *p;
+ for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
+ if( p && p->pNext==pIndex ){
+ p->pNext = pIndex->pNext;
+ }
+ }
+ sqliteDeleteIndex(db, pIndex);
+}
+
+/*
+** Erase all schema information from the in-memory hash tables of
+** database connection. This routine is called to reclaim memory
+** before the connection closes. It is also called during a rollback
+** if there were schema changes during the transaction.
+*/
+void sqliteResetInternalSchema(sqlite *db){
+ HashElem *pElem;
+ Hash temp1;
+ Hash temp2;
+
+ sqliteHashClear(&db->aFKey);
+ temp1 = db->tblHash;
+ temp2 = db->trigHash;
+ sqliteHashInit(&db->trigHash, SQLITE_HASH_STRING, 0);
+ sqliteHashClear(&db->idxHash);
+ for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
+ Trigger *pTrigger = sqliteHashData(pElem);
+ sqliteDeleteTrigger(pTrigger);
+ }
+ sqliteHashClear(&temp2);
+ sqliteHashInit(&db->tblHash, SQLITE_HASH_STRING, 0);
+ for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
+ Table *pTab = sqliteHashData(pElem);
+ sqliteDeleteTable(db, pTab);
+ }
+ sqliteHashClear(&temp1);
+ db->flags &= ~(SQLITE_Initialized|SQLITE_InternChanges);
+}
+
+/*
+** This routine is called whenever a rollback occurs. If there were
+** schema changes during the transaction, then we have to reset the
+** internal hash tables and reload them from disk.
+*/
+void sqliteRollbackInternalChanges(sqlite *db){
+ if( db->flags & SQLITE_InternChanges ){
+ sqliteResetInternalSchema(db);
+ }
+}
+
+/*
+** This routine is called when a commit occurs.
+*/
+void sqliteCommitInternalChanges(sqlite *db){
+ db->schema_cookie = db->next_cookie;
+ db->flags &= ~SQLITE_InternChanges;
+}
+
+/*
+** Remove the memory data structures associated with the given
+** Table. No changes are made to disk by this routine.
+**
+** This routine just deletes the data structure. It does not unlink
+** the table data structure from the hash table. Nor does it remove
+** foreign keys from the sqlite.aFKey hash table. But it does destroy
+** memory structures of the indices and foreign keys associated with
+** the table.
+**
+** Indices associated with the table are unlinked from the "db"
+** data structure if db!=NULL. If db==NULL, indices attached to
+** the table are deleted, but it is assumed they have already been
+** unlinked.
+*/
+void sqliteDeleteTable(sqlite *db, Table *pTable){
+ int i;
+ Index *pIndex, *pNext;
+ FKey *pFKey, *pNextFKey;
+
+ if( pTable==0 ) return;
+
+ /* Delete all indices associated with this table
+ */
+ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
+ pNext = pIndex->pNext;
+ sqliteDeleteIndex(db, pIndex);
+ }
+
+ /* Delete all foreign keys associated with this table. The keys
+ ** should have already been unlinked from the db->aFKey hash table
+ */
+ for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
+ pNextFKey = pFKey->pNextFrom;
+ assert( sqliteHashFind(&db->aFKey,pFKey->zTo,strlen(pFKey->zTo)+1)!=pFKey );
+ sqliteFree(pFKey);
+ }
+
+ /* Delete the Table structure itself.
+ */
+ for(i=0; i<pTable->nCol; i++){
+ sqliteFree(pTable->aCol[i].zName);
+ sqliteFree(pTable->aCol[i].zDflt);
+ sqliteFree(pTable->aCol[i].zType);
+ }
+ sqliteFree(pTable->zName);
+ sqliteFree(pTable->aCol);
+ sqliteSelectDelete(pTable->pSelect);
+ sqliteFree(pTable);
+}
+
+/*
+** Unlink the given table from the hash tables and the delete the
+** table structure with all its indices and foreign keys.
+*/
+static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
+ Table *pOld;
+ FKey *pF1, *pF2;
+ assert( db!=0 );
+ pOld = sqliteHashInsert(&db->tblHash, p->zName, strlen(p->zName)+1, 0);
+ assert( pOld==0 || pOld==p );
+ for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
+ int nTo = strlen(pF1->zTo) + 1;
+ pF2 = sqliteHashFind(&db->aFKey, pF1->zTo, nTo);
+ if( pF2==pF1 ){
+ sqliteHashInsert(&db->aFKey, pF1->zTo, nTo, pF1->pNextTo);
+ }else{
+ while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
+ if( pF2 ){
+ pF2->pNextTo = pF1->pNextTo;
+ }
+ }
+ }
+ sqliteDeleteTable(db, p);
+}
+
+/*
+** Construct the name of a user table or index from a token.
+**
+** Space to hold the name is obtained from sqliteMalloc() and must
+** be freed by the calling function.
+*/
+char *sqliteTableNameFromToken(Token *pName){
+ char *zName = sqliteStrNDup(pName->z, pName->n);
+ sqliteDequote(zName);
+ return zName;
+}
+
+/*
+** Generate code to open the appropriate master table. The table
+** opened will be SQLITE_MASTER for persistent tables and
+** SQLITE_TEMP_MASTER for temporary tables. The table is opened
+** on cursor 0.
+*/
+void sqliteOpenMasterTable(Vdbe *v, int isTemp){
+ if( isTemp ){
+ sqliteVdbeAddOp(v, OP_OpenWrAux, 0, 2);
+ sqliteVdbeChangeP3(v, -1, TEMP_MASTER_NAME, P3_STATIC);
+ }else{
+ sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
+ sqliteVdbeChangeP3(v, -1, MASTER_NAME, P3_STATIC);
+ }
+}
+
+/*
+** Begin constructing a new table representation in memory. This is
+** the first of several action routines that get called in response
+** to a CREATE TABLE statement. In particular, this routine is called
+** after seeing tokens "CREATE" and "TABLE" and the table name. The
+** pStart token is the CREATE and pName is the table name. The isTemp
+** flag is true if the table should be stored in the auxiliary database
+** file instead of in the main database file. This is normally the case
+** when the "TEMP" or "TEMPORARY" keyword occurs in between
+** CREATE and TABLE.
+**
+** The new table record is initialized and put in pParse->pNewTable.
+** As more of the CREATE TABLE statement is parsed, additional action
+** routines will be called to add more information to this record.
+** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
+** is called to complete the construction of the new table record.
+*/
+void sqliteStartTable(
+ Parse *pParse, /* Parser context */
+ Token *pStart, /* The "CREATE" token */
+ Token *pName, /* Name of table or view to create */
+ int isTemp, /* True if this is a TEMP table */
+ int isView /* True if this is a VIEW */
+){
+ Table *pTable;
+ Index *pIdx;
+ char *zName;
+ sqlite *db = pParse->db;
+ Vdbe *v;
+
+ pParse->sFirstToken = *pStart;
+ zName = sqliteTableNameFromToken(pName);
+ if( zName==0 ) return;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0) ){
+ sqliteFree(zName);
+ return;
+ }
+ {
+ int code;
+ if( isView ){
+ if( isTemp ){
+ code = SQLITE_CREATE_TEMP_VIEW;
+ }else{
+ code = SQLITE_CREATE_VIEW;
+ }
+ }else{
+ if( isTemp ){
+ code = SQLITE_CREATE_TEMP_TABLE;
+ }else{
+ code = SQLITE_CREATE_TABLE;
+ }
+ }
+ if( sqliteAuthCheck(pParse, code, zName, 0) ){
+ sqliteFree(zName);
+ return;
+ }
+ }
+#endif
+
+
+ /* Before trying to create a temporary table, make sure the Btree for
+ ** holding temporary tables is open.
+ */
+ if( isTemp && db->pBeTemp==0 ){
+ int rc = sqliteBtreeOpen(0, 0, MAX_PAGES, &db->pBeTemp);
+ if( rc!=SQLITE_OK ){
+ sqliteSetString(&pParse->zErrMsg, "unable to open a temporary database "
+ "file for storing temporary tables", 0);
+ pParse->nErr++;
+ return;
+ }
+ if( db->flags & SQLITE_InTrans ){
+ rc = sqliteBtreeBeginTrans(db->pBeTemp);
+ if( rc!=SQLITE_OK ){
+ sqliteSetNString(&pParse->zErrMsg, "unable to get a write lock on "
+ "the temporary database file", 0);
+ pParse->nErr++;
+ return;
+ }
+ }
+ }
+
+ /* Make sure the new table name does not collide with an existing
+ ** index or table name. Issue an error message if it does.
+ **
+ ** If we are re-reading the sqlite_master table because of a schema
+ ** change and a new permanent table is found whose name collides with
+ ** an existing temporary table, then ignore the new permanent table.
+ ** We will continue parsing, but the pParse->nameClash flag will be set
+ ** so we will know to discard the table record once parsing has finished.
+ */
+ pTable = sqliteFindTable(db, zName);
+ if( pTable!=0 ){
+ if( pTable->isTemp && pParse->initFlag ){
+ pParse->nameClash = 1;
+ }else{
+ sqliteSetNString(&pParse->zErrMsg, "table ", 0, pName->z, pName->n,
+ " already exists", 0, 0);
+ sqliteFree(zName);
+ pParse->nErr++;
+ return;
+ }
+ }else{
+ pParse->nameClash = 0;
+ }
+ if( (pIdx = sqliteFindIndex(db, zName))!=0 &&
+ (!pIdx->pTable->isTemp || !pParse->initFlag) ){
+ sqliteSetString(&pParse->zErrMsg, "there is already an index named ",
+ zName, 0);
+ sqliteFree(zName);
+ pParse->nErr++;
+ return;
+ }
+ pTable = sqliteMalloc( sizeof(Table) );
+ if( pTable==0 ){
+ sqliteFree(zName);
+ return;
+ }
+ pTable->zName = zName;
+ pTable->nCol = 0;
+ pTable->aCol = 0;
+ pTable->iPKey = -1;
+ pTable->pIndex = 0;
+ pTable->isTemp = isTemp;
+ if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
+ pParse->pNewTable = pTable;
+
+ /* Begin generating the code that will insert the table record into
+ ** the SQLITE_MASTER table. Note in particular that we must go ahead
+ ** and allocate the record number for the table entry now. Before any
+ ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
+ ** indices to be created and the table record must come before the
+ ** indices. Hence, the record number for the table must be allocated
+ ** now.
+ */
+ if( !pParse->initFlag && (v = sqliteGetVdbe(pParse))!=0 ){
+ sqliteBeginWriteOperation(pParse, 0, isTemp);
+ if( !isTemp ){
+ sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
+ }
+ sqliteOpenMasterTable(v, isTemp);
+ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
+ }
+}
+
+/*
+** Add a new column to the table currently being constructed.
+**
+** The parser calls this routine once for each column declaration
+** in a CREATE TABLE statement. sqliteStartTable() gets called
+** first to get things going. Then this routine is called for each
+** column.
+*/
+void sqliteAddColumn(Parse *pParse, Token *pName){
+ Table *p;
+ int i;
+ char *z = 0;
+ Column *pCol;
+ if( (p = pParse->pNewTable)==0 ) return;
+ sqliteSetNString(&z, pName->z, pName->n, 0);
+ if( z==0 ) return;
+ sqliteDequote(z);
+ for(i=0; i<p->nCol; i++){
+ if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
+ sqliteSetString(&pParse->zErrMsg, "duplicate column name: ", z, 0);
+ pParse->nErr++;
+ sqliteFree(z);
+ return;
+ }
+ }
+ if( (p->nCol & 0x7)==0 ){
+ Column *aNew;
+ aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
+ if( aNew==0 ) return;
+ p->aCol = aNew;
+ }
+ pCol = &p->aCol[p->nCol];
+ memset(pCol, 0, sizeof(p->aCol[0]));
+ pCol->zName = z;
+ pCol->sortOrder = SQLITE_SO_NUM;
+ p->nCol++;
+}
+
+/*
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
+** been seen on a column. This routine sets the notNull flag on
+** the column currently under construction.
+*/
+void sqliteAddNotNull(Parse *pParse, int onError){
+ Table *p;
+ int i;
+ if( (p = pParse->pNewTable)==0 ) return;
+ i = p->nCol-1;
+ if( i>=0 ) p->aCol[i].notNull = onError;
+}
+
+/*
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement. The pFirst token is the first
+** token in the sequence of tokens that describe the type of the
+** column currently under construction. pLast is the last token
+** in the sequence. Use this information to construct a string
+** that contains the typename of the column and store that string
+** in zType.
+*/
+void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
+ Table *p;
+ int i, j;
+ int n;
+ char *z, **pz;
+ Column *pCol;
+ if( (p = pParse->pNewTable)==0 ) return;
+ i = p->nCol-1;
+ if( i<0 ) return;
+ pCol = &p->aCol[i];
+ pz = &pCol->zType;
+ n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
+ sqliteSetNString(pz, pFirst->z, n, 0);
+ z = *pz;
+ if( z==0 ) return;
+ for(i=j=0; z[i]; i++){
+ int c = z[i];
+ if( isspace(c) ) continue;
+ z[j++] = c;
+ }
+ z[j] = 0;
+ if( pParse->db->file_format>=4 ){
+ pCol->sortOrder = sqliteCollateType(z, n);
+ }else{
+ pCol->sortOrder = SQLITE_SO_NUM;
+ }
+}
+
+/*
+** The given token is the default value for the last column added to
+** the table currently under construction. If "minusFlag" is true, it
+** means the value token was preceded by a minus sign.
+**
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement.
+*/
+void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
+ Table *p;
+ int i;
+ char **pz;
+ if( (p = pParse->pNewTable)==0 ) return;
+ i = p->nCol-1;
+ if( i<0 ) return;
+ pz = &p->aCol[i].zDflt;
+ if( minusFlag ){
+ sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
+ }else{
+ sqliteSetNString(pz, pVal->z, pVal->n, 0);
+ }
+ sqliteDequote(*pz);
+}
+
+/*
+** Designate the PRIMARY KEY for the table. pList is a list of names
+** of columns that form the primary key. If pList is NULL, then the
+** most recently added column of the table is the primary key.
+**
+** A table can have at most one primary key. If the table already has
+** a primary key (and this is the second primary key) then create an
+** error.
+**
+** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
+** then we will try to use that column as the row id. (Exception:
+** For backwards compatibility with older databases, do not do this
+** if the file format version number is less than 1.) Set the Table.iPKey
+** field of the table under construction to be the index of the
+** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
+** no INTEGER PRIMARY KEY.
+**
+** If the key is not an INTEGER PRIMARY KEY, then create a unique
+** index for the key. No index is created for INTEGER PRIMARY KEYs.
+*/
+void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
+ Table *pTab = pParse->pNewTable;
+ char *zType = 0;
+ int iCol = -1;
+ if( pTab==0 ) return;
+ if( pTab->hasPrimKey ){
+ sqliteSetString(&pParse->zErrMsg, "table \"", pTab->zName,
+ "\" has more than one primary key", 0);
+ pParse->nErr++;
+ return;
+ }
+ pTab->hasPrimKey = 1;
+ if( pList==0 ){
+ iCol = pTab->nCol - 1;
+ }else if( pList->nId==1 ){
+ for(iCol=0; iCol<pTab->nCol; iCol++){
+ if( sqliteStrICmp(pList->a[0].zName, pTab->aCol[iCol].zName)==0 ) break;
+ }
+ }
+ if( iCol>=0 && iCol<pTab->nCol ){
+ zType = pTab->aCol[iCol].zType;
+ }
+ if( pParse->db->file_format>=1 &&
+ zType && sqliteStrICmp(zType, "INTEGER")==0 ){
+ pTab->iPKey = iCol;
+ pTab->keyConf = onError;
+ }else{
+ sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
+ }
+}
+
+/*
+** Return the appropriate collating type given a type name.
+**
+** The collation type is text (SQLITE_SO_TEXT) if the type
+** name contains the character stream "text" or "blob" or
+** "clob". Any other type name is collated as numeric
+** (SQLITE_SO_NUM).
+*/
+int sqliteCollateType(const char *zType, int nType){
+ int i;
+ for(i=0; i<nType-1; i++){
+ switch( zType[i] ){
+ case 'b':
+ case 'B': {
+ if( i<nType-3 && sqliteStrNICmp(&zType[i],"blob",4)==0 ){
+ return SQLITE_SO_TEXT;
+ }
+ break;
+ }
+ case 'c':
+ case 'C': {
+ if( i<nType-3 && (sqliteStrNICmp(&zType[i],"char",4)==0 ||
+ sqliteStrNICmp(&zType[i],"clob",4)==0)
+ ){
+ return SQLITE_SO_TEXT;
+ }
+ break;
+ }
+ case 'x':
+ case 'X': {
+ if( i>=2 && sqliteStrNICmp(&zType[i-2],"text",4)==0 ){
+ return SQLITE_SO_TEXT;
+ }
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+ }
+ return SQLITE_SO_NUM;
+}
+
+/*
+** This routine is called by the parser while in the middle of
+** parsing a CREATE TABLE statement. A "COLLATE" clause has
+** been seen on a column. This routine sets the Column.sortOrder on
+** the column currently under construction.
+*/
+void sqliteAddCollateType(Parse *pParse, int collType){
+ Table *p;
+ int i;
+ if( (p = pParse->pNewTable)==0 ) return;
+ i = p->nCol-1;
+ if( i>=0 ) p->aCol[i].sortOrder = collType;
+}
+
+/*
+** Come up with a new random value for the schema cookie. Make sure
+** the new value is different from the old.
+**
+** The schema cookie is used to determine when the schema for the
+** database changes. After each schema change, the cookie value
+** changes. When a process first reads the schema it records the
+** cookie. Thereafter, whenever it goes to access the database,
+** it checks the cookie to make sure the schema has not changed
+** since it was last read.
+**
+** This plan is not completely bullet-proof. It is possible for
+** the schema to change multiple times and for the cookie to be
+** set back to prior value. But schema changes are infrequent
+** and the probability of hitting the same cookie value is only
+** 1 chance in 2^32. So we're safe enough.
+*/
+void sqliteChangeCookie(sqlite *db, Vdbe *v){
+ if( db->next_cookie==db->schema_cookie ){
+ db->next_cookie = db->schema_cookie + sqliteRandomByte() + 1;
+ db->flags |= SQLITE_InternChanges;
+ sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
+ }
+}
+
+/*
+** Measure the number of characters needed to output the given
+** identifier. The number returned includes any quotes used
+** but does not include the null terminator.
+*/
+static int identLength(const char *z){
+ int n;
+ int needQuote = 0;
+ for(n=0; *z; n++, z++){
+ if( *z=='\'' ){ n++; needQuote=1; }
+ }
+ return n + needQuote*2;
+}
+
+/*
+** Write an identifier onto the end of the given string. Add
+** quote characters as needed.
+*/
+static void identPut(char *z, int *pIdx, char *zIdent){
+ int i, j, needQuote;
+ i = *pIdx;
+ for(j=0; zIdent[j]; j++){
+ if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
+ }
+ needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
+ || sqliteKeywordCode(zIdent, j)!=TK_ID;
+ if( needQuote ) z[i++] = '\'';
+ for(j=0; zIdent[j]; j++){
+ z[i++] = zIdent[j];
+ if( zIdent[j]=='\'' ) z[i++] = '\'';
+ }
+ if( needQuote ) z[i++] = '\'';
+ z[i] = 0;
+ *pIdx = i;
+}
+
+/*
+** Generate a CREATE TABLE statement appropriate for the given
+** table. Memory to hold the text of the statement is obtained
+** from sqliteMalloc() and must be freed by the calling function.
+*/
+static char *createTableStmt(Table *p){
+ int i, k, n;
+ char *zStmt;
+ char *zSep, *zSep2, *zEnd;
+ n = 0;
+ for(i=0; i<p->nCol; i++){
+ n += identLength(p->aCol[i].zName);
+ }
+ n += identLength(p->zName);
+ if( n<40 ){
+ zSep = "";
+ zSep2 = ",";
+ zEnd = ")";
+ }else{
+ zSep = "\n ";
+ zSep2 = ",\n ";
+ zEnd = "\n)";
+ }
+ n += 35 + 6*p->nCol;
+ zStmt = sqliteMallocRaw( n );
+ if( zStmt==0 ) return 0;
+ strcpy(zStmt, p->isTemp ? "CREATE TEMP TABLE " : "CREATE TABLE ");
+ k = strlen(zStmt);
+ identPut(zStmt, &k, p->zName);
+ zStmt[k++] = '(';
+ for(i=0; i<p->nCol; i++){
+ strcpy(&zStmt[k], zSep);
+ k += strlen(&zStmt[k]);
+ zSep = zSep2;
+ identPut(zStmt, &k, p->aCol[i].zName);
+ }
+ strcpy(&zStmt[k], zEnd);
+ return zStmt;
+}
+
+/*
+** This routine is called to report the final ")" that terminates
+** a CREATE TABLE statement.
+**
+** The table structure that other action routines have been building
+** is added to the internal hash tables, assuming no errors have
+** occurred.
+**
+** An entry for the table is made in the master table on disk,
+** unless this is a temporary table or initFlag==1. When initFlag==1,
+** it means we are reading the sqlite_master table because we just
+** connected to the database or because the sqlite_master table has
+** recently changes, so the entry for this table already exists in
+** the sqlite_master table. We do not want to create it again.
+**
+** If the pSelect argument is not NULL, it means that this routine
+** was called to create a table generated from a
+** "CREATE TABLE ... AS SELECT ..." statement. The column names of
+** the new table will match the result set of the SELECT.
+*/
+void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
+ Table *p;
+ sqlite *db = pParse->db;
+
+ if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
+ p = pParse->pNewTable;
+ if( p==0 ) return;
+
+ /* If the table is generated from a SELECT, then construct the
+ ** list of columns and the text of the table.
+ */
+ if( pSelect ){
+ Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
+ if( pSelTab==0 ) return;
+ assert( p->aCol==0 );
+ p->nCol = pSelTab->nCol;
+ p->aCol = pSelTab->aCol;
+ pSelTab->nCol = 0;
+ pSelTab->aCol = 0;
+ sqliteDeleteTable(0, pSelTab);
+ }
+
+ /* If the initFlag is 1 it means we are reading the SQL off the
+ ** "sqlite_master" or "sqlite_temp_master" table on the disk.
+ ** So do not write to the disk again. Extract the root page number
+ ** for the table from the pParse->newTnum field. (The page number
+ ** should have been put there by the sqliteOpenCb routine.)
+ */
+ if( pParse->initFlag ){
+ p->tnum = pParse->newTnum;
+ }
+
+ /* If not initializing, then create a record for the new table
+ ** in the SQLITE_MASTER table of the database. The record number
+ ** for the new table entry should already be on the stack.
+ **
+ ** If this is a TEMPORARY table, write the entry into the auxiliary
+ ** file instead of into the main database file.
+ */
+ if( !pParse->initFlag ){
+ int n;
+ Vdbe *v;
+
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ if( p->pSelect==0 ){
+ /* A regular table */
+ sqliteVdbeAddOp(v, OP_CreateTable, 0, p->isTemp);
+ sqliteVdbeChangeP3(v, -1, (char *)&p->tnum, P3_POINTER);
+ }else{
+ /* A view */
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ }
+ p->tnum = 0;
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ if( p->pSelect==0 ){
+ sqliteVdbeChangeP3(v, -1, "table", P3_STATIC);
+ }else{
+ sqliteVdbeChangeP3(v, -1, "view", P3_STATIC);
+ }
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, p->zName, P3_STATIC);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, p->zName, P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Dup, 4, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ if( pSelect ){
+ char *z = createTableStmt(p);
+ n = z ? strlen(z) : 0;
+ sqliteVdbeChangeP3(v, -1, z, n);
+ sqliteFree(z);
+ }else{
+ assert( pEnd!=0 );
+ n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
+ sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
+ if( !p->isTemp ){
+ sqliteChangeCookie(db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ if( pSelect ){
+ int op = p->isTemp ? OP_OpenWrAux : OP_OpenWrite;
+ sqliteVdbeAddOp(v, op, 1, 0);
+ pParse->nTab = 2;
+ sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
+ }
+ sqliteEndWriteOperation(pParse);
+ }
+
+ /* Add the table to the in-memory representation of the database.
+ */
+ assert( pParse->nameClash==0 || pParse->initFlag==1 );
+ if( pParse->explain==0 && pParse->nameClash==0 && pParse->nErr==0 ){
+ Table *pOld;
+ FKey *pFKey;
+ pOld = sqliteHashInsert(&db->tblHash, p->zName, strlen(p->zName)+1, p);
+ if( pOld ){
+ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
+ return;
+ }
+ for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
+ int nTo = strlen(pFKey->zTo) + 1;
+ pFKey->pNextTo = sqliteHashFind(&db->aFKey, pFKey->zTo, nTo);
+ sqliteHashInsert(&db->aFKey, pFKey->zTo, nTo, pFKey);
+ }
+ pParse->pNewTable = 0;
+ db->nTable++;
+ db->flags |= SQLITE_InternChanges;
+ }
+}
+
+/*
+** The parser calls this routine in order to create a new VIEW
+*/
+void sqliteCreateView(
+ Parse *pParse, /* The parsing context */
+ Token *pBegin, /* The CREATE token that begins the statement */
+ Token *pName, /* The token that holds the name of the view */
+ Select *pSelect, /* A SELECT statement that will become the new view */
+ int isTemp /* TRUE for a TEMPORARY view */
+){
+ Table *p;
+ int n;
+ const char *z;
+ Token sEnd;
+
+ sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
+ p = pParse->pNewTable;
+ if( p==0 || pParse->nErr ){
+ sqliteSelectDelete(pSelect);
+ return;
+ }
+
+ /* Make a copy of the entire SELECT statement that defines the view.
+ ** This will force all the Expr.token.z values to be dynamically
+ ** allocated rather than point to the input string - which means that
+ ** they will persist after the current sqlite_exec() call returns.
+ */
+ p->pSelect = sqliteSelectDup(pSelect);
+ sqliteSelectDelete(pSelect);
+ if( !pParse->initFlag ){
+ sqliteViewGetColumnNames(pParse, p);
+ }
+
+ /* Locate the end of the CREATE VIEW statement. Make sEnd point to
+ ** the end.
+ */
+ sEnd = pParse->sLastToken;
+ if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
+ sEnd.z += sEnd.n;
+ }
+ sEnd.n = 0;
+ n = ((int)sEnd.z) - (int)pBegin->z;
+ z = pBegin->z;
+ while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
+ sEnd.z = &z[n-1];
+ sEnd.n = 1;
+
+ /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
+ sqliteEndTable(pParse, &sEnd, 0);
+ return;
+}
+
+/*
+** The Table structure pTable is really a VIEW. Fill in the names of
+** the columns of the view in the pTable structure. Return the number
+** of errors. If an error is seen leave an error message in pPare->zErrMsg.
+*/
+int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
+ ExprList *pEList;
+ Select *pSel;
+ Table *pSelTab;
+ int nErr = 0;
+
+ assert( pTable );
+
+ /* A positive nCol means the columns names for this view are
+ ** already known.
+ */
+ if( pTable->nCol>0 ) return 0;
+
+ /* A negative nCol is a special marker meaning that we are currently
+ ** trying to compute the column names. If we enter this routine with
+ ** a negative nCol, it means two or more views form a loop, like this:
+ **
+ ** CREATE VIEW one AS SELECT * FROM two;
+ ** CREATE VIEW two AS SELECT * FROM one;
+ **
+ ** Actually, this error is caught previously and so the following test
+ ** should always fail. But we will leave it in place just to be safe.
+ */
+ if( pTable->nCol<0 ){
+ sqliteSetString(&pParse->zErrMsg, "view ", pTable->zName,
+ " is circularly defined", 0);
+ pParse->nErr++;
+ return 1;
+ }
+
+ /* If we get this far, it means we need to compute the table names.
+ */
+ assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
+ pSel = pTable->pSelect;
+
+ /* Note that the call to sqliteResultSetOfSelect() will expand any
+ ** "*" elements in this list. But we will need to restore the list
+ ** back to its original configuration afterwards, so we save a copy of
+ ** the original in pEList.
+ */
+ pEList = pSel->pEList;
+ pSel->pEList = sqliteExprListDup(pEList);
+ if( pSel->pEList==0 ){
+ pSel->pEList = pEList;
+ return 1; /* Malloc failed */
+ }
+ pTable->nCol = -1;
+ pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
+ if( pSelTab ){
+ assert( pTable->aCol==0 );
+ pTable->nCol = pSelTab->nCol;
+ pTable->aCol = pSelTab->aCol;
+ pSelTab->nCol = 0;
+ pSelTab->aCol = 0;
+ sqliteDeleteTable(0, pSelTab);
+ pParse->db->flags |= SQLITE_UnresetViews;
+ }else{
+ pTable->nCol = 0;
+ nErr++;
+ }
+ sqliteSelectUnbind(pSel);
+ sqliteExprListDelete(pSel->pEList);
+ pSel->pEList = pEList;
+ return nErr;
+}
+
+/*
+** Clear the column names from the VIEW pTable.
+**
+** This routine is called whenever any other table or view is modified.
+** The view passed into this routine might depend directly or indirectly
+** on the modified or deleted table so we need to clear the old column
+** names so that they will be recomputed.
+*/
+static void sqliteViewResetColumnNames(Table *pTable){
+ int i;
+ if( pTable==0 || pTable->pSelect==0 ) return;
+ if( pTable->nCol==0 ) return;
+ for(i=0; i<pTable->nCol; i++){
+ sqliteFree(pTable->aCol[i].zName);
+ sqliteFree(pTable->aCol[i].zDflt);
+ sqliteFree(pTable->aCol[i].zType);
+ }
+ sqliteFree(pTable->aCol);
+ pTable->aCol = 0;
+ pTable->nCol = 0;
+}
+
+/*
+** Clear the column names from every VIEW.
+*/
+void sqliteViewResetAll(sqlite *db){
+ HashElem *i;
+ if( (db->flags & SQLITE_UnresetViews)==0 ) return;
+ for(i=sqliteHashFirst(&db->tblHash); i; i=sqliteHashNext(i)){
+ Table *pTab = sqliteHashData(i);
+ if( pTab->pSelect ){
+ sqliteViewResetColumnNames(pTab);
+ }
+ }
+ db->flags &= ~SQLITE_UnresetViews;
+}
+
+/*
+** Given a token, look up a table with that name. If not found, leave
+** an error for the parser to find and return NULL.
+*/
+Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
+ char *zName;
+ Table *pTab;
+ zName = sqliteTableNameFromToken(pTok);
+ if( zName==0 ) return 0;
+ pTab = sqliteFindTable(pParse->db, zName);
+ sqliteFree(zName);
+ if( pTab==0 ){
+ sqliteSetNString(&pParse->zErrMsg, "no such table: ", 0,
+ pTok->z, pTok->n, 0);
+ pParse->nErr++;
+ }
+ return pTab;
+}
+
+/*
+** This routine is called to do the work of a DROP TABLE statement.
+** pName is the name of the table to be dropped.
+*/
+void sqliteDropTable(Parse *pParse, Token *pName, int isView){
+ Table *pTable;
+ Vdbe *v;
+ int base;
+ sqlite *db = pParse->db;
+
+ if( pParse->nErr || sqlite_malloc_failed ) return;
+ pTable = sqliteTableFromToken(pParse, pName);
+ if( pTable==0 ) return;
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, SCHEMA_TABLE(pTable->isTemp),0)){
+ return;
+ }
+ {
+ int code;
+ if( isView ){
+ if( pTable->isTemp ){
+ code = SQLITE_DROP_TEMP_VIEW;
+ }else{
+ code = SQLITE_DROP_VIEW;
+ }
+ }else{
+ if( pTable->isTemp ){
+ code = SQLITE_DROP_TEMP_TABLE;
+ }else{
+ code = SQLITE_DROP_TABLE;
+ }
+ }
+ if( sqliteAuthCheck(pParse, code, pTable->zName, 0) ){
+ return;
+ }
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0) ){
+ return;
+ }
+ }
+#endif
+ if( pTable->readOnly ){
+ sqliteSetString(&pParse->zErrMsg, "table ", pTable->zName,
+ " may not be dropped", 0);
+ pParse->nErr++;
+ return;
+ }
+ if( isView && pTable->pSelect==0 ){
+ sqliteSetString(&pParse->zErrMsg, "use DROP TABLE to delete table ",
+ pTable->zName, 0);
+ pParse->nErr++;
+ return;
+ }
+ if( !isView && pTable->pSelect ){
+ sqliteSetString(&pParse->zErrMsg, "use DROP VIEW to delete view ",
+ pTable->zName, 0);
+ pParse->nErr++;
+ return;
+ }
+
+ /* Generate code to remove the table from the master table
+ ** on disk.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v ){
+ static VdbeOp dropTable[] = {
+ { OP_Rewind, 0, ADDR(8), 0},
+ { OP_String, 0, 0, 0}, /* 1 */
+ { OP_MemStore, 1, 1, 0},
+ { OP_MemLoad, 1, 0, 0}, /* 3 */
+ { OP_Column, 0, 2, 0},
+ { OP_Ne, 0, ADDR(7), 0},
+ { OP_Delete, 0, 0, 0},
+ { OP_Next, 0, ADDR(3), 0}, /* 7 */
+ };
+ Index *pIdx;
+ Trigger *pTrigger;
+ sqliteBeginWriteOperation(pParse, 0, pTable->isTemp);
+ sqliteOpenMasterTable(v, pTable->isTemp);
+ /* Drop all triggers associated with the table being dropped */
+ pTrigger = pTable->pTrigger;
+ while( pTrigger ){
+ Token tt;
+ tt.z = pTable->pTrigger->name;
+ tt.n = strlen(pTable->pTrigger->name);
+ sqliteDropTrigger(pParse, &tt, 1);
+ if( pParse->explain ){
+ pTrigger = pTrigger->pNext;
+ }else{
+ pTrigger = pTable->pTrigger;
+ }
+ }
+ base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
+ sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
+ if( !pTable->isTemp ){
+ sqliteChangeCookie(db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ if( !isView ){
+ sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->isTemp);
+ for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
+ sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pTable->isTemp);
+ }
+ }
+ sqliteEndWriteOperation(pParse);
+ }
+
+ /* Delete the in-memory description of the table.
+ **
+ ** Exception: if the SQL statement began with the EXPLAIN keyword,
+ ** then no changes should be made.
+ */
+ if( !pParse->explain ){
+ sqliteUnlinkAndDeleteTable(db, pTable);
+ db->flags |= SQLITE_InternChanges;
+ }
+ sqliteViewResetAll(db);
+}
+
+/*
+** This routine constructs a P3 string suitable for an OP_MakeIdxKey
+** opcode and adds that P3 string to the most recently inserted instruction
+** in the virtual machine. The P3 string consists of a single character
+** for each column in the index pIdx of table pTab. If the column uses
+** a numeric sort order, then the P3 string character corresponding to
+** that column is 'n'. If the column uses a text sort order, then the
+** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for
+** additional information. See also the sqliteAddKeyType() routine.
+*/
+void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
+ char *zType;
+ Table *pTab;
+ int i, n;
+ assert( pIdx!=0 && pIdx->pTable!=0 );
+ pTab = pIdx->pTable;
+ n = pIdx->nColumn;
+ zType = sqliteMallocRaw( n+1 );
+ if( zType==0 ) return;
+ for(i=0; i<n; i++){
+ int iCol = pIdx->aiColumn[i];
+ assert( iCol>=0 && iCol<pTab->nCol );
+ if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
+ zType[i] = 't';
+ }else{
+ zType[i] = 'n';
+ }
+ }
+ zType[n] = 0;
+ sqliteVdbeChangeP3(v, -1, zType, n);
+ sqliteFree(zType);
+}
+
+/*
+** This routine is called to create a new foreign key on the table
+** currently under construction. pFromCol determines which columns
+** in the current table point to the foreign key. If pFromCol==0 then
+** connect the key to the last column inserted. pTo is the name of
+** the table referred to. pToCol is a list of tables in the other
+** pTo table that the foreign key points to. flags contains all
+** information about the conflict resolution algorithms specified
+** in the ON DELETE, ON UPDATE and ON INSERT clauses.
+**
+** An FKey structure is created and added to the table currently
+** under construction in the pParse->pNewTable field. The new FKey
+** is not linked into db->aFKey at this point - that does not happen
+** until sqliteEndTable().
+**
+** The foreign key is set for IMMEDIATE processing. A subsequent call
+** to sqliteDeferForeignKey() might change this to DEFERRED.
+*/
+void sqliteCreateForeignKey(
+ Parse *pParse, /* Parsing context */
+ IdList *pFromCol, /* Columns in this table that point to other table */
+ Token *pTo, /* Name of the other table */
+ IdList *pToCol, /* Columns in the other table */
+ int flags /* Conflict resolution algorithms. */
+){
+ Table *p = pParse->pNewTable;
+ int nByte;
+ int i;
+ int nCol;
+ char *z;
+ FKey *pFKey = 0;
+
+ assert( pTo!=0 );
+ if( p==0 || pParse->nErr ) goto fk_end;
+ if( pFromCol==0 ){
+ int iCol = p->nCol-1;
+ if( iCol<0 ) goto fk_end;
+ if( pToCol && pToCol->nId!=1 ){
+ sqliteSetNString(&pParse->zErrMsg, "foreign key on ", -1,
+ p->aCol[iCol].zName, -1,
+ " should reference only one column of table ", -1,
+ pTo->z, pTo->n, 0);
+ pParse->nErr++;
+ goto fk_end;
+ }
+ nCol = 1;
+ }else if( pToCol && pToCol->nId!=pFromCol->nId ){
+ sqliteSetString(&pParse->zErrMsg,
+ "number of columns in foreign key does not match the number of "
+ "columns in the referenced table", 0);
+ pParse->nErr++;
+ goto fk_end;
+ }else{
+ nCol = pFromCol->nId;
+ }
+ nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
+ if( pToCol ){
+ for(i=0; i<pToCol->nId; i++){
+ nByte += strlen(pToCol->a[i].zName) + 1;
+ }
+ }
+ pFKey = sqliteMalloc( nByte );
+ if( pFKey==0 ) goto fk_end;
+ pFKey->pFrom = p;
+ pFKey->pNextFrom = p->pFKey;
+ z = (char*)&pFKey[1];
+ pFKey->aCol = (struct sColMap*)z;
+ z += sizeof(struct sColMap)*nCol;
+ pFKey->zTo = z;
+ memcpy(z, pTo->z, pTo->n);
+ z[pTo->n] = 0;
+ z += pTo->n+1;
+ pFKey->pNextTo = 0;
+ pFKey->nCol = nCol;
+ if( pFromCol==0 ){
+ pFKey->aCol[0].iFrom = p->nCol-1;
+ }else{
+ for(i=0; i<nCol; i++){
+ int j;
+ for(j=0; j<p->nCol; j++){
+ if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
+ pFKey->aCol[i].iFrom = j;
+ break;
+ }
+ }
+ if( j>=p->nCol ){
+ sqliteSetString(&pParse->zErrMsg, "unknown column \"",
+ pFromCol->a[i].zName, "\" in foreign key definition", 0);
+ pParse->nErr++;
+ goto fk_end;
+ }
+ }
+ }
+ if( pToCol ){
+ for(i=0; i<nCol; i++){
+ int n = strlen(pToCol->a[i].zName);
+ pFKey->aCol[i].zCol = z;
+ memcpy(z, pToCol->a[i].zName, n);
+ z[n] = 0;
+ z += n+1;
+ }
+ }
+ pFKey->isDeferred = 0;
+ pFKey->deleteConf = flags & 0xff;
+ pFKey->updateConf = (flags >> 8 ) & 0xff;
+ pFKey->insertConf = (flags >> 16 ) & 0xff;
+
+ /* Link the foreign key to the table as the last step.
+ */
+ p->pFKey = pFKey;
+ pFKey = 0;
+
+fk_end:
+ sqliteFree(pFKey);
+ sqliteIdListDelete(pFromCol);
+ sqliteIdListDelete(pToCol);
+}
+
+/*
+** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
+** clause is seen as part of a foreign key definition. The isDeferred
+** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
+** The behavior of the most recently created foreign key is adjusted
+** accordingly.
+*/
+void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
+ Table *pTab;
+ FKey *pFKey;
+ if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
+ pFKey->isDeferred = isDeferred;
+}
+
+/*
+** Create a new index for an SQL table. pIndex is the name of the index
+** and pTable is the name of the table that is to be indexed. Both will
+** be NULL for a primary key or an index that is created to satisfy a
+** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
+** as the table to be indexed. pParse->pNewTable is a table that is
+** currently being constructed by a CREATE TABLE statement.
+**
+** pList is a list of columns to be indexed. pList will be NULL if this
+** is a primary key or unique-constraint on the most recent column added
+** to the table currently under construction.
+*/
+void sqliteCreateIndex(
+ Parse *pParse, /* All information about this parse */
+ Token *pName, /* Name of the index. May be NULL */
+ Token *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */
+ IdList *pList, /* A list of columns to be indexed */
+ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
+ Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
+ Token *pEnd /* The ")" that closes the CREATE INDEX statement */
+){
+ Table *pTab; /* Table to be indexed */
+ Index *pIndex; /* The index to be created */
+ char *zName = 0;
+ int i, j;
+ Token nullId; /* Fake token for an empty ID list */
+ sqlite *db = pParse->db;
+ int hideName = 0; /* Do not put table name in the hash table */
+
+ if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
+
+ /*
+ ** Find the table that is to be indexed. Return early if not found.
+ */
+ if( pTable!=0 ){
+ assert( pName!=0 );
+ pTab = sqliteTableFromToken(pParse, pTable);
+ }else{
+ assert( pName==0 );
+ pTab = pParse->pNewTable;
+ }
+ if( pTab==0 || pParse->nErr ) goto exit_create_index;
+ if( pTab->readOnly ){
+ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName,
+ " may not have new indices added", 0);
+ pParse->nErr++;
+ goto exit_create_index;
+ }
+ if( pTab->pSelect ){
+ sqliteSetString(&pParse->zErrMsg, "views may not be indexed", 0);
+ pParse->nErr++;
+ goto exit_create_index;
+ }
+
+ /* If this index is created while re-reading the schema from sqlite_master
+ ** but the table associated with this index is a temporary table, it can
+ ** only mean that the table that this index is really associated with is
+ ** one whose name is hidden behind a temporary table with the same name.
+ ** Since its table has been suppressed, we need to also suppress the
+ ** index.
+ */
+ if( pParse->initFlag && !pParse->isTemp && pTab->isTemp ){
+ goto exit_create_index;
+ }
+
+ /*
+ ** Find the name of the index. Make sure there is not already another
+ ** index or table with the same name.
+ **
+ ** Exception: If we are reading the names of permanent indices from the
+ ** sqlite_master table (because some other process changed the schema) and
+ ** one of the index names collides with the name of a temporary table or
+ ** index, then we will continue to process this index, but we will not
+ ** store its name in the hash table. Set the hideName flag to accomplish
+ ** this.
+ **
+ ** If pName==0 it means that we are
+ ** dealing with a primary key or UNIQUE constraint. We have to invent our
+ ** own name.
+ */
+ if( pName ){
+ Index *pISameName; /* Another index with the same name */
+ Table *pTSameName; /* A table with same name as the index */
+ zName = sqliteTableNameFromToken(pName);
+ if( zName==0 ) goto exit_create_index;
+ if( (pISameName = sqliteFindIndex(db, zName))!=0 ){
+ if( pISameName->pTable->isTemp && pParse->initFlag ){
+ hideName = 1;
+ }else{
+ sqliteSetString(&pParse->zErrMsg, "index ", zName,
+ " already exists", 0);
+ pParse->nErr++;
+ goto exit_create_index;
+ }
+ }
+ if( (pTSameName = sqliteFindTable(db, zName))!=0 ){
+ if( pTSameName->isTemp && pParse->initFlag ){
+ hideName = 1;
+ }else{
+ sqliteSetString(&pParse->zErrMsg, "there is already a table named ",
+ zName, 0);
+ pParse->nErr++;
+ goto exit_create_index;
+ }
+ }
+ }else{
+ char zBuf[30];
+ int n;
+ Index *pLoop;
+ for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
+ sprintf(zBuf,"%d)",n);
+ zName = 0;
+ sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, 0);
+ if( zName==0 ) goto exit_create_index;
+ hideName = sqliteFindIndex(db, zName)!=0;
+ }
+
+ /* Check for authorization to create an index.
+ */
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(pTab->isTemp), 0) ){
+ goto exit_create_index;
+ }
+ i = SQLITE_CREATE_INDEX;
+ if( pTab->isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
+ if( sqliteAuthCheck(pParse, i, zName, pTab->zName) ){
+ goto exit_create_index;
+ }
+#endif
+
+ /* If pList==0, it means this routine was called to make a primary
+ ** key out of the last column added to the table under construction.
+ ** So create a fake list to simulate this.
+ */
+ if( pList==0 ){
+ nullId.z = pTab->aCol[pTab->nCol-1].zName;
+ nullId.n = strlen(nullId.z);
+ pList = sqliteIdListAppend(0, &nullId);
+ if( pList==0 ) goto exit_create_index;
+ }
+
+ /*
+ ** Allocate the index structure.
+ */
+ pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
+ sizeof(int)*pList->nId );
+ if( pIndex==0 ) goto exit_create_index;
+ pIndex->aiColumn = (int*)&pIndex[1];
+ pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
+ strcpy(pIndex->zName, zName);
+ pIndex->pTable = pTab;
+ pIndex->nColumn = pList->nId;
+ pIndex->onError = pIndex->isUnique = onError;
+ pIndex->autoIndex = pName==0;
+
+ /* Scan the names of the columns of the table to be indexed and
+ ** load the column indices into the Index structure. Report an error
+ ** if any column is not found.
+ */
+ for(i=0; i<pList->nId; i++){
+ for(j=0; j<pTab->nCol; j++){
+ if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
+ }
+ if( j>=pTab->nCol ){
+ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName,
+ " has no column named ", pList->a[i].zName, 0);
+ pParse->nErr++;
+ sqliteFree(pIndex);
+ goto exit_create_index;
+ }
+ pIndex->aiColumn[i] = j;
+ }
+
+ /* Link the new Index structure to its table and to the other
+ ** in-memory database structures.
+ */
+ if( !pParse->explain && !hideName ){
+ Index *p;
+ p = sqliteHashInsert(&db->idxHash, pIndex->zName, strlen(zName)+1, pIndex);
+ if( p ){
+ assert( p==pIndex ); /* Malloc must have failed */
+ sqliteFree(pIndex);
+ goto exit_create_index;
+ }
+ db->flags |= SQLITE_InternChanges;
+ }
+
+ /* When adding an index to the list of indices for a table, make
+ ** sure all indices labeled OE_Replace come after all those labeled
+ ** OE_Ignore. This is necessary for the correct operation of UPDATE
+ ** and INSERT.
+ */
+ if( onError!=OE_Replace || pTab->pIndex==0
+ || pTab->pIndex->onError==OE_Replace){
+ pIndex->pNext = pTab->pIndex;
+ pTab->pIndex = pIndex;
+ }else{
+ Index *pOther = pTab->pIndex;
+ while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
+ pOther = pOther->pNext;
+ }
+ pIndex->pNext = pOther->pNext;
+ pOther->pNext = pIndex;
+ }
+
+ /* If the initFlag is 1 it means we are reading the SQL off the
+ ** "sqlite_master" table on the disk. So do not write to the disk
+ ** again. Extract the table number from the pParse->newTnum field.
+ */
+ if( pParse->initFlag && pTable!=0 ){
+ pIndex->tnum = pParse->newTnum;
+ }
+
+ /* If the initFlag is 0 then create the index on disk. This
+ ** involves writing the index into the master table and filling in the
+ ** index with the current table contents.
+ **
+ ** The initFlag is 0 when the user first enters a CREATE INDEX
+ ** command. The initFlag is 1 when a database is opened and
+ ** CREATE INDEX statements are read out of the master table. In
+ ** the latter case the index already exists on disk, which is why
+ ** we don't want to recreate it.
+ **
+ ** If pTable==0 it means this index is generated as a primary key
+ ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
+ ** has just been created, it contains no data and the index initialization
+ ** step can be skipped.
+ */
+ else if( pParse->initFlag==0 ){
+ int n;
+ Vdbe *v;
+ int lbl1, lbl2;
+ int i;
+ int addr;
+ int isTemp = pTab->isTemp;
+
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) goto exit_create_index;
+ if( pTable!=0 ){
+ sqliteBeginWriteOperation(pParse, 0, isTemp);
+ sqliteOpenMasterTable(v, isTemp);
+ }
+ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, "index", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, pIndex->zName, P3_STATIC);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
+ addr = sqliteVdbeAddOp(v, OP_CreateIndex, 0, isTemp);
+ sqliteVdbeChangeP3(v, addr, (char*)&pIndex->tnum, P3_POINTER);
+ pIndex->tnum = 0;
+ if( pTable ){
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ if( isTemp ){
+ sqliteVdbeAddOp(v, OP_OpenWrAux, 1, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
+ }
+ }
+ addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
+ if( pStart && pEnd ){
+ n = Addr(pEnd->z) - Addr(pStart->z) + 1;
+ sqliteVdbeChangeP3(v, addr, pStart->z, n);
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
+ if( pTable ){
+ sqliteVdbeAddOp(v, isTemp ? OP_OpenAux : OP_Open, 2, pTab->tnum);
+ sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
+ lbl2 = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
+ lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
+ for(i=0; i<pIndex->nColumn; i++){
+ sqliteVdbeAddOp(v, OP_Column, 2, pIndex->aiColumn[i]);
+ }
+ sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
+ if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
+ sqliteVdbeAddOp(v, OP_IdxPut, 1, pIndex->onError!=OE_None);
+ sqliteVdbeChangeP3(v, -1, "indexed columns are not unique", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
+ sqliteVdbeResolveLabel(v, lbl2);
+ sqliteVdbeAddOp(v, OP_Close, 2, 0);
+ sqliteVdbeAddOp(v, OP_Close, 1, 0);
+ }
+ if( pTable!=0 ){
+ if( !isTemp ){
+ sqliteChangeCookie(db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ sqliteEndWriteOperation(pParse);
+ }
+ }
+
+ /* Clean up before exiting */
+exit_create_index:
+ sqliteIdListDelete(pList);
+ sqliteFree(zName);
+ return;
+}
+
+/*
+** This routine will drop an existing named index. This routine
+** implements the DROP INDEX statement.
+*/
+void sqliteDropIndex(Parse *pParse, Token *pName){
+ Index *pIndex;
+ char *zName;
+ Vdbe *v;
+ sqlite *db = pParse->db;
+
+ if( pParse->nErr || sqlite_malloc_failed ) return;
+ zName = sqliteTableNameFromToken(pName);
+ if( zName==0 ) return;
+ pIndex = sqliteFindIndex(db, zName);
+ sqliteFree(zName);
+ if( pIndex==0 ){
+ sqliteSetNString(&pParse->zErrMsg, "no such index: ", 0,
+ pName->z, pName->n, 0);
+ pParse->nErr++;
+ return;
+ }
+ if( pIndex->autoIndex ){
+ sqliteSetString(&pParse->zErrMsg, "index associated with UNIQUE "
+ "or PRIMARY KEY constraint cannot be dropped", 0);
+ pParse->nErr++;
+ return;
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code = SQLITE_DROP_INDEX;
+ Table *pTab = pIndex->pTable;
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, SCHEMA_TABLE(pTab->isTemp), 0) ){
+ return;
+ }
+ if( pTab->isTemp ) code = SQLITE_DROP_TEMP_INDEX;
+ if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName) ){
+ return;
+ }
+ }
+#endif
+
+ /* Generate code to remove the index and from the master table */
+ v = sqliteGetVdbe(pParse);
+ if( v ){
+ static VdbeOp dropIndex[] = {
+ { OP_Rewind, 0, ADDR(9), 0},
+ { OP_String, 0, 0, 0}, /* 1 */
+ { OP_MemStore, 1, 1, 0},
+ { OP_MemLoad, 1, 0, 0}, /* 3 */
+ { OP_Column, 0, 1, 0},
+ { OP_Eq, 0, ADDR(8), 0},
+ { OP_Next, 0, ADDR(3), 0},
+ { OP_Goto, 0, ADDR(9), 0},
+ { OP_Delete, 0, 0, 0}, /* 8 */
+ };
+ int base;
+ Table *pTab = pIndex->pTable;
+
+ sqliteBeginWriteOperation(pParse, 0, pTab->isTemp);
+ sqliteOpenMasterTable(v, pTab->isTemp);
+ base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
+ sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
+ if( !pTab->isTemp ){
+ sqliteChangeCookie(db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pTab->isTemp);
+ sqliteEndWriteOperation(pParse);
+ }
+
+ /* Delete the in-memory description of this index.
+ */
+ if( !pParse->explain ){
+ sqliteUnlinkAndDeleteIndex(db, pIndex);
+ db->flags |= SQLITE_InternChanges;
+ }
+}
+
+/*
+** Append a new element to the given IdList. Create a new IdList if
+** need be.
+**
+** A new IdList is returned, or NULL if malloc() fails.
+*/
+IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
+ if( pList==0 ){
+ pList = sqliteMalloc( sizeof(IdList) );
+ if( pList==0 ) return 0;
+ }
+ if( (pList->nId & 7)==0 ){
+ struct IdList_item *a;
+ a = sqliteRealloc(pList->a, (pList->nId+8)*sizeof(pList->a[0]) );
+ if( a==0 ){
+ sqliteIdListDelete(pList);
+ return 0;
+ }
+ pList->a = a;
+ }
+ memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
+ if( pToken ){
+ char **pz = &pList->a[pList->nId].zName;
+ sqliteSetNString(pz, pToken->z, pToken->n, 0);
+ if( *pz==0 ){
+ sqliteIdListDelete(pList);
+ return 0;
+ }else{
+ sqliteDequote(*pz);
+ }
+ }
+ pList->nId++;
+ return pList;
+}
+
+/*
+** Append a new table name to the given SrcList. Create a new SrcList if
+** need be. A new entry is created in the SrcList even if pToken is NULL.
+**
+** A new SrcList is returned, or NULL if malloc() fails.
+*/
+SrcList *sqliteSrcListAppend(SrcList *pList, Token *pToken){
+ if( pList==0 ){
+ pList = sqliteMalloc( sizeof(IdList) );
+ if( pList==0 ) return 0;
+ }
+ if( (pList->nSrc & 7)==0 ){
+ struct SrcList_item *a;
+ a = sqliteRealloc(pList->a, (pList->nSrc+8)*sizeof(pList->a[0]) );
+ if( a==0 ){
+ sqliteSrcListDelete(pList);
+ return 0;
+ }
+ pList->a = a;
+ }
+ memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
+ if( pToken ){
+ char **pz = &pList->a[pList->nSrc].zName;
+ sqliteSetNString(pz, pToken->z, pToken->n, 0);
+ if( *pz==0 ){
+ sqliteSrcListDelete(pList);
+ return 0;
+ }else{
+ sqliteDequote(*pz);
+ }
+ }
+ pList->nSrc++;
+ return pList;
+}
+
+/*
+** Add an alias to the last identifier on the given identifier list.
+*/
+void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
+ if( pList && pList->nSrc>0 ){
+ int i = pList->nSrc - 1;
+ sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
+ sqliteDequote(pList->a[i].zAlias);
+ }
+}
+
+/*
+** Delete an IdList.
+*/
+void sqliteIdListDelete(IdList *pList){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nId; i++){
+ sqliteFree(pList->a[i].zName);
+ }
+ sqliteFree(pList->a);
+ sqliteFree(pList);
+}
+
+/*
+** Return the index in pList of the identifier named zId. Return -1
+** if not found.
+*/
+int sqliteIdListIndex(IdList *pList, const char *zName){
+ int i;
+ if( pList==0 ) return -1;
+ for(i=0; i<pList->nId; i++){
+ if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Delete an entire SrcList including all its substructure.
+*/
+void sqliteSrcListDelete(SrcList *pList){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nSrc; i++){
+ sqliteFree(pList->a[i].zName);
+ sqliteFree(pList->a[i].zAlias);
+ if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
+ sqliteDeleteTable(0, pList->a[i].pTab);
+ }
+ sqliteSelectDelete(pList->a[i].pSelect);
+ sqliteExprDelete(pList->a[i].pOn);
+ sqliteIdListDelete(pList->a[i].pUsing);
+ }
+ sqliteFree(pList->a);
+ sqliteFree(pList);
+}
+
+/*
+** The COPY command is for compatibility with PostgreSQL and specificially
+** for the ability to read the output of pg_dump. The format is as
+** follows:
+**
+** COPY table FROM file [USING DELIMITERS string]
+**
+** "table" is an existing table name. We will read lines of code from
+** file to fill this table with data. File might be "stdin". The optional
+** delimiter string identifies the field separators. The default is a tab.
+*/
+void sqliteCopy(
+ Parse *pParse, /* The parser context */
+ Token *pTableName, /* The name of the table into which we will insert */
+ Token *pFilename, /* The file from which to obtain information */
+ Token *pDelimiter, /* Use this as the field delimiter */
+ int onError /* What to do if a constraint fails */
+){
+ Table *pTab;
+ char *zTab;
+ int i;
+ Vdbe *v;
+ int addr, end;
+ Index *pIdx;
+ char *zFile = 0;
+ sqlite *db = pParse->db;
+
+
+ zTab = sqliteTableNameFromToken(pTableName);
+ if( sqlite_malloc_failed || zTab==0 ) goto copy_cleanup;
+ pTab = sqliteTableNameToTable(pParse, zTab);
+ sqliteFree(zTab);
+ if( pTab==0 ) goto copy_cleanup;
+ zFile = sqliteStrNDup(pFilename->z, pFilename->n);
+ sqliteDequote(zFile);
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, zFile)
+ || sqliteAuthCheck(pParse, SQLITE_COPY, pTab->zName, zFile) ){
+ goto copy_cleanup;
+ }
+ v = sqliteGetVdbe(pParse);
+ if( v ){
+ int openOp;
+ sqliteBeginWriteOperation(pParse, 1, pTab->isTemp);
+ addr = sqliteVdbeAddOp(v, OP_FileOpen, 0, 0);
+ sqliteVdbeChangeP3(v, addr, pFilename->z, pFilename->n);
+ sqliteVdbeDequoteP3(v, addr);
+ openOp = pTab->isTemp ? OP_OpenWrAux : OP_OpenWrite;
+ sqliteVdbeAddOp(v, openOp, 0, pTab->tnum);
+ sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
+ for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ sqliteVdbeAddOp(v, openOp, i, pIdx->tnum);
+ sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC);
+ }
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0); /* Initialize the row count */
+ }
+ end = sqliteVdbeMakeLabel(v);
+ addr = sqliteVdbeAddOp(v, OP_FileRead, pTab->nCol, end);
+ if( pDelimiter ){
+ sqliteVdbeChangeP3(v, addr, pDelimiter->z, pDelimiter->n);
+ sqliteVdbeDequoteP3(v, addr);
+ }else{
+ sqliteVdbeChangeP3(v, addr, "\t", 1);
+ }
+ if( pTab->iPKey>=0 ){
+ sqliteVdbeAddOp(v, OP_FileColumn, pTab->iPKey, 0);
+ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
+ }
+ for(i=0; i<pTab->nCol; i++){
+ if( i==pTab->iPKey ){
+ /* The integer primary key column is filled with NULL since its
+ ** value is always pulled from the record number */
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_FileColumn, i, 0);
+ }
+ }
+ sqliteGenerateConstraintChecks(pParse, pTab, 0, 0, 0, 0, onError, addr);
+ sqliteCompleteInsertion(pParse, pTab, 0, 0, 0, 0);
+ if( (db->flags & SQLITE_CountRows)!=0 ){
+ sqliteVdbeAddOp(v, OP_AddImm, 1, 0); /* Increment row count */
+ }
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
+ sqliteVdbeResolveLabel(v, end);
+ sqliteVdbeAddOp(v, OP_Noop, 0, 0);
+ sqliteEndWriteOperation(pParse);
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeAddOp(v, OP_ColumnName, 0, 0);
+ sqliteVdbeChangeP3(v, -1, "rows inserted", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
+ }
+ }
+
+copy_cleanup:
+ sqliteFree(zFile);
+ return;
+}
+
+/*
+** The non-standard VACUUM command is used to clean up the database,
+** collapse free space, etc. It is modelled after the VACUUM command
+** in PostgreSQL.
+**
+** In version 1.0.x of SQLite, the VACUUM command would call
+** gdbm_reorganize() on all the database tables. But beginning
+** with 2.0.0, SQLite no longer uses GDBM so this command has
+** become a no-op.
+*/
+void sqliteVacuum(Parse *pParse, Token *pTableName){
+ /* Do nothing */
+}
+
+/*
+** Begin a transaction
+*/
+void sqliteBeginTransaction(Parse *pParse, int onError){
+ sqlite *db;
+
+ if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return;
+ if( pParse->nErr || sqlite_malloc_failed ) return;
+ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0) ) return;
+ if( db->flags & SQLITE_InTrans ){
+ pParse->nErr++;
+ sqliteSetString(&pParse->zErrMsg, "cannot start a transaction "
+ "within a transaction", 0);
+ return;
+ }
+ sqliteBeginWriteOperation(pParse, 0, 0);
+ db->flags |= SQLITE_InTrans;
+ db->onError = onError;
+}
+
+/*
+** Commit a transaction
+*/
+void sqliteCommitTransaction(Parse *pParse){
+ sqlite *db;
+
+ if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return;
+ if( pParse->nErr || sqlite_malloc_failed ) return;
+ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0) ) return;
+ if( (db->flags & SQLITE_InTrans)==0 ){
+ pParse->nErr++;
+ sqliteSetString(&pParse->zErrMsg,
+ "cannot commit - no transaction is active", 0);
+ return;
+ }
+ db->flags &= ~SQLITE_InTrans;
+ sqliteEndWriteOperation(pParse);
+ db->onError = OE_Default;
+}
+
+/*
+** Rollback a transaction
+*/
+void sqliteRollbackTransaction(Parse *pParse){
+ sqlite *db;
+ Vdbe *v;
+
+ if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return;
+ if( pParse->nErr || sqlite_malloc_failed ) return;
+ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0) ) return;
+ if( (db->flags & SQLITE_InTrans)==0 ){
+ pParse->nErr++;
+ sqliteSetString(&pParse->zErrMsg,
+ "cannot rollback - no transaction is active", 0);
+ return;
+ }
+ v = sqliteGetVdbe(pParse);
+ if( v ){
+ sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
+ }
+ db->flags &= ~SQLITE_InTrans;
+ db->onError = OE_Default;
+}
+
+/*
+** Generate VDBE code that prepares for doing an operation that
+** might change the database.
+**
+** This routine starts a new transaction if we are not already within
+** a transaction. If we are already within a transaction, then a checkpoint
+** is set if the setCheckpoint parameter is true. A checkpoint should
+** be set for operations that might fail (due to a constraint) part of
+** the way through and which will need to undo some writes without having to
+** rollback the whole transaction. For operations where all constraints
+** can be checked before any changes are made to the database, it is never
+** necessary to undo a write and the checkpoint should not be set.
+**
+** The tempOnly flag indicates that only temporary tables will be changed
+** during this write operation. The primary database table is not
+** write-locked. Only the temporary database file gets a write lock.
+** Other processes can continue to read or write the primary database file.
+*/
+void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int tempOnly){
+ Vdbe *v;
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ if( pParse->trigStack ) return; /* if this is in a trigger */
+ if( (pParse->db->flags & SQLITE_InTrans)==0 ){
+ sqliteVdbeAddOp(v, OP_Transaction, tempOnly, 0);
+ if( !tempOnly ){
+ sqliteVdbeAddOp(v, OP_VerifyCookie, pParse->db->schema_cookie, 0);
+ pParse->schemaVerified = 1;
+ }
+ }else if( setCheckpoint ){
+ sqliteVdbeAddOp(v, OP_Checkpoint, 0, 0);
+ }
+}
+
+/*
+** Generate code that concludes an operation that may have changed
+** the database. This is a companion function to BeginWriteOperation().
+** If a transaction was started, then commit it. If a checkpoint was
+** started then commit that.
+*/
+void sqliteEndWriteOperation(Parse *pParse){
+ Vdbe *v;
+ if( pParse->trigStack ) return; /* if this is in a trigger */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ if( pParse->db->flags & SQLITE_InTrans ){
+ /* Do Nothing */
+ }else{
+ sqliteVdbeAddOp(v, OP_Commit, 0, 0);
+ }
+}
+
+
+/*
+** Interpret the given string as a boolean value.
+*/
+static int getBoolean(char *z){
+ static char *azTrue[] = { "yes", "on", "true" };
+ int i;
+ if( z[0]==0 ) return 0;
+ if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){
+ return atoi(z);
+ }
+ for(i=0; i<sizeof(azTrue)/sizeof(azTrue[0]); i++){
+ if( sqliteStrICmp(z,azTrue[i])==0 ) return 1;
+ }
+ return 0;
+}
+
+/*
+** Interpret the given string as a safety level. Return 0 for OFF,
+** 1 for ON or NORMAL and 2 for FULL.
+**
+** Note that the values returned are one less that the values that
+** should be passed into sqliteBtreeSetSafetyLevel(). The is done
+** to support legacy SQL code. The safety level used to be boolean
+** and older scripts may have used numbers 0 for OFF and 1 for ON.
+*/
+static int getSafetyLevel(char *z){
+ static const struct {
+ const char *zWord;
+ int val;
+ } aKey[] = {
+ { "no", 0 },
+ { "off", 0 },
+ { "false", 0 },
+ { "yes", 1 },
+ { "on", 1 },
+ { "true", 1 },
+ { "full", 2 },
+ };
+ int i;
+ if( z[0]==0 ) return 1;
+ if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){
+ return atoi(z);
+ }
+ for(i=0; i<sizeof(aKey)/sizeof(aKey[0]); i++){
+ if( sqliteStrICmp(z,aKey[i].zWord)==0 ) return aKey[i].val;
+ }
+ return 1;
+}
+
+/*
+** Process a pragma statement.
+**
+** Pragmas are of this form:
+**
+** PRAGMA id = value
+**
+** The identifier might also be a string. The value is a string, and
+** identifier, or a number. If minusFlag is true, then the value is
+** a number that was preceded by a minus sign.
+*/
+void sqlitePragma(Parse *pParse, Token *pLeft, Token *pRight, int minusFlag){
+ char *zLeft = 0;
+ char *zRight = 0;
+ sqlite *db = pParse->db;
+
+ zLeft = sqliteStrNDup(pLeft->z, pLeft->n);
+ sqliteDequote(zLeft);
+ if( minusFlag ){
+ zRight = 0;
+ sqliteSetNString(&zRight, "-", 1, pRight->z, pRight->n, 0);
+ }else{
+ zRight = sqliteStrNDup(pRight->z, pRight->n);
+ sqliteDequote(zRight);
+ }
+ if( sqliteAuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight) ){
+ sqliteFree(zLeft);
+ sqliteFree(zRight);
+ return;
+ }
+
+ /*
+ ** PRAGMA default_cache_size
+ ** PRAGMA default_cache_size=N
+ **
+ ** The first form reports the current persistent setting for the
+ ** page cache size. The value returned is the maximum number of
+ ** pages in the page cache. The second form sets both the current
+ ** page cache size value and the persistent page cache size value
+ ** stored in the database file.
+ **
+ ** The default cache size is stored in meta-value 2 of page 1 of the
+ ** database file. The cache size is actually the absolute value of
+ ** this memory location. The sign of meta-value 2 determines the
+ ** synchronous setting. A negative value means synchronous is off
+ ** and a positive value means synchronous is on.
+ */
+ if( sqliteStrICmp(zLeft,"default_cache_size")==0 ){
+ static VdbeOp getCacheSize[] = {
+ { OP_ReadCookie, 0, 2, 0},
+ { OP_AbsValue, 0, 0, 0},
+ { OP_Dup, 0, 0, 0},
+ { OP_Integer, 0, 0, 0},
+ { OP_Ne, 0, 6, 0},
+ { OP_Integer, MAX_PAGES,0, 0},
+ { OP_ColumnName, 0, 0, "cache_size"},
+ { OP_Callback, 1, 0, 0},
+ };
+ Vdbe *v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ if( pRight->z==pLeft->z ){
+ sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
+ }else{
+ int addr;
+ int size = atoi(zRight);
+ if( size<0 ) size = -size;
+ sqliteBeginWriteOperation(pParse, 0, 0);
+ sqliteVdbeAddOp(v, OP_Integer, size, 0);
+ sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
+ addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ sqliteVdbeAddOp(v, OP_Ge, 0, addr+3);
+ sqliteVdbeAddOp(v, OP_Negative, 0, 0);
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
+ sqliteEndWriteOperation(pParse);
+ db->cache_size = db->cache_size<0 ? -size : size;
+ sqliteBtreeSetCacheSize(db->pBe, db->cache_size);
+ }
+ }else
+
+ /*
+ ** PRAGMA cache_size
+ ** PRAGMA cache_size=N
+ **
+ ** The first form reports the current local setting for the
+ ** page cache size. The local setting can be different from
+ ** the persistent cache size value that is stored in the database
+ ** file itself. The value returned is the maximum number of
+ ** pages in the page cache. The second form sets the local
+ ** page cache size value. It does not change the persistent
+ ** cache size stored on the disk so the cache size will revert
+ ** to its default value when the database is closed and reopened.
+ ** N should be a positive integer.
+ */
+ if( sqliteStrICmp(zLeft,"cache_size")==0 ){
+ static VdbeOp getCacheSize[] = {
+ { OP_ColumnName, 0, 0, "cache_size"},
+ { OP_Callback, 1, 0, 0},
+ };
+ Vdbe *v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ if( pRight->z==pLeft->z ){
+ int size = db->cache_size;;
+ if( size<0 ) size = -size;
+ sqliteVdbeAddOp(v, OP_Integer, size, 0);
+ sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
+ }else{
+ int size = atoi(zRight);
+ if( size<0 ) size = -size;
+ if( db->cache_size<0 ) size = -size;
+ db->cache_size = size;
+ sqliteBtreeSetCacheSize(db->pBe, db->cache_size);
+ }
+ }else
+
+ /*
+ ** PRAGMA default_synchronous
+ ** PRAGMA default_synchronous=ON|OFF|NORMAL|FULL
+ **
+ ** The first form returns the persistent value of the "synchronous" setting
+ ** that is stored in the database. This is the synchronous setting that
+ ** is used whenever the database is opened unless overridden by a separate
+ ** "synchronous" pragma. The second form changes the persistent and the
+ ** local synchronous setting to the value given.
+ **
+ ** If synchronous is OFF, SQLite does not attempt any fsync() systems calls
+ ** to make sure data is committed to disk. Write operations are very fast,
+ ** but a power failure can leave the database in an inconsistent state.
+ ** If synchronous is ON or NORMAL, SQLite will do an fsync() system call to
+ ** make sure data is being written to disk. The risk of corruption due to
+ ** a power loss in this mode is negligible but non-zero. If synchronous
+ ** is FULL, extra fsync()s occur to reduce the risk of corruption to near
+ ** zero, but with a write performance penalty. The default mode is NORMAL.
+ */
+ if( sqliteStrICmp(zLeft,"default_synchronous")==0 ){
+ static VdbeOp getSync[] = {
+ { OP_ColumnName, 0, 0, "synchronous"},
+ { OP_ReadCookie, 0, 3, 0},
+ { OP_Dup, 0, 0, 0},
+ { OP_If, 0, 0, 0}, /* 3 */
+ { OP_ReadCookie, 0, 2, 0},
+ { OP_Integer, 0, 0, 0},
+ { OP_Lt, 0, 5, 0},
+ { OP_AddImm, 1, 0, 0},
+ { OP_Callback, 1, 0, 0},
+ { OP_Halt, 0, 0, 0},
+ { OP_AddImm, -1, 0, 0}, /* 10 */
+ { OP_Callback, 1, 0, 0}
+ };
+ Vdbe *v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ if( pRight->z==pLeft->z ){
+ int addr = sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
+ sqliteVdbeChangeP2(v, addr+3, addr+10);
+ }else{
+ int addr;
+ int size = db->cache_size;
+ if( size<0 ) size = -size;
+ sqliteBeginWriteOperation(pParse, 0, 0);
+ sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ sqliteVdbeAddOp(v, OP_Ne, 0, addr+3);
+ sqliteVdbeAddOp(v, OP_AddImm, MAX_PAGES, 0);
+ sqliteVdbeAddOp(v, OP_AbsValue, 0, 0);
+ db->safety_level = getSafetyLevel(zRight)+1;
+ if( db->safety_level==1 ){
+ sqliteVdbeAddOp(v, OP_Negative, 0, 0);
+ size = -size;
+ }
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
+ sqliteVdbeAddOp(v, OP_Integer, db->safety_level, 0);
+ sqliteVdbeAddOp(v, OP_SetCookie, 0, 3);
+ sqliteEndWriteOperation(pParse);
+ db->cache_size = size;
+ sqliteBtreeSetCacheSize(db->pBe, db->cache_size);
+ sqliteBtreeSetSafetyLevel(db->pBe, db->safety_level);
+ }
+ }else
+
+ /*
+ ** PRAGMA synchronous
+ ** PRAGMA synchronous=OFF|ON|NORMAL|FULL
+ **
+ ** Return or set the local value of the synchronous flag. Changing
+ ** the local value does not make changes to the disk file and the
+ ** default value will be restored the next time the database is
+ ** opened.
+ */
+ if( sqliteStrICmp(zLeft,"synchronous")==0 ){
+ static VdbeOp getSync[] = {
+ { OP_ColumnName, 0, 0, "synchronous"},
+ { OP_Callback, 1, 0, 0},
+ };
+ Vdbe *v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ if( pRight->z==pLeft->z ){
+ sqliteVdbeAddOp(v, OP_Integer, db->safety_level-1, 0);
+ sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
+ }else{
+ int size = db->cache_size;
+ if( size<0 ) size = -size;
+ db->safety_level = getSafetyLevel(zRight)+1;
+ if( db->safety_level==1 ) size = -size;
+ db->cache_size = size;
+ sqliteBtreeSetCacheSize(db->pBe, db->cache_size);
+ sqliteBtreeSetSafetyLevel(db->pBe, db->safety_level);
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "trigger_overhead_test")==0 ){
+ if( getBoolean(zRight) ){
+ always_code_trigger_setup = 1;
+ }else{
+ always_code_trigger_setup = 0;
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "vdbe_trace")==0 ){
+ if( getBoolean(zRight) ){
+ db->flags |= SQLITE_VdbeTrace;
+ }else{
+ db->flags &= ~SQLITE_VdbeTrace;
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "full_column_names")==0 ){
+ if( getBoolean(zRight) ){
+ db->flags |= SQLITE_FullColNames;
+ }else{
+ db->flags &= ~SQLITE_FullColNames;
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "show_datatypes")==0 ){
+ if( getBoolean(zRight) ){
+ db->flags |= SQLITE_ReportTypes;
+ }else{
+ db->flags &= ~SQLITE_ReportTypes;
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "result_set_details")==0 ){
+ if( getBoolean(zRight) ){
+ db->flags |= SQLITE_ResultDetails;
+ }else{
+ db->flags &= ~SQLITE_ResultDetails;
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "count_changes")==0 ){
+ if( getBoolean(zRight) ){
+ db->flags |= SQLITE_CountRows;
+ }else{
+ db->flags &= ~SQLITE_CountRows;
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "empty_result_callbacks")==0 ){
+ if( getBoolean(zRight) ){
+ db->flags |= SQLITE_NullCallback;
+ }else{
+ db->flags &= ~SQLITE_NullCallback;
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "table_info")==0 ){
+ Table *pTab;
+ Vdbe *v;
+ pTab = sqliteFindTable(db, zRight);
+ if( pTab ) v = sqliteGetVdbe(pParse);
+ if( pTab && v ){
+ static VdbeOp tableInfoPreface[] = {
+ { OP_ColumnName, 0, 0, "cid"},
+ { OP_ColumnName, 1, 0, "name"},
+ { OP_ColumnName, 2, 0, "type"},
+ { OP_ColumnName, 3, 0, "notnull"},
+ { OP_ColumnName, 4, 0, "dflt_value"},
+ };
+ int i;
+ sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
+ sqliteViewGetColumnNames(pParse, pTab);
+ for(i=0; i<pTab->nCol; i++){
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zName, P3_STATIC);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1,
+ pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Callback, 5, 0);
+ }
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "index_info")==0 ){
+ Index *pIdx;
+ Table *pTab;
+ Vdbe *v;
+ pIdx = sqliteFindIndex(db, zRight);
+ if( pIdx ) v = sqliteGetVdbe(pParse);
+ if( pIdx && v ){
+ static VdbeOp tableInfoPreface[] = {
+ { OP_ColumnName, 0, 0, "seqno"},
+ { OP_ColumnName, 1, 0, "cid"},
+ { OP_ColumnName, 2, 0, "name"},
+ };
+ int i;
+ pTab = pIdx->pTable;
+ sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
+ for(i=0; i<pIdx->nColumn; i++){
+ int cnum = pIdx->aiColumn[i];
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
+ sqliteVdbeAddOp(v, OP_Integer, cnum, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ assert( pTab->nCol>cnum );
+ sqliteVdbeChangeP3(v, -1, pTab->aCol[cnum].zName, P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Callback, 3, 0);
+ }
+ }
+ }else
+
+ if( sqliteStrICmp(zLeft, "index_list")==0 ){
+ Index *pIdx;
+ Table *pTab;
+ Vdbe *v;
+ pTab = sqliteFindTable(db, zRight);
+ if( pTab ){
+ v = sqliteGetVdbe(pParse);
+ pIdx = pTab->pIndex;
+ }
+ if( pTab && pIdx && v ){
+ int i = 0;
+ static VdbeOp indexListPreface[] = {
+ { OP_ColumnName, 0, 0, "seq"},
+ { OP_ColumnName, 1, 0, "name"},
+ { OP_ColumnName, 2, 0, "unique"},
+ };
+
+ sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
+ while(pIdx){
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
+ sqliteVdbeAddOp(v, OP_Callback, 3, 0);
+ ++i;
+ pIdx = pIdx->pNext;
+ }
+ }
+ }else
+
+#ifndef NDEBUG
+ if( sqliteStrICmp(zLeft, "parser_trace")==0 ){
+ extern void sqliteParserTrace(FILE*, char *);
+ if( getBoolean(zRight) ){
+ sqliteParserTrace(stdout, "parser: ");
+ }else{
+ sqliteParserTrace(0, 0);
+ }
+ }else
+#endif
+
+ if( sqliteStrICmp(zLeft, "integrity_check")==0 ){
+ static VdbeOp checkDb[] = {
+ { OP_SetInsert, 0, 0, "2"},
+ { OP_Open, 0, 2, 0},
+ { OP_Rewind, 0, 6, 0},
+ { OP_Column, 0, 3, 0}, /* 3 */
+ { OP_SetInsert, 0, 0, 0},
+ { OP_Next, 0, 3, 0},
+ { OP_IntegrityCk, 0, 0, 0}, /* 6 */
+ { OP_ColumnName, 0, 0, "integrity_check"},
+ { OP_Callback, 1, 0, 0},
+ { OP_SetInsert, 1, 0, "2"},
+ { OP_OpenAux, 1, 2, 0},
+ { OP_Rewind, 1, 15, 0},
+ { OP_Column, 1, 3, 0}, /* 12 */
+ { OP_SetInsert, 1, 0, 0},
+ { OP_Next, 1, 12, 0},
+ { OP_IntegrityCk, 1, 1, 0}, /* 15 */
+ { OP_Callback, 1, 0, 0},
+ };
+ Vdbe *v = sqliteGetVdbe(pParse);
+ if( v==0 ) return;
+ sqliteVdbeAddOpList(v, ArraySize(checkDb), checkDb);
+ }else
+
+ {}
+ sqliteFree(zLeft);
+ sqliteFree(zRight);
+}
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle DELETE FROM statements.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+
+
+/*
+** Given a table name, find the corresponding table and make sure the
+** table is writeable. Generate an error and return NULL if not. If
+** everything checks out, return a pointer to the Table structure.
+*/
+Table *sqliteTableNameToTable(Parse *pParse, const char *zTab){
+ Table *pTab;
+ pTab = sqliteFindTable(pParse->db, zTab);
+ if( pTab==0 ){
+ sqliteSetString(&pParse->zErrMsg, "no such table: ", zTab, 0);
+ pParse->nErr++;
+ return 0;
+ }
+ if( pTab->readOnly || pTab->pSelect ){
+ sqliteSetString(&pParse->zErrMsg,
+ pTab->pSelect ? "view " : "table ",
+ zTab,
+ " may not be modified", 0);
+ pParse->nErr++;
+ return 0;
+ }
+ return pTab;
+}
+
+/*
+** Given a table name, check to make sure the table exists, is writable
+** and is not a view. If everything is OK, construct an SrcList holding
+** the table and return a pointer to the SrcList. The calling function
+** is responsible for freeing the SrcList when it has finished with it.
+** If there is an error, leave a message on pParse->zErrMsg and return
+** NULL.
+*/
+SrcList *sqliteTableTokenToSrcList(Parse *pParse, Token *pTableName){
+ Table *pTab;
+ SrcList *pTabList;
+
+ pTabList = sqliteSrcListAppend(0, pTableName);
+ if( pTabList==0 ) return 0;
+ assert( pTabList->nSrc==1 );
+ pTab = sqliteTableNameToTable(pParse, pTabList->a[0].zName);
+ if( pTab==0 ){
+ sqliteSrcListDelete(pTabList);
+ return 0;
+ }
+ pTabList->a[0].pTab = pTab;
+ return pTabList;
+}
+
+/*
+** Process a DELETE FROM statement.
+*/
+void sqliteDeleteFrom(
+ Parse *pParse, /* The parser context */
+ Token *pTableName, /* The table from which we should delete things */
+ Expr *pWhere /* The WHERE clause. May be null */
+){
+ Vdbe *v; /* The virtual database engine */
+ Table *pTab; /* The table from which records will be deleted */
+ char *zTab; /* Name of the table from which we are deleting */
+ SrcList *pTabList; /* A fake FROM clause holding just pTab */
+ int end, addr; /* A couple addresses of generated code */
+ int i; /* Loop counter */
+ WhereInfo *pWInfo; /* Information about the WHERE clause */
+ Index *pIdx; /* For looping over indices of the table */
+ int base; /* Index of the first available table cursor */
+ sqlite *db; /* Main database structure */
+ int openOp; /* Opcode used to open a cursor to the table */
+
+ int row_triggers_exist = 0;
+ int oldIdx = -1;
+
+ if( pParse->nErr || sqlite_malloc_failed ){
+ pTabList = 0;
+ goto delete_from_cleanup;
+ }
+ db = pParse->db;
+
+ /* Check for the special case of a VIEW with one or more ON DELETE triggers
+ ** defined
+ */
+ zTab = sqliteTableNameFromToken(pTableName);
+ if( zTab != 0 ){
+ pTab = sqliteFindTable(pParse->db, zTab);
+ if( pTab ){
+ row_triggers_exist =
+ sqliteTriggersExist(pParse, pTab->pTrigger,
+ TK_DELETE, TK_BEFORE, TK_ROW, 0) ||
+ sqliteTriggersExist(pParse, pTab->pTrigger,
+ TK_DELETE, TK_AFTER, TK_ROW, 0);
+ }
+ sqliteFree(zTab);
+ if( row_triggers_exist && pTab->pSelect ){
+ /* Just fire VIEW triggers */
+ sqliteViewTriggers(pParse, pTab, pWhere, OE_Replace, 0);
+ return;
+ }
+ }
+
+ /* Locate the table which we want to delete. This table has to be
+ ** put in an SrcList structure because some of the subroutines we
+ ** will be calling are designed to work with multiple tables and expect
+ ** an SrcList* parameter instead of just a Table* parameter.
+ */
+ pTabList = sqliteTableTokenToSrcList(pParse, pTableName);
+ if( pTabList==0 ) goto delete_from_cleanup;
+ assert( pTabList->nSrc==1 );
+ pTab = pTabList->a[0].pTab;
+ assert( pTab->pSelect==0 ); /* This table is not a view */
+ if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0) ){
+ goto delete_from_cleanup;
+ }
+
+ /* Allocate a cursor used to store the old.* data for a trigger.
+ */
+ if( row_triggers_exist ){
+ oldIdx = pParse->nTab++;
+ }
+
+ /* Resolve the column names in all the expressions.
+ */
+ base = pParse->nTab++;
+ if( pWhere ){
+ if( sqliteExprResolveIds(pParse, base, pTabList, 0, pWhere) ){
+ goto delete_from_cleanup;
+ }
+ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
+ goto delete_from_cleanup;
+ }
+ }
+
+ /* Begin generating code.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ){
+ goto delete_from_cleanup;
+ }
+ sqliteBeginWriteOperation(pParse, row_triggers_exist,
+ !row_triggers_exist && pTab->isTemp);
+
+ /* Initialize the counter of the number of rows deleted, if
+ ** we are counting rows.
+ */
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ }
+
+ /* Special case: A DELETE without a WHERE clause deletes everything.
+ ** It is easier just to erase the whole table. Note, however, that
+ ** this means that the row change count will be incorrect.
+ */
+ if( pWhere==0 && !row_triggers_exist ){
+ if( db->flags & SQLITE_CountRows ){
+ /* If counting rows deleted, just count the total number of
+ ** entries in the table. */
+ int endOfLoop = sqliteVdbeMakeLabel(v);
+ int addr;
+ openOp = pTab->isTemp ? OP_OpenAux : OP_Open;
+ sqliteVdbeAddOp(v, openOp, base, pTab->tnum);
+ sqliteVdbeAddOp(v, OP_Rewind, base, sqliteVdbeCurrentAddr(v)+2);
+ addr = sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
+ sqliteVdbeAddOp(v, OP_Next, base, addr);
+ sqliteVdbeResolveLabel(v, endOfLoop);
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ }
+ sqliteVdbeAddOp(v, OP_Clear, pTab->tnum, pTab->isTemp);
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ sqliteVdbeAddOp(v, OP_Clear, pIdx->tnum, pTab->isTemp);
+ }
+ }
+
+ /* The usual case: There is a WHERE clause so we have to scan through
+ ** the table an pick which records to delete.
+ */
+ else{
+ /* Begin the database scan
+ */
+ pWInfo = sqliteWhereBegin(pParse, base, pTabList, pWhere, 1, 0);
+ if( pWInfo==0 ) goto delete_from_cleanup;
+
+ /* Remember the key of every item to be deleted.
+ */
+ sqliteVdbeAddOp(v, OP_ListWrite, 0, 0);
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
+ }
+
+ /* End the database scan loop.
+ */
+ sqliteWhereEnd(pWInfo);
+
+ /* Delete every item whose key was written to the list during the
+ ** database scan. We have to delete items after the scan is complete
+ ** because deleting an item can change the scan order.
+ */
+ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
+ end = sqliteVdbeMakeLabel(v);
+
+ /* This is the beginning of the delete loop when there are
+ ** row triggers.
+ */
+ if( row_triggers_exist ){
+ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+
+ openOp = pTab->isTemp ? OP_OpenAux : OP_Open;
+ sqliteVdbeAddOp(v, openOp, base, pTab->tnum);
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
+ sqliteVdbeAddOp(v, OP_OpenTemp, oldIdx, 0);
+
+ sqliteVdbeAddOp(v, OP_Integer, 13, 0);
+ for(i = 0; i<pTab->nCol; i++){
+ if( i==pTab->iPKey ){
+ sqliteVdbeAddOp(v, OP_Recno, base, 0);
+ } else {
+ sqliteVdbeAddOp(v, OP_Column, base, i);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, oldIdx, 0);
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ sqliteVdbeAddOp(v, OP_Rewind, oldIdx, 0);
+
+ sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_BEFORE, pTab, -1,
+ oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
+ addr);
+ }
+
+ /* Open cursors for the table we are deleting from and all its
+ ** indices. If there are row triggers, this happens inside the
+ ** OP_ListRead loop because the cursor have to all be closed
+ ** before the trigger fires. If there are no row triggers, the
+ ** cursors are opened only once on the outside the loop.
+ */
+ pParse->nTab = base + 1;
+ openOp = pTab->isTemp ? OP_OpenWrAux : OP_OpenWrite;
+ sqliteVdbeAddOp(v, openOp, base, pTab->tnum);
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
+ sqliteVdbeAddOp(v, openOp, pParse->nTab++, pIdx->tnum);
+ }
+
+ /* This is the beginning of the delete loop when there are no
+ ** row triggers */
+ if( !row_triggers_exist ){
+ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end);
+ }
+
+ /* Delete the row */
+ sqliteGenerateRowDelete(db, v, pTab, base, pParse->trigStack==0);
+
+ /* If there are row triggers, close all cursors then invoke
+ ** the AFTER triggers
+ */
+ if( row_triggers_exist ){
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
+ sqliteVdbeAddOp(v, OP_Close, base + i, pIdx->tnum);
+ }
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_AFTER, pTab, -1,
+ oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
+ addr);
+ }
+
+ /* End of the delete loop */
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
+ sqliteVdbeResolveLabel(v, end);
+ sqliteVdbeAddOp(v, OP_ListReset, 0, 0);
+
+ /* Close the cursors after the loop if there are no row triggers */
+ if( !row_triggers_exist ){
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
+ sqliteVdbeAddOp(v, OP_Close, base + i, pIdx->tnum);
+ }
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ pParse->nTab = base;
+ }
+ }
+ sqliteEndWriteOperation(pParse);
+
+ /*
+ ** Return the number of rows that were deleted.
+ */
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeAddOp(v, OP_ColumnName, 0, 0);
+ sqliteVdbeChangeP3(v, -1, "rows deleted", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
+ }
+
+delete_from_cleanup:
+ sqliteSrcListDelete(pTabList);
+ sqliteExprDelete(pWhere);
+ return;
+}
+
+/*
+** This routine generates VDBE code that causes a single row of a
+** single table to be deleted.
+**
+** The VDBE must be in a particular state when this routine is called.
+** These are the requirements:
+**
+** 1. A read/write cursor pointing to pTab, the table containing the row
+** to be deleted, must be opened as cursor number "base".
+**
+** 2. Read/write cursors for all indices of pTab must be open as
+** cursor number base+i for the i-th index.
+**
+** 3. The record number of the row to be deleted must be on the top
+** of the stack.
+**
+** This routine pops the top of the stack to remove the record number
+** and then generates code to remove both the table record and all index
+** entries that point to that record.
+*/
+void sqliteGenerateRowDelete(
+ sqlite *db, /* The database containing the index */
+ Vdbe *v, /* Generate code into this VDBE */
+ Table *pTab, /* Table containing the row to be deleted */
+ int base, /* Cursor number for the table */
+ int count /* Increment the row change counter */
+){
+ int addr;
+ addr = sqliteVdbeAddOp(v, OP_NotExists, base, 0);
+ sqliteGenerateRowIndexDelete(db, v, pTab, base, 0);
+ sqliteVdbeAddOp(v, OP_Delete, base, count);
+ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
+}
+
+/*
+** This routine generates VDBE code that causes the deletion of all
+** index entries associated with a single row of a single table.
+**
+** The VDBE must be in a particular state when this routine is called.
+** These are the requirements:
+**
+** 1. A read/write cursor pointing to pTab, the table containing the row
+** to be deleted, must be opened as cursor number "base".
+**
+** 2. Read/write cursors for all indices of pTab must be open as
+** cursor number base+i for the i-th index.
+**
+** 3. The "base" cursor must be pointing to the row that is to be
+** deleted.
+*/
+void sqliteGenerateRowIndexDelete(
+ sqlite *db, /* The database containing the index */
+ Vdbe *v, /* Generate code into this VDBE */
+ Table *pTab, /* Table containing the row to be deleted */
+ int base, /* Cursor number for the table */
+ char *aIdxUsed /* Only delete if aIdxUsed!=0 && aIdxUsed[i]!=0 */
+){
+ int i;
+ Index *pIdx;
+
+ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
+ int j;
+ if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue;
+ sqliteVdbeAddOp(v, OP_Recno, base, 0);
+ for(j=0; j<pIdx->nColumn; j++){
+ int idx = pIdx->aiColumn[j];
+ if( idx==pTab->iPKey ){
+ sqliteVdbeAddOp(v, OP_Dup, j, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_Column, base, idx);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
+ if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
+ sqliteVdbeAddOp(v, OP_IdxDelete, base+i, 0);
+ }
+}
--- /dev/null
+/*
+** 2002 April 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains helper routines used to translate binary data into
+** a null-terminated string (suitable for use in SQLite) and back again.
+** These are convenience routines for use by people who want to store binary
+** data in an SQLite database. The code in this file is not used by any other
+** part of the SQLite library.
+**
+** $Id$
+*/
+#include <string.h>
+
+/*
+** Encode a binary buffer "in" of size n bytes so that it contains
+** no instances of characters '\'' or '\000'. The output is
+** null-terminated and can be used as a string value in an INSERT
+** or UPDATE statement. Use sqlite_decode_binary() to convert the
+** string back into its original binary.
+**
+** The result is written into a preallocated output buffer "out".
+** "out" must be able to hold at least (256*n + 1262)/253 bytes.
+** In other words, the output will be expanded by as much as 3
+** bytes for every 253 bytes of input plus 2 bytes of fixed overhead.
+** (This is approximately 2 + 1.019*n or about a 2% size increase.)
+**
+** The return value is the number of characters in the encoded
+** string, excluding the "\000" terminator.
+*/
+int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out){
+ int i, j, e, m;
+ int cnt[256];
+ if( n<=0 ){
+ out[0] = 'x';
+ out[1] = 0;
+ return 1;
+ }
+ memset(cnt, 0, sizeof(cnt));
+ for(i=n-1; i>=0; i--){ cnt[in[i]]++; }
+ m = n;
+ for(i=1; i<256; i++){
+ int sum;
+ if( i=='\'' ) continue;
+ sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff];
+ if( sum<m ){
+ m = sum;
+ e = i;
+ if( m==0 ) break;
+ }
+ }
+ out[0] = e;
+ j = 1;
+ for(i=0; i<n; i++){
+ int c = (in[i] - e)&0xff;
+ if( c==0 ){
+ out[j++] = 1;
+ out[j++] = 1;
+ }else if( c==1 ){
+ out[j++] = 1;
+ out[j++] = 2;
+ }else if( c=='\'' ){
+ out[j++] = 1;
+ out[j++] = 3;
+ }else{
+ out[j++] = c;
+ }
+ }
+ out[j] = 0;
+ return j;
+}
+
+/*
+** Decode the string "in" into binary data and write it into "out".
+** This routine reverses the encoded created by sqlite_encode_binary().
+** The output will always be a few bytes less than the input. The number
+** of bytes of output is returned. If the input is not a well-formed
+** encoding, -1 is returned.
+**
+** The "in" and "out" parameters may point to the same buffer in order
+** to decode a string in place.
+*/
+int sqlite_decode_binary(const unsigned char *in, unsigned char *out){
+ int i, c, e;
+ e = *(in++);
+ i = 0;
+ while( (c = *(in++))!=0 ){
+ if( c==1 ){
+ c = *(in++);
+ if( c==1 ){
+ c = 0;
+ }else if( c==2 ){
+ c = 1;
+ }else if( c==3 ){
+ c = '\'';
+ }else{
+ return -1;
+ }
+ }
+ out[i++] = (c + e)&0xff;
+ }
+ return i;
+}
+
+#ifdef ENCODER_TEST
+/*
+** The subroutines above are not tested by the usual test suite. To test
+** these routines, compile just this one file with a -DENCODER_TEST=1 option
+** and run the result.
+*/
+int main(int argc, char **argv){
+ int i, j, n, m, nOut;
+ unsigned char in[30000];
+ unsigned char out[33000];
+
+ for(i=0; i<sizeof(in); i++){
+ printf("Test %d: ", i+1);
+ n = rand() % (i+1);
+ if( i%100==0 ){
+ int k;
+ for(j=k=0; j<n; j++){
+ /* if( k==0 || k=='\'' ) k++; */
+ in[j] = k;
+ k = (k+1)&0xff;
+ }
+ }else{
+ for(j=0; j<n; j++) in[j] = rand() & 0xff;
+ }
+ nOut = sqlite_encode_binary(in, n, out);
+ if( nOut!=strlen(out) ){
+ printf(" ERROR return value is %d instead of %d\n", nOut, strlen(out));
+ exit(1);
+ }
+ m = (256*n + 1262)/253;
+ printf("size %d->%d (max %d)", n, strlen(out)+1, m);
+ if( strlen(out)+1>m ){
+ printf(" ERROR output too big\n");
+ exit(1);
+ }
+ for(j=0; out[j]; j++){
+ if( out[j]=='\'' ){
+ printf(" ERROR contains (')\n");
+ exit(1);
+ }
+ }
+ j = sqlite_decode_binary(out, out);
+ if( j!=n ){
+ printf(" ERROR decode size %d\n", j);
+ exit(1);
+ }
+ if( memcmp(in, out, n)!=0 ){
+ printf(" ERROR decode mismatch\n");
+ exit(1);
+ }
+ printf(" OK\n");
+ }
+}
+#endif /* ENCODER_TEST */
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used for analyzing expressions and
+** for generating VDBE code that evaluates expressions in SQLite.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+#include <ctype.h>
+
+/*
+** Construct a new expression node and return a pointer to it. Memory
+** for this node is obtained from sqliteMalloc(). The calling function
+** is responsible for making sure the node eventually gets freed.
+*/
+Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
+ Expr *pNew;
+ pNew = sqliteMalloc( sizeof(Expr) );
+ if( pNew==0 ){
+ sqliteExprDelete(pLeft);
+ sqliteExprDelete(pRight);
+ return 0;
+ }
+ pNew->op = op;
+ pNew->pLeft = pLeft;
+ pNew->pRight = pRight;
+ if( pToken ){
+ assert( pToken->dyn==0 );
+ pNew->token = *pToken;
+ pNew->span = *pToken;
+ }else{
+ pNew->token.dyn = 0;
+ pNew->token.z = 0;
+ pNew->token.n = 0;
+ if( pLeft && pRight ){
+ sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
+ }else{
+ pNew->span = pNew->token;
+ }
+ }
+ return pNew;
+}
+
+/*
+** Set the Expr.span field of the given expression to span all
+** text between the two given tokens.
+*/
+void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
+ if( pExpr && pRight && pRight->z && pLeft && pLeft->z ){
+ if( pLeft->dyn==0 && pRight->dyn==0 ){
+ pExpr->span.z = pLeft->z;
+ pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z);
+ }else{
+ pExpr->span.z = 0;
+ pExpr->span.n = 0;
+ pExpr->span.dyn = 0;
+ }
+ }
+}
+
+/*
+** Construct a new expression node for a function with multiple
+** arguments.
+*/
+Expr *sqliteExprFunction(ExprList *pList, Token *pToken){
+ Expr *pNew;
+ pNew = sqliteMalloc( sizeof(Expr) );
+ if( pNew==0 ){
+ sqliteExprListDelete(pList);
+ return 0;
+ }
+ pNew->op = TK_FUNCTION;
+ pNew->pList = pList;
+ pNew->token.dyn = 0;
+ if( pToken ){
+ assert( pToken->dyn==0 );
+ pNew->token = *pToken;
+ }else{
+ pNew->token.z = 0;
+ pNew->token.n = 0;
+ }
+ pNew->span = pNew->token;
+ return pNew;
+}
+
+/*
+** Recursively delete an expression tree.
+*/
+void sqliteExprDelete(Expr *p){
+ if( p==0 ) return;
+ if( p->span.dyn && p->span.z ) sqliteFree((char*)p->span.z);
+ if( p->token.dyn && p->token.z ) sqliteFree((char*)p->token.z);
+ if( p->pLeft ) sqliteExprDelete(p->pLeft);
+ if( p->pRight ) sqliteExprDelete(p->pRight);
+ if( p->pList ) sqliteExprListDelete(p->pList);
+ if( p->pSelect ) sqliteSelectDelete(p->pSelect);
+ sqliteFree(p);
+}
+
+
+/*
+** The following group of routines make deep copies of expressions,
+** expression lists, ID lists, and select statements. The copies can
+** be deleted (by being passed to their respective ...Delete() routines)
+** without effecting the originals.
+**
+** The expression list, ID, and source lists return by sqliteExprListDup(),
+** sqliteIdListDup(), and sqliteSrcListDup() can not be further expanded
+** by subsequent calls to sqlite*ListAppend() routines.
+**
+** Any tables that the SrcList might point to are not duplicated.
+*/
+Expr *sqliteExprDup(Expr *p){
+ Expr *pNew;
+ if( p==0 ) return 0;
+ pNew = sqliteMallocRaw( sizeof(*p) );
+ if( pNew==0 ) return 0;
+ memcpy(pNew, p, sizeof(*pNew));
+ if( p->token.z!=0 ){
+ pNew->token.z = sqliteStrDup(p->token.z);
+ pNew->token.dyn = 1;
+ }else{
+ pNew->token.z = 0;
+ pNew->token.n = 0;
+ pNew->token.dyn = 0;
+ }
+ pNew->span.z = 0;
+ pNew->span.n = 0;
+ pNew->span.dyn = 0;
+ pNew->pLeft = sqliteExprDup(p->pLeft);
+ pNew->pRight = sqliteExprDup(p->pRight);
+ pNew->pList = sqliteExprListDup(p->pList);
+ pNew->pSelect = sqliteSelectDup(p->pSelect);
+ return pNew;
+}
+void sqliteTokenCopy(Token *pTo, Token *pFrom){
+ if( pTo->dyn ) sqliteFree((char*)pTo->z);
+ if( pFrom->z ){
+ pTo->n = pFrom->n;
+ pTo->z = sqliteStrNDup(pFrom->z, pFrom->n);
+ pTo->dyn = 1;
+ }else{
+ pTo->n = 0;
+ pTo->z = 0;
+ pTo->dyn = 0;
+ }
+}
+ExprList *sqliteExprListDup(ExprList *p){
+ ExprList *pNew;
+ int i;
+ if( p==0 ) return 0;
+ pNew = sqliteMalloc( sizeof(*pNew) );
+ if( pNew==0 ) return 0;
+ pNew->nExpr = p->nExpr;
+ pNew->a = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
+ if( pNew->a==0 ) return 0;
+ for(i=0; i<p->nExpr; i++){
+ Expr *pNewExpr, *pOldExpr;
+ pNew->a[i].pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr);
+ if( pOldExpr->span.z!=0 && pNewExpr ){
+ /* Always make a copy of the span for top-level expressions in the
+ ** expression list. The logic in SELECT processing that determines
+ ** the names of columns in the result set needs this information */
+ sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span);
+ }
+ assert( pNewExpr==0 || pNewExpr->span.z!=0
+ || pOldExpr->span.z==0 || sqlite_malloc_failed );
+ pNew->a[i].zName = sqliteStrDup(p->a[i].zName);
+ pNew->a[i].sortOrder = p->a[i].sortOrder;
+ pNew->a[i].isAgg = p->a[i].isAgg;
+ pNew->a[i].done = 0;
+ }
+ return pNew;
+}
+SrcList *sqliteSrcListDup(SrcList *p){
+ SrcList *pNew;
+ int i;
+ if( p==0 ) return 0;
+ pNew = sqliteMalloc( sizeof(*pNew) );
+ if( pNew==0 ) return 0;
+ pNew->nSrc = p->nSrc;
+ pNew->a = sqliteMalloc( p->nSrc*sizeof(p->a[0]) );
+ if( pNew->a==0 && p->nSrc != 0 ) return 0;
+ for(i=0; i<p->nSrc; i++){
+ pNew->a[i].zName = sqliteStrDup(p->a[i].zName);
+ pNew->a[i].zAlias = sqliteStrDup(p->a[i].zAlias);
+ pNew->a[i].jointype = p->a[i].jointype;
+ pNew->a[i].pTab = 0;
+ pNew->a[i].pSelect = sqliteSelectDup(p->a[i].pSelect);
+ pNew->a[i].pOn = sqliteExprDup(p->a[i].pOn);
+ pNew->a[i].pUsing = sqliteIdListDup(p->a[i].pUsing);
+ }
+ return pNew;
+}
+IdList *sqliteIdListDup(IdList *p){
+ IdList *pNew;
+ int i;
+ if( p==0 ) return 0;
+ pNew = sqliteMalloc( sizeof(*pNew) );
+ if( pNew==0 ) return 0;
+ pNew->nId = p->nId;
+ pNew->a = sqliteMalloc( p->nId*sizeof(p->a[0]) );
+ if( pNew->a==0 ) return 0;
+ for(i=0; i<p->nId; i++){
+ pNew->a[i].zName = sqliteStrDup(p->a[i].zName);
+ pNew->a[i].idx = p->a[i].idx;
+ }
+ return pNew;
+}
+Select *sqliteSelectDup(Select *p){
+ Select *pNew;
+ if( p==0 ) return 0;
+ pNew = sqliteMalloc( sizeof(*p) );
+ if( pNew==0 ) return 0;
+ pNew->isDistinct = p->isDistinct;
+ pNew->pEList = sqliteExprListDup(p->pEList);
+ pNew->pSrc = sqliteSrcListDup(p->pSrc);
+ pNew->pWhere = sqliteExprDup(p->pWhere);
+ pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
+ pNew->pHaving = sqliteExprDup(p->pHaving);
+ pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
+ pNew->op = p->op;
+ pNew->pPrior = sqliteSelectDup(p->pPrior);
+ pNew->nLimit = p->nLimit;
+ pNew->nOffset = p->nOffset;
+ pNew->zSelect = 0;
+ return pNew;
+}
+
+
+/*
+** Add a new element to the end of an expression list. If pList is
+** initially NULL, then create a new expression list.
+*/
+ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
+ int i;
+ if( pList==0 ){
+ pList = sqliteMalloc( sizeof(ExprList) );
+ if( pList==0 ){
+ sqliteExprDelete(pExpr);
+ return 0;
+ }
+ }
+ if( (pList->nExpr & 7)==0 ){
+ int n = pList->nExpr + 8;
+ struct ExprList_item *a;
+ a = sqliteRealloc(pList->a, n*sizeof(pList->a[0]));
+ if( a==0 ){
+ sqliteExprDelete(pExpr);
+ return pList;
+ }
+ pList->a = a;
+ }
+ if( pExpr || pName ){
+ i = pList->nExpr++;
+ pList->a[i].pExpr = pExpr;
+ pList->a[i].zName = 0;
+ if( pName ){
+ sqliteSetNString(&pList->a[i].zName, pName->z, pName->n, 0);
+ sqliteDequote(pList->a[i].zName);
+ }
+ }
+ return pList;
+}
+
+/*
+** Delete an entire expression list.
+*/
+void sqliteExprListDelete(ExprList *pList){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nExpr; i++){
+ sqliteExprDelete(pList->a[i].pExpr);
+ sqliteFree(pList->a[i].zName);
+ }
+ sqliteFree(pList->a);
+ sqliteFree(pList);
+}
+
+/*
+** Walk an expression tree. Return 1 if the expression is constant
+** and 0 if it involves variables.
+**
+** For the purposes of this function, a double-quoted string (ex: "abc")
+** is considered a variable but a single-quoted string (ex: 'abc') is
+** a constant.
+*/
+int sqliteExprIsConstant(Expr *p){
+ switch( p->op ){
+ case TK_ID:
+ case TK_COLUMN:
+ case TK_DOT:
+ return 0;
+ case TK_STRING:
+ case TK_INTEGER:
+ case TK_FLOAT:
+ return 1;
+ default: {
+ if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0;
+ if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0;
+ if( p->pList ){
+ int i;
+ for(i=0; i<p->pList->nExpr; i++){
+ if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0;
+ }
+ }
+ return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
+ }
+ }
+ return 0;
+}
+
+/*
+** If the given expression codes a constant integer, return 1 and put
+** the value of the integer in *pValue. If the expression is not an
+** integer, return 0 and leave *pValue unchanged.
+*/
+int sqliteExprIsInteger(Expr *p, int *pValue){
+ switch( p->op ){
+ case TK_INTEGER: {
+ *pValue = atoi(p->token.z);
+ return 1;
+ }
+ case TK_STRING: {
+ const char *z = p->token.z;
+ int n = p->token.n;
+ if( n>0 && z[0]=='-' ){ z++; n--; }
+ while( n>0 && *z && isdigit(*z) ){ z++; n--; }
+ if( n==0 ){
+ *pValue = atoi(p->token.z);
+ return 1;
+ }
+ break;
+ }
+ case TK_UPLUS: {
+ return sqliteExprIsInteger(p->pLeft, pValue);
+ }
+ case TK_UMINUS: {
+ int v;
+ if( sqliteExprIsInteger(p->pLeft, &v) ){
+ *pValue = -v;
+ return 1;
+ }
+ break;
+ }
+ default: break;
+ }
+ return 0;
+}
+
+/*
+** Return TRUE if the given string is a row-id column name.
+*/
+int sqliteIsRowid(const char *z){
+ if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
+ if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
+ if( sqliteStrICmp(z, "OID")==0 ) return 1;
+ return 0;
+}
+
+/*
+** This routine walks an expression tree and resolves references to
+** table columns. Nodes of the form ID.ID or ID resolve into an
+** index to the table in the table list and a column offset. The
+** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
+** value is changed to the index of the referenced table in pTabList
+** plus the "base" value. The base value will ultimately become the
+** VDBE cursor number for a cursor that is pointing into the referenced
+** table. The Expr.iColumn value is changed to the index of the column
+** of the referenced table. The Expr.iColumn value for the special
+** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
+** alias for ROWID.
+**
+** We also check for instances of the IN operator. IN comes in two
+** forms:
+**
+** expr IN (exprlist)
+** and
+** expr IN (SELECT ...)
+**
+** The first form is handled by creating a set holding the list
+** of allowed values. The second form causes the SELECT to generate
+** a temporary table.
+**
+** This routine also looks for scalar SELECTs that are part of an expression.
+** If it finds any, it generates code to write the value of that select
+** into a memory cell.
+**
+** Unknown columns or tables provoke an error. The function returns
+** the number of errors seen and leaves an error message on pParse->zErrMsg.
+*/
+int sqliteExprResolveIds(
+ Parse *pParse, /* The parser context */
+ int base, /* VDBE cursor number for first entry in pTabList */
+ SrcList *pTabList, /* List of tables used to resolve column names */
+ ExprList *pEList, /* List of expressions used to resolve "AS" */
+ Expr *pExpr /* The expression to be analyzed. */
+){
+ if( pExpr==0 || pTabList==0 ) return 0;
+ assert( base+pTabList->nSrc<=pParse->nTab );
+ switch( pExpr->op ){
+ /* Double-quoted strings (ex: "abc") are used as identifiers if
+ ** possible. Otherwise they remain as strings. Single-quoted
+ ** strings (ex: 'abc') are always string literals.
+ */
+ case TK_STRING: {
+ if( pExpr->token.z[0]=='\'' ) break;
+ /* Fall thru into the TK_ID case if this is a double-quoted string */
+ }
+ /* A lone identifier. Try and match it as follows:
+ **
+ ** 1. To the name of a column of one of the tables in pTabList
+ **
+ ** 2. To the right side of an AS keyword in the column list of
+ ** a SELECT statement. (For example, match against 'x' in
+ ** "SELECT a+b AS 'x' FROM t1".)
+ **
+ ** 3. One of the special names "ROWID", "OID", or "_ROWID_".
+ */
+ case TK_ID: {
+ int cnt = 0; /* Number of matches */
+ int i; /* Loop counter */
+ char *z;
+ assert( pExpr->token.z );
+ z = sqliteStrNDup(pExpr->token.z, pExpr->token.n);
+ sqliteDequote(z);
+ if( z==0 ) return 1;
+ for(i=0; i<pTabList->nSrc; i++){
+ int j;
+ Table *pTab = pTabList->a[i].pTab;
+ if( pTab==0 ) continue;
+ assert( pTab->nCol>0 );
+ for(j=0; j<pTab->nCol; j++){
+ if( sqliteStrICmp(pTab->aCol[j].zName, z)==0 ){
+ cnt++;
+ pExpr->iTable = i + base;
+ if( j==pTab->iPKey ){
+ /* Substitute the record number for the INTEGER PRIMARY KEY */
+ pExpr->iColumn = -1;
+ pExpr->dataType = SQLITE_SO_NUM;
+ }else{
+ pExpr->iColumn = j;
+ pExpr->dataType = pTab->aCol[j].sortOrder & SQLITE_SO_TYPEMASK;
+ }
+ pExpr->op = TK_COLUMN;
+ }
+ }
+ }
+ if( cnt==0 && pEList!=0 ){
+ int j;
+ for(j=0; j<pEList->nExpr; j++){
+ char *zAs = pEList->a[j].zName;
+ if( zAs!=0 && sqliteStrICmp(zAs, z)==0 ){
+ cnt++;
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 );
+ pExpr->op = TK_AS;
+ pExpr->iColumn = j;
+ pExpr->pLeft = sqliteExprDup(pEList->a[j].pExpr);
+ }
+ }
+ }
+ if( cnt==0 && sqliteIsRowid(z) ){
+ pExpr->iColumn = -1;
+ pExpr->iTable = base;
+ cnt = 1 + (pTabList->nSrc>1);
+ pExpr->op = TK_COLUMN;
+ pExpr->dataType = SQLITE_SO_NUM;
+ }
+ sqliteFree(z);
+ if( cnt==0 && pExpr->token.z[0]!='"' ){
+ sqliteSetNString(&pParse->zErrMsg, "no such column: ", -1,
+ pExpr->token.z, pExpr->token.n, 0);
+ pParse->nErr++;
+ return 1;
+ }else if( cnt>1 ){
+ sqliteSetNString(&pParse->zErrMsg, "ambiguous column name: ", -1,
+ pExpr->token.z, pExpr->token.n, 0);
+ pParse->nErr++;
+ return 1;
+ }
+ if( pExpr->op==TK_COLUMN ){
+ sqliteAuthRead(pParse, pExpr, pTabList, base);
+ }
+ break;
+ }
+
+ /* A table name and column name: ID.ID */
+ case TK_DOT: {
+ int cnt = 0; /* Number of matches */
+ int cntTab = 0; /* Number of matching tables */
+ int i; /* Loop counter */
+ Expr *pLeft, *pRight; /* Left and right subbranches of the expr */
+ char *zLeft, *zRight; /* Text of an identifier */
+
+ pLeft = pExpr->pLeft;
+ pRight = pExpr->pRight;
+ assert( pLeft && pLeft->op==TK_ID && pLeft->token.z );
+ assert( pRight && pRight->op==TK_ID && pRight->token.z );
+ zLeft = sqliteStrNDup(pLeft->token.z, pLeft->token.n);
+ zRight = sqliteStrNDup(pRight->token.z, pRight->token.n);
+ if( zLeft==0 || zRight==0 ){
+ sqliteFree(zLeft);
+ sqliteFree(zRight);
+ return 1;
+ }
+ sqliteDequote(zLeft);
+ sqliteDequote(zRight);
+ pExpr->iTable = -1;
+ for(i=0; i<pTabList->nSrc; i++){
+ int j;
+ char *zTab;
+ Table *pTab = pTabList->a[i].pTab;
+ if( pTab==0 ) continue;
+ assert( pTab->nCol>0 );
+ if( pTabList->a[i].zAlias ){
+ zTab = pTabList->a[i].zAlias;
+ }else{
+ zTab = pTab->zName;
+ }
+ if( zTab==0 || sqliteStrICmp(zTab, zLeft)!=0 ) continue;
+ if( 0==(cntTab++) ) pExpr->iTable = i + base;
+ for(j=0; j<pTab->nCol; j++){
+ if( sqliteStrICmp(pTab->aCol[j].zName, zRight)==0 ){
+ cnt++;
+ pExpr->iTable = i + base;
+ if( j==pTab->iPKey ){
+ /* Substitute the record number for the INTEGER PRIMARY KEY */
+ pExpr->iColumn = -1;
+ }else{
+ pExpr->iColumn = j;
+ }
+ pExpr->dataType = pTab->aCol[j].sortOrder & SQLITE_SO_TYPEMASK;
+ }
+ }
+ }
+
+ /* If we have not already resolved this *.* expression, then maybe
+ * it is a new.* or old.* trigger argument reference */
+ if( cnt == 0 && pParse->trigStack != 0 ){
+ TriggerStack *pTriggerStack = pParse->trigStack;
+ int t = 0;
+ if( pTriggerStack->newIdx != -1 && sqliteStrICmp("new", zLeft) == 0 ){
+ pExpr->iTable = pTriggerStack->newIdx;
+ cntTab++;
+ t = 1;
+ }
+ if( pTriggerStack->oldIdx != -1 && sqliteStrICmp("old", zLeft) == 0 ){
+ pExpr->iTable = pTriggerStack->oldIdx;
+ cntTab++;
+ t = 1;
+ }
+
+ if( t ){
+ int j;
+ Table *pTab = pTriggerStack->pTab;
+ for(j=0; j < pTab->nCol; j++) {
+ if( sqliteStrICmp(pTab->aCol[j].zName, zRight)==0 ){
+ cnt++;
+ pExpr->iColumn = j;
+ pExpr->dataType = pTab->aCol[j].sortOrder & SQLITE_SO_TYPEMASK;
+ }
+ }
+ }
+ }
+
+ if( cnt==0 && cntTab==1 && sqliteIsRowid(zRight) ){
+ cnt = 1;
+ pExpr->iColumn = -1;
+ pExpr->dataType = SQLITE_SO_NUM;
+ }
+ sqliteFree(zLeft);
+ sqliteFree(zRight);
+ if( cnt==0 ){
+ sqliteSetNString(&pParse->zErrMsg, "no such column: ", -1,
+ pLeft->token.z, pLeft->token.n, ".", 1,
+ pRight->token.z, pRight->token.n, 0);
+ pParse->nErr++;
+ return 1;
+ }else if( cnt>1 ){
+ sqliteSetNString(&pParse->zErrMsg, "ambiguous column name: ", -1,
+ pLeft->token.z, pLeft->token.n, ".", 1,
+ pRight->token.z, pRight->token.n, 0);
+ pParse->nErr++;
+ return 1;
+ }
+ sqliteExprDelete(pLeft);
+ pExpr->pLeft = 0;
+ sqliteExprDelete(pRight);
+ pExpr->pRight = 0;
+ pExpr->op = TK_COLUMN;
+ sqliteAuthRead(pParse, pExpr, pTabList, base);
+ break;
+ }
+
+ case TK_IN: {
+ Vdbe *v = sqliteGetVdbe(pParse);
+ if( v==0 ) return 1;
+ if( sqliteExprResolveIds(pParse, base, pTabList, pEList, pExpr->pLeft) ){
+ return 1;
+ }
+ if( pExpr->pSelect ){
+ /* Case 1: expr IN (SELECT ...)
+ **
+ ** Generate code to write the results of the select into a temporary
+ ** table. The cursor number of the temporary table has already
+ ** been put in iTable by sqliteExprResolveInSelect().
+ */
+ pExpr->iTable = pParse->nTab++;
+ sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
+ sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0);
+ }else if( pExpr->pList ){
+ /* Case 2: expr IN (exprlist)
+ **
+ ** Create a set to put the exprlist values in. The Set id is stored
+ ** in iTable.
+ */
+ int i, iSet;
+ for(i=0; i<pExpr->pList->nExpr; i++){
+ Expr *pE2 = pExpr->pList->a[i].pExpr;
+ if( !sqliteExprIsConstant(pE2) ){
+ sqliteSetString(&pParse->zErrMsg,
+ "right-hand side of IN operator must be constant", 0);
+ pParse->nErr++;
+ return 1;
+ }
+ if( sqliteExprCheck(pParse, pE2, 0, 0) ){
+ return 1;
+ }
+ }
+ iSet = pExpr->iTable = pParse->nSet++;
+ for(i=0; i<pExpr->pList->nExpr; i++){
+ Expr *pE2 = pExpr->pList->a[i].pExpr;
+ switch( pE2->op ){
+ case TK_FLOAT:
+ case TK_INTEGER:
+ case TK_STRING: {
+ int addr = sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
+ assert( pE2->token.z );
+ sqliteVdbeChangeP3(v, addr, pE2->token.z, pE2->token.n);
+ sqliteVdbeDequoteP3(v, addr);
+ break;
+ }
+ default: {
+ sqliteExprCode(pParse, pE2);
+ sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
+ break;
+ }
+ }
+ }
+ }
+ break;
+ }
+
+ case TK_SELECT: {
+ /* This has to be a scalar SELECT. Generate code to put the
+ ** value of this select in a memory cell and record the number
+ ** of the memory cell in iColumn.
+ */
+ pExpr->iColumn = pParse->nMem++;
+ if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn,0,0,0) ){
+ return 1;
+ }
+ break;
+ }
+
+ /* For all else, just recursively walk the tree */
+ default: {
+ if( pExpr->pLeft
+ && sqliteExprResolveIds(pParse, base, pTabList, pEList, pExpr->pLeft) ){
+ return 1;
+ }
+ if( pExpr->pRight
+ && sqliteExprResolveIds(pParse, base, pTabList, pEList, pExpr->pRight) ){
+ return 1;
+ }
+ if( pExpr->pList ){
+ int i;
+ ExprList *pList = pExpr->pList;
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pArg = pList->a[i].pExpr;
+ if( sqliteExprResolveIds(pParse, base, pTabList, pEList, pArg) ){
+ return 1;
+ }
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** pExpr is a node that defines a function of some kind. It might
+** be a syntactic function like "count(x)" or it might be a function
+** that implements an operator, like "a LIKE b".
+**
+** This routine makes *pzName point to the name of the function and
+** *pnName hold the number of characters in the function name.
+*/
+static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
+ switch( pExpr->op ){
+ case TK_FUNCTION: {
+ *pzName = pExpr->token.z;
+ *pnName = pExpr->token.n;
+ break;
+ }
+ case TK_LIKE: {
+ *pzName = "like";
+ *pnName = 4;
+ break;
+ }
+ case TK_GLOB: {
+ *pzName = "glob";
+ *pnName = 4;
+ break;
+ }
+ default: {
+ *pzName = "can't happen";
+ *pnName = 12;
+ break;
+ }
+ }
+}
+
+/*
+** Error check the functions in an expression. Make sure all
+** function names are recognized and all functions have the correct
+** number of arguments. Leave an error message in pParse->zErrMsg
+** if anything is amiss. Return the number of errors.
+**
+** if pIsAgg is not null and this expression is an aggregate function
+** (like count(*) or max(value)) then write a 1 into *pIsAgg.
+*/
+int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
+ int nErr = 0;
+ if( pExpr==0 ) return 0;
+ switch( pExpr->op ){
+ case TK_GLOB:
+ case TK_LIKE:
+ case TK_FUNCTION: {
+ int n = pExpr->pList ? pExpr->pList->nExpr : 0; /* Number of arguments */
+ int no_such_func = 0; /* True if no such function exists */
+ int is_type_of = 0; /* True if is the special TypeOf() function */
+ int wrong_num_args = 0; /* True if wrong number of arguments */
+ int is_agg = 0; /* True if is an aggregate function */
+ int i;
+ int nId; /* Number of characters in function name */
+ const char *zId; /* The function name. */
+ FuncDef *pDef;
+
+ getFunctionName(pExpr, &zId, &nId);
+ pDef = sqliteFindFunction(pParse->db, zId, nId, n, 0);
+ if( pDef==0 ){
+ pDef = sqliteFindFunction(pParse->db, zId, nId, -1, 0);
+ if( pDef==0 ){
+ if( n==1 && nId==6 && sqliteStrNICmp(zId, "typeof", 6)==0 ){
+ is_type_of = 1;
+ }else {
+ no_such_func = 1;
+ }
+ }else{
+ wrong_num_args = 1;
+ }
+ }else{
+ is_agg = pDef->xFunc==0;
+ }
+ if( is_agg && !allowAgg ){
+ sqliteSetNString(&pParse->zErrMsg, "misuse of aggregate function ", -1,
+ zId, nId, "()", 2, 0);
+ pParse->nErr++;
+ nErr++;
+ is_agg = 0;
+ }else if( no_such_func ){
+ sqliteSetNString(&pParse->zErrMsg, "no such function: ", -1, zId,nId,0);
+ pParse->nErr++;
+ nErr++;
+ }else if( wrong_num_args ){
+ sqliteSetNString(&pParse->zErrMsg,
+ "wrong number of arguments to function ", -1, zId, nId, "()", 2, 0);
+ pParse->nErr++;
+ nErr++;
+ }
+ if( is_agg ) pExpr->op = TK_AGG_FUNCTION;
+ if( is_agg && pIsAgg ) *pIsAgg = 1;
+ for(i=0; nErr==0 && i<n; i++){
+ nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr,
+ allowAgg && !is_agg, pIsAgg);
+ }
+ if( pDef==0 ){
+ if( is_type_of ){
+ pExpr->op = TK_STRING;
+ if( sqliteExprType(pExpr->pList->a[0].pExpr)==SQLITE_SO_NUM ){
+ pExpr->token.z = "numeric";
+ pExpr->token.n = 7;
+ }else{
+ pExpr->token.z = "text";
+ pExpr->token.n = 4;
+ }
+ }
+ }else if( pDef->dataType>=0 ){
+ if( pDef->dataType<n ){
+ pExpr->dataType =
+ sqliteExprType(pExpr->pList->a[pDef->dataType].pExpr);
+ }else{
+ pExpr->dataType = SQLITE_SO_NUM;
+ }
+ }else if( pDef->dataType==SQLITE_ARGS ){
+ pDef->dataType = SQLITE_SO_TEXT;
+ for(i=0; i<n; i++){
+ if( sqliteExprType(pExpr->pList->a[i].pExpr)==SQLITE_SO_NUM ){
+ pExpr->dataType = SQLITE_SO_NUM;
+ break;
+ }
+ }
+ }else if( pDef->dataType==SQLITE_NUMERIC ){
+ pExpr->dataType = SQLITE_SO_NUM;
+ }else{
+ pExpr->dataType = SQLITE_SO_TEXT;
+ }
+ }
+ default: {
+ if( pExpr->pLeft ){
+ nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
+ }
+ if( nErr==0 && pExpr->pRight ){
+ nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
+ }
+ if( nErr==0 && pExpr->pList ){
+ int n = pExpr->pList->nExpr;
+ int i;
+ for(i=0; nErr==0 && i<n; i++){
+ Expr *pE2 = pExpr->pList->a[i].pExpr;
+ nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
+ }
+ }
+ break;
+ }
+ }
+ return nErr;
+}
+
+/*
+** Return either SQLITE_SO_NUM or SQLITE_SO_TEXT to indicate whether the
+** given expression should sort as numeric values or as text.
+**
+** The sqliteExprResolveIds() and sqliteExprCheck() routines must have
+** both been called on the expression before it is passed to this routine.
+*/
+int sqliteExprType(Expr *p){
+ if( p==0 ) return SQLITE_SO_NUM;
+ while( p ) switch( p->op ){
+ case TK_PLUS:
+ case TK_MINUS:
+ case TK_STAR:
+ case TK_SLASH:
+ case TK_AND:
+ case TK_OR:
+ case TK_ISNULL:
+ case TK_NOTNULL:
+ case TK_NOT:
+ case TK_UMINUS:
+ case TK_UPLUS:
+ case TK_BITAND:
+ case TK_BITOR:
+ case TK_BITNOT:
+ case TK_LSHIFT:
+ case TK_RSHIFT:
+ case TK_REM:
+ case TK_INTEGER:
+ case TK_FLOAT:
+ case TK_IN:
+ case TK_BETWEEN:
+ case TK_GLOB:
+ case TK_LIKE:
+ return SQLITE_SO_NUM;
+
+ case TK_STRING:
+ case TK_NULL:
+ case TK_CONCAT:
+ return SQLITE_SO_TEXT;
+
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ:
+ if( sqliteExprType(p->pLeft)==SQLITE_SO_NUM ){
+ return SQLITE_SO_NUM;
+ }
+ p = p->pRight;
+ break;
+
+ case TK_AS:
+ p = p->pLeft;
+ break;
+
+ case TK_COLUMN:
+ case TK_FUNCTION:
+ case TK_AGG_FUNCTION:
+ return p->dataType;
+
+ case TK_SELECT:
+ assert( p->pSelect );
+ assert( p->pSelect->pEList );
+ assert( p->pSelect->pEList->nExpr>0 );
+ p = p->pSelect->pEList->a[0].pExpr;
+ break;
+
+ case TK_CASE: {
+ if( p->pRight && sqliteExprType(p->pRight)==SQLITE_SO_NUM ){
+ return SQLITE_SO_NUM;
+ }
+ if( p->pList ){
+ int i;
+ ExprList *pList = p->pList;
+ for(i=1; i<pList->nExpr; i+=2){
+ if( sqliteExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){
+ return SQLITE_SO_NUM;
+ }
+ }
+ }
+ return SQLITE_SO_TEXT;
+ }
+
+ default:
+ assert( p->op==TK_ABORT ); /* Can't Happen */
+ break;
+ }
+ return SQLITE_SO_NUM;
+}
+
+/*
+** Generate code into the current Vdbe to evaluate the given
+** expression and leave the result on the top of stack.
+*/
+void sqliteExprCode(Parse *pParse, Expr *pExpr){
+ Vdbe *v = pParse->pVdbe;
+ int op;
+ if( v==0 || pExpr==0 ) return;
+ switch( pExpr->op ){
+ case TK_PLUS: op = OP_Add; break;
+ case TK_MINUS: op = OP_Subtract; break;
+ case TK_STAR: op = OP_Multiply; break;
+ case TK_SLASH: op = OP_Divide; break;
+ case TK_AND: op = OP_And; break;
+ case TK_OR: op = OP_Or; break;
+ case TK_LT: op = OP_Lt; break;
+ case TK_LE: op = OP_Le; break;
+ case TK_GT: op = OP_Gt; break;
+ case TK_GE: op = OP_Ge; break;
+ case TK_NE: op = OP_Ne; break;
+ case TK_EQ: op = OP_Eq; break;
+ case TK_ISNULL: op = OP_IsNull; break;
+ case TK_NOTNULL: op = OP_NotNull; break;
+ case TK_NOT: op = OP_Not; break;
+ case TK_UMINUS: op = OP_Negative; break;
+ case TK_BITAND: op = OP_BitAnd; break;
+ case TK_BITOR: op = OP_BitOr; break;
+ case TK_BITNOT: op = OP_BitNot; break;
+ case TK_LSHIFT: op = OP_ShiftLeft; break;
+ case TK_RSHIFT: op = OP_ShiftRight; break;
+ case TK_REM: op = OP_Remainder; break;
+ default: break;
+ }
+ switch( pExpr->op ){
+ case TK_COLUMN: {
+ if( pParse->useAgg ){
+ sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
+ }else if( pExpr->iColumn>=0 ){
+ sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
+ }else{
+ sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0);
+ }
+ break;
+ }
+ case TK_INTEGER: {
+ int iVal = atoi(pExpr->token.z);
+ char zBuf[30];
+ sprintf(zBuf,"%d",iVal);
+ if( strlen(zBuf)!=pExpr->token.n
+ || strncmp(pExpr->token.z,zBuf,pExpr->token.n)!=0 ){
+ /* If the integer value cannot be represented exactly in 32 bits,
+ ** then code it as a string instead. */
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_Integer, iVal, 0);
+ }
+ sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
+ break;
+ }
+ case TK_FLOAT: {
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ assert( pExpr->token.z );
+ sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
+ break;
+ }
+ case TK_STRING: {
+ int addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
+ assert( pExpr->token.z );
+ sqliteVdbeChangeP3(v, addr, pExpr->token.z, pExpr->token.n);
+ sqliteVdbeDequoteP3(v, addr);
+ break;
+ }
+ case TK_NULL: {
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ break;
+ }
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
+ op += 6; /* Convert numeric opcodes to text opcodes */
+ }
+ /* Fall through into the next case */
+ }
+ case TK_AND:
+ case TK_OR:
+ case TK_PLUS:
+ case TK_STAR:
+ case TK_MINUS:
+ case TK_REM:
+ case TK_BITAND:
+ case TK_BITOR:
+ case TK_SLASH: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteExprCode(pParse, pExpr->pRight);
+ sqliteVdbeAddOp(v, op, 0, 0);
+ break;
+ }
+ case TK_LSHIFT:
+ case TK_RSHIFT: {
+ sqliteExprCode(pParse, pExpr->pRight);
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, op, 0, 0);
+ break;
+ }
+ case TK_CONCAT: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteExprCode(pParse, pExpr->pRight);
+ sqliteVdbeAddOp(v, OP_Concat, 2, 0);
+ break;
+ }
+ case TK_UPLUS: {
+ Expr *pLeft = pExpr->pLeft;
+ if( pLeft && pLeft->op==TK_INTEGER ){
+ sqliteVdbeAddOp(v, OP_Integer, atoi(pLeft->token.z), 0);
+ sqliteVdbeChangeP3(v, -1, pLeft->token.z, pLeft->token.n);
+ }else if( pLeft && pLeft->op==TK_FLOAT ){
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, pLeft->token.z, pLeft->token.n);
+ }else{
+ sqliteExprCode(pParse, pExpr->pLeft);
+ }
+ break;
+ }
+ case TK_UMINUS: {
+ assert( pExpr->pLeft );
+ if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){
+ Token *p = &pExpr->pLeft->token;
+ char *z = sqliteMalloc( p->n + 2 );
+ sprintf(z, "-%.*s", p->n, p->z);
+ if( pExpr->pLeft->op==TK_INTEGER ){
+ sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ }
+ sqliteVdbeChangeP3(v, -1, z, p->n+1);
+ sqliteFree(z);
+ break;
+ }
+ /* Fall through into TK_NOT */
+ }
+ case TK_BITNOT:
+ case TK_NOT: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, op, 0, 0);
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ int dest;
+ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
+ sqliteExprCode(pParse, pExpr->pLeft);
+ dest = sqliteVdbeCurrentAddr(v) + 2;
+ sqliteVdbeAddOp(v, op, 1, dest);
+ sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
+ break;
+ }
+ case TK_AGG_FUNCTION: {
+ sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
+ break;
+ }
+ case TK_GLOB:
+ case TK_LIKE:
+ case TK_FUNCTION: {
+ int i;
+ ExprList *pList = pExpr->pList;
+ int nExpr = pList ? pList->nExpr : 0;
+ FuncDef *pDef;
+ int nId;
+ const char *zId;
+ getFunctionName(pExpr, &zId, &nId);
+ pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0);
+ assert( pDef!=0 );
+ for(i=0; i<nExpr; i++){
+ sqliteExprCode(pParse, pList->a[i].pExpr);
+ }
+ sqliteVdbeAddOp(v, OP_Function, nExpr, 0);
+ sqliteVdbeChangeP3(v, -1, (char*)pDef, P3_POINTER);
+ break;
+ }
+ case TK_SELECT: {
+ sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
+ break;
+ }
+ case TK_IN: {
+ int addr;
+ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
+ sqliteExprCode(pParse, pExpr->pLeft);
+ addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr+6);
+ if( pExpr->pSelect ){
+ sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6);
+ }else{
+ sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6);
+ }
+ sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
+ break;
+ }
+ case TK_BETWEEN: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
+ sqliteVdbeAddOp(v, OP_Ge, 0, 0);
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
+ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
+ sqliteVdbeAddOp(v, OP_Le, 0, 0);
+ sqliteVdbeAddOp(v, OP_And, 0, 0);
+ break;
+ }
+ case TK_AS: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ break;
+ }
+ case TK_CASE: {
+ int expr_end_label;
+ int jumpInst;
+ int addr;
+ int nExpr;
+ int i;
+
+ assert(pExpr->pList);
+ assert((pExpr->pList->nExpr % 2) == 0);
+ assert(pExpr->pList->nExpr > 0);
+ nExpr = pExpr->pList->nExpr;
+ expr_end_label = sqliteVdbeMakeLabel(v);
+ if( pExpr->pLeft ){
+ sqliteExprCode(pParse, pExpr->pLeft);
+ }
+ for(i=0; i<nExpr; i=i+2){
+ sqliteExprCode(pParse, pExpr->pList->a[i].pExpr);
+ if( pExpr->pLeft ){
+ sqliteVdbeAddOp(v, OP_Dup, 1, 1);
+ jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ }else{
+ jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0);
+ }
+ sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr);
+ sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label);
+ addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeChangeP2(v, jumpInst, addr);
+ }
+ if( pExpr->pLeft ){
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ }
+ if( pExpr->pRight ){
+ sqliteExprCode(pParse, pExpr->pRight);
+ }else{
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ }
+ sqliteVdbeResolveLabel(v, expr_end_label);
+ break;
+ }
+ case TK_RAISE: {
+ if( !pParse->trigStack ){
+ sqliteSetNString(&pParse->zErrMsg,
+ "RAISE() may only be used within a trigger-program", -1, 0);
+ pParse->nErr++;
+ return;
+ }
+ if( pExpr->iColumn == OE_Rollback ||
+ pExpr->iColumn == OE_Abort ||
+ pExpr->iColumn == OE_Fail ){
+ char * msg = sqliteStrNDup(pExpr->token.z, pExpr->token.n);
+ sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn);
+ sqliteDequote(msg);
+ sqliteVdbeChangeP3(v, -1, msg, 0);
+ sqliteFree(msg);
+ } else {
+ assert( pExpr->iColumn == OE_Ignore );
+ sqliteVdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
+ sqliteVdbeChangeP3(v, -1, "(IGNORE jump)", 0);
+ }
+ }
+ break;
+ }
+}
+
+/*
+** Generate code for a boolean expression such that a jump is made
+** to the label "dest" if the expression is true but execution
+** continues straight thru if the expression is false.
+**
+** If the expression evaluates to NULL (neither true nor false), then
+** take the jump if the jumpIfNull flag is true.
+*/
+void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+ Vdbe *v = pParse->pVdbe;
+ int op = 0;
+ if( v==0 || pExpr==0 ) return;
+ switch( pExpr->op ){
+ case TK_LT: op = OP_Lt; break;
+ case TK_LE: op = OP_Le; break;
+ case TK_GT: op = OP_Gt; break;
+ case TK_GE: op = OP_Ge; break;
+ case TK_NE: op = OP_Ne; break;
+ case TK_EQ: op = OP_Eq; break;
+ case TK_ISNULL: op = OP_IsNull; break;
+ case TK_NOTNULL: op = OP_NotNull; break;
+ default: break;
+ }
+ switch( pExpr->op ){
+ case TK_AND: {
+ int d2 = sqliteVdbeMakeLabel(v);
+ sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
+ sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
+ sqliteVdbeResolveLabel(v, d2);
+ break;
+ }
+ case TK_OR: {
+ sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
+ sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
+ break;
+ }
+ case TK_NOT: {
+ sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
+ break;
+ }
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteExprCode(pParse, pExpr->pRight);
+ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
+ op += 6; /* Convert numeric opcodes to text opcodes */
+ }
+ sqliteVdbeAddOp(v, op, jumpIfNull, dest);
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, op, 1, dest);
+ break;
+ }
+ case TK_IN: {
+ int addr;
+ sqliteExprCode(pParse, pExpr->pLeft);
+ addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
+ if( pExpr->pSelect ){
+ sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest);
+ }else{
+ sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest);
+ }
+ break;
+ }
+ case TK_BETWEEN: {
+ int addr;
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
+ addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0);
+ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
+ sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest);
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ break;
+ }
+ default: {
+ sqliteExprCode(pParse, pExpr);
+ sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest);
+ break;
+ }
+ }
+}
+
+/*
+** Generate code for a boolean expression such that a jump is made
+** to the label "dest" if the expression is false but execution
+** continues straight thru if the expression is true.
+**
+** If the expression evaluates to NULL (neither true nor false) then
+** jump if jumpIfNull is true or fall through if jumpIfNull is false.
+*/
+void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
+ Vdbe *v = pParse->pVdbe;
+ int op = 0;
+ if( v==0 || pExpr==0 ) return;
+ switch( pExpr->op ){
+ case TK_LT: op = OP_Ge; break;
+ case TK_LE: op = OP_Gt; break;
+ case TK_GT: op = OP_Le; break;
+ case TK_GE: op = OP_Lt; break;
+ case TK_NE: op = OP_Eq; break;
+ case TK_EQ: op = OP_Ne; break;
+ case TK_ISNULL: op = OP_NotNull; break;
+ case TK_NOTNULL: op = OP_IsNull; break;
+ default: break;
+ }
+ switch( pExpr->op ){
+ case TK_AND: {
+ sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
+ sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
+ break;
+ }
+ case TK_OR: {
+ int d2 = sqliteVdbeMakeLabel(v);
+ sqliteExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
+ sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
+ sqliteVdbeResolveLabel(v, d2);
+ break;
+ }
+ case TK_NOT: {
+ sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
+ break;
+ }
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_NE:
+ case TK_EQ: {
+ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
+ /* Convert numeric comparison opcodes into text comparison opcodes.
+ ** This step depends on the fact that the text comparision opcodes are
+ ** always 6 greater than their corresponding numeric comparison
+ ** opcodes.
+ */
+ assert( OP_Eq+6 == OP_StrEq );
+ op += 6;
+ }
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteExprCode(pParse, pExpr->pRight);
+ sqliteVdbeAddOp(v, op, jumpIfNull, dest);
+ break;
+ }
+ case TK_ISNULL:
+ case TK_NOTNULL: {
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, op, 1, dest);
+ break;
+ }
+ case TK_IN: {
+ int addr;
+ sqliteExprCode(pParse, pExpr->pLeft);
+ addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
+ if( pExpr->pSelect ){
+ sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest);
+ }else{
+ sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest);
+ }
+ break;
+ }
+ case TK_BETWEEN: {
+ int addr;
+ sqliteExprCode(pParse, pExpr->pLeft);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
+ addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_Ge, !jumpIfNull, addr+3);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, dest);
+ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
+ sqliteVdbeAddOp(v, OP_Gt, jumpIfNull, dest);
+ break;
+ }
+ default: {
+ sqliteExprCode(pParse, pExpr);
+ sqliteVdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
+ break;
+ }
+ }
+}
+
+/*
+** Do a deep comparison of two expression trees. Return TRUE (non-zero)
+** if they are identical and return FALSE if they differ in any way.
+*/
+int sqliteExprCompare(Expr *pA, Expr *pB){
+ int i;
+ if( pA==0 ){
+ return pB==0;
+ }else if( pB==0 ){
+ return 0;
+ }
+ if( pA->op!=pB->op ) return 0;
+ if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
+ if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
+ if( pA->pList ){
+ if( pB->pList==0 ) return 0;
+ if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
+ for(i=0; i<pA->pList->nExpr; i++){
+ if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
+ return 0;
+ }
+ }
+ }else if( pB->pList ){
+ return 0;
+ }
+ if( pA->pSelect || pB->pSelect ) return 0;
+ if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
+ if( pA->token.z ){
+ if( pB->token.z==0 ) return 0;
+ if( pB->token.n!=pA->token.n ) return 0;
+ if( sqliteStrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
+ }
+ return 1;
+}
+
+/*
+** Add a new element to the pParse->aAgg[] array and return its index.
+*/
+static int appendAggInfo(Parse *pParse){
+ if( (pParse->nAgg & 0x7)==0 ){
+ int amt = pParse->nAgg + 8;
+ AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
+ if( aAgg==0 ){
+ return -1;
+ }
+ pParse->aAgg = aAgg;
+ }
+ memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
+ return pParse->nAgg++;
+}
+
+/*
+** Analyze the given expression looking for aggregate functions and
+** for variables that need to be added to the pParse->aAgg[] array.
+** Make additional entries to the pParse->aAgg[] array as necessary.
+**
+** This routine should only be called after the expression has been
+** analyzed by sqliteExprResolveIds() and sqliteExprCheck().
+**
+** If errors are seen, leave an error message in zErrMsg and return
+** the number of errors.
+*/
+int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
+ int i;
+ AggExpr *aAgg;
+ int nErr = 0;
+
+ if( pExpr==0 ) return 0;
+ switch( pExpr->op ){
+ case TK_COLUMN: {
+ aAgg = pParse->aAgg;
+ for(i=0; i<pParse->nAgg; i++){
+ if( aAgg[i].isAgg ) continue;
+ if( aAgg[i].pExpr->iTable==pExpr->iTable
+ && aAgg[i].pExpr->iColumn==pExpr->iColumn ){
+ break;
+ }
+ }
+ if( i>=pParse->nAgg ){
+ i = appendAggInfo(pParse);
+ if( i<0 ) return 1;
+ pParse->aAgg[i].isAgg = 0;
+ pParse->aAgg[i].pExpr = pExpr;
+ }
+ pExpr->iAgg = i;
+ break;
+ }
+ case TK_AGG_FUNCTION: {
+ aAgg = pParse->aAgg;
+ for(i=0; i<pParse->nAgg; i++){
+ if( !aAgg[i].isAgg ) continue;
+ if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
+ break;
+ }
+ }
+ if( i>=pParse->nAgg ){
+ i = appendAggInfo(pParse);
+ if( i<0 ) return 1;
+ pParse->aAgg[i].isAgg = 1;
+ pParse->aAgg[i].pExpr = pExpr;
+ pParse->aAgg[i].pFunc = sqliteFindFunction(pParse->db,
+ pExpr->token.z, pExpr->token.n,
+ pExpr->pList ? pExpr->pList->nExpr : 0, 0);
+ }
+ pExpr->iAgg = i;
+ break;
+ }
+ default: {
+ if( pExpr->pLeft ){
+ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
+ }
+ if( nErr==0 && pExpr->pRight ){
+ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
+ }
+ if( nErr==0 && pExpr->pList ){
+ int n = pExpr->pList->nExpr;
+ int i;
+ for(i=0; nErr==0 && i<n; i++){
+ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
+ }
+ }
+ break;
+ }
+ }
+ return nErr;
+}
+
+/*
+** Locate a user function given a name and a number of arguments.
+** Return a pointer to the FuncDef structure that defines that
+** function, or return NULL if the function does not exist.
+**
+** If the createFlag argument is true, then a new (blank) FuncDef
+** structure is created and liked into the "db" structure if a
+** no matching function previously existed. When createFlag is true
+** and the nArg parameter is -1, then only a function that accepts
+** any number of arguments will be returned.
+**
+** If createFlag is false and nArg is -1, then the first valid
+** function found is returned. A function is valid if either xFunc
+** or xStep is non-zero.
+*/
+FuncDef *sqliteFindFunction(
+ sqlite *db, /* An open database */
+ const char *zName, /* Name of the function. Not null-terminated */
+ int nName, /* Number of characters in the name */
+ int nArg, /* Number of arguments. -1 means any number */
+ int createFlag /* Create new entry if true and does not otherwise exist */
+){
+ FuncDef *pFirst, *p, *pMaybe;
+ pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName);
+ if( p && !createFlag && nArg<0 ){
+ while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
+ return p;
+ }
+ pMaybe = 0;
+ while( p && p->nArg!=nArg ){
+ if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
+ p = p->pNext;
+ }
+ if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
+ return 0;
+ }
+ if( p==0 && pMaybe ){
+ assert( createFlag==0 );
+ return pMaybe;
+ }
+ if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){
+ p->nArg = nArg;
+ p->pNext = pFirst;
+ p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC;
+ sqliteHashInsert(&db->aFunc, zName, nName, (void*)p);
+ }
+ return p;
+}
--- /dev/null
+/*
+** 2002 February 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement various SQL
+** functions of SQLite.
+**
+** There is only one exported symbol in this file - the function
+** sqliteRegisterBuildinFunctions() found at the bottom of the file.
+** All other code has file scope.
+**
+** $Id$
+*/
+#include <ctype.h>
+#include <math.h>
+#include <stdlib.h>
+#include <assert.h>
+#include "sqliteInt.h"
+
+/*
+** Implementation of the non-aggregate min() and max() functions
+*/
+static void minFunc(sqlite_func *context, int argc, const char **argv){
+ const char *zBest;
+ int i;
+
+ if( argc==0 ) return;
+ zBest = argv[0];
+ if( zBest==0 ) return;
+ for(i=1; i<argc; i++){
+ if( argv[i]==0 ) return;
+ if( sqliteCompare(argv[i], zBest)<0 ){
+ zBest = argv[i];
+ }
+ }
+ sqlite_set_result_string(context, zBest, -1);
+}
+static void maxFunc(sqlite_func *context, int argc, const char **argv){
+ const char *zBest;
+ int i;
+
+ if( argc==0 ) return;
+ zBest = argv[0];
+ if( zBest==0 ) return;
+ for(i=1; i<argc; i++){
+ if( argv[i]==0 ) return;
+ if( sqliteCompare(argv[i], zBest)>0 ){
+ zBest = argv[i];
+ }
+ }
+ sqlite_set_result_string(context, zBest, -1);
+}
+
+/*
+** Implementation of the length() function
+*/
+static void lengthFunc(sqlite_func *context, int argc, const char **argv){
+ const char *z;
+ int len;
+
+ assert( argc==1 );
+ z = argv[0];
+ if( z==0 ) return;
+#ifdef SQLITE_UTF8
+ for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; }
+#else
+ len = strlen(z);
+#endif
+ sqlite_set_result_int(context, len);
+}
+
+/*
+** Implementation of the abs() function
+*/
+static void absFunc(sqlite_func *context, int argc, const char **argv){
+ const char *z;
+ assert( argc==1 );
+ z = argv[0];
+ if( z==0 ) return;
+ if( z[0]=='-' && isdigit(z[1]) ) z++;
+ sqlite_set_result_string(context, z, -1);
+}
+
+/*
+** Implementation of the substr() function
+*/
+static void substrFunc(sqlite_func *context, int argc, const char **argv){
+ const char *z;
+#ifdef SQLITE_UTF8
+ const char *z2;
+ int i;
+#endif
+ int p1, p2, len;
+ assert( argc==3 );
+ z = argv[0];
+ if( z==0 ) return;
+ p1 = atoi(argv[1]?argv[1]:0);
+ p2 = atoi(argv[2]?argv[2]:0);
+#ifdef SQLITE_UTF8
+ for(len=0, z2=z; *z2; z2++){ if( (0xc0&*z2)!=0x80 ) len++; }
+#else
+ len = strlen(z);
+#endif
+ if( p1<0 ){
+ p1 += len;
+ if( p1<0 ){
+ p2 += p1;
+ p1 = 0;
+ }
+ }else if( p1>0 ){
+ p1--;
+ }
+ if( p1+p2>len ){
+ p2 = len-p1;
+ }
+#ifdef SQLITE_UTF8
+ for(i=0; i<p1; i++){
+ assert( z[i] );
+ if( (z[i]&0xc0)==0x80 ) p1++;
+ }
+ while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p1++; }
+ for(; i<p1+p2; i++){
+ assert( z[i] );
+ if( (z[i]&0xc0)==0x80 ) p2++;
+ }
+ while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p2++; }
+#endif
+ if( p2<0 ) p2 = 0;
+ sqlite_set_result_string(context, &z[p1], p2);
+}
+
+/*
+** Implementation of the round() function
+*/
+static void roundFunc(sqlite_func *context, int argc, const char **argv){
+ int n;
+ double r;
+ char zBuf[100];
+ assert( argc==1 || argc==2 );
+ if( argv[0]==0 || (argc==2 && argv[1]==0) ) return;
+ n = argc==2 ? atoi(argv[1]) : 0;
+ if( n>30 ) n = 30;
+ if( n<0 ) n = 0;
+ r = atof(argv[0]);
+ sprintf(zBuf,"%.*f",n,r);
+ sqlite_set_result_string(context, zBuf, -1);
+}
+
+/*
+** Implementation of the upper() and lower() SQL functions.
+*/
+static void upperFunc(sqlite_func *context, int argc, const char **argv){
+ char *z;
+ int i;
+ if( argc<1 || argv[0]==0 ) return;
+ z = sqlite_set_result_string(context, argv[0], -1);
+ if( z==0 ) return;
+ for(i=0; z[i]; i++){
+ if( islower(z[i]) ) z[i] = toupper(z[i]);
+ }
+}
+static void lowerFunc(sqlite_func *context, int argc, const char **argv){
+ char *z;
+ int i;
+ if( argc<1 || argv[0]==0 ) return;
+ z = sqlite_set_result_string(context, argv[0], -1);
+ if( z==0 ) return;
+ for(i=0; z[i]; i++){
+ if( isupper(z[i]) ) z[i] = tolower(z[i]);
+ }
+}
+
+/*
+** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
+** All three do the same thing. They return the first argument
+** non-NULL argument.
+*/
+static void ifnullFunc(sqlite_func *context, int argc, const char **argv){
+ int i;
+ for(i=0; i<argc; i++){
+ if( argv[i] ){
+ sqlite_set_result_string(context, argv[i], -1);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of random(). Return a random integer.
+*/
+static void randomFunc(sqlite_func *context, int argc, const char **argv){
+ sqlite_set_result_int(context, sqliteRandomInteger());
+}
+
+/*
+** Implementation of the last_insert_rowid() SQL function. The return
+** value is the same as the sqlite_last_insert_rowid() API function.
+*/
+static void last_insert_rowid(sqlite_func *context, int arg, const char **argv){
+ sqlite *db = sqlite_user_data(context);
+ sqlite_set_result_int(context, sqlite_last_insert_rowid(db));
+}
+
+/*
+** Implementation of the like() SQL function. This function implements
+** the build-in LIKE operator. The first argument to the function is the
+** string and the second argument is the pattern. So, the SQL statements:
+**
+** A LIKE B
+**
+** is implemented as like(A,B).
+*/
+static void likeFunc(sqlite_func *context, int arg, const char **argv){
+ if( argv[0]==0 || argv[1]==0 ) return;
+ sqlite_set_result_int(context, sqliteLikeCompare(argv[0], argv[1]));
+}
+
+/*
+** Implementation of the glob() SQL function. This function implements
+** the build-in GLOB operator. The first argument to the function is the
+** string and the second argument is the pattern. So, the SQL statements:
+**
+** A GLOB B
+**
+** is implemented as glob(A,B).
+*/
+static void globFunc(sqlite_func *context, int arg, const char **argv){
+ if( argv[0]==0 || argv[1]==0 ) return;
+ sqlite_set_result_int(context, sqliteGlobCompare(argv[0], argv[1]));
+}
+
+/*
+** Implementation of the NULLIF(x,y) function. The result is the first
+** argument if the arguments are different. The result is NULL if the
+** arguments are equal to each other.
+*/
+static void nullifFunc(sqlite_func *context, int argc, const char **argv){
+ if( argv[0]!=0 && sqliteCompare(argv[0],argv[1])!=0 ){
+ sqlite_set_result_string(context, argv[0], -1);
+ }
+}
+
+/*
+** Implementation of the VERSION(*) function. The result is the version
+** of the SQLite library that is running.
+*/
+static void versionFunc(sqlite_func *context, int argc, const char **argv){
+ sqlite_set_result_string(context, sqlite_version, -1);
+}
+
+#ifdef SQLITE_TEST
+/*
+** This function generates a string of random characters. Used for
+** generating test data.
+*/
+static void randStr(sqlite_func *context, int argc, const char **argv){
+ static const char zSrc[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789"
+ ".-!,:*^+=_|?/<> ";
+ int iMin, iMax, n, r, i;
+ char zBuf[1000];
+ if( argc>=1 ){
+ iMin = atoi(argv[0]);
+ if( iMin<0 ) iMin = 0;
+ if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
+ }else{
+ iMin = 1;
+ }
+ if( argc>=2 ){
+ iMax = atoi(argv[1]);
+ if( iMax<iMin ) iMax = iMin;
+ if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf);
+ }else{
+ iMax = 50;
+ }
+ n = iMin;
+ if( iMax>iMin ){
+ r = sqliteRandomInteger();
+ if( r<0 ) r = -r;
+ n += r%(iMax + 1 - iMin);
+ }
+ r = 0;
+ for(i=0; i<n; i++){
+ r = (r + sqliteRandomByte())% (sizeof(zSrc)-1);
+ zBuf[i] = zSrc[r];
+ }
+ zBuf[n] = 0;
+ sqlite_set_result_string(context, zBuf, n);
+}
+#endif
+
+/*
+** An instance of the following structure holds the context of a
+** sum() or avg() aggregate computation.
+*/
+typedef struct SumCtx SumCtx;
+struct SumCtx {
+ double sum; /* Sum of terms */
+ int cnt; /* Number of elements summed */
+};
+
+/*
+** Routines used to compute the sum or average.
+*/
+static void sumStep(sqlite_func *context, int argc, const char **argv){
+ SumCtx *p;
+ if( argc<1 ) return;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p && argv[0] ){
+ p->sum += atof(argv[0]);
+ p->cnt++;
+ }
+}
+static void sumFinalize(sqlite_func *context){
+ SumCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ sqlite_set_result_double(context, p ? p->sum : 0.0);
+}
+static void avgFinalize(sqlite_func *context){
+ SumCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p && p->cnt>0 ){
+ sqlite_set_result_double(context, p->sum/(double)p->cnt);
+ }
+}
+
+/*
+** An instance of the following structure holds the context of a
+** variance or standard deviation computation.
+*/
+typedef struct StdDevCtx StdDevCtx;
+struct StdDevCtx {
+ double sum; /* Sum of terms */
+ double sum2; /* Sum of the squares of terms */
+ int cnt; /* Number of terms counted */
+};
+
+#if 0 /* Omit because math library is required */
+/*
+** Routines used to compute the standard deviation as an aggregate.
+*/
+static void stdDevStep(sqlite_func *context, int argc, const char **argv){
+ StdDevCtx *p;
+ double x;
+ if( argc<1 ) return;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p && argv[0] ){
+ x = atof(argv[0]);
+ p->sum += x;
+ p->sum2 += x*x;
+ p->cnt++;
+ }
+}
+static void stdDevFinalize(sqlite_func *context){
+ double rN = sqlite_aggregate_count(context);
+ StdDevCtx *p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p && p->cnt>1 ){
+ double rCnt = cnt;
+ sqlite_set_result_double(context,
+ sqrt((p->sum2 - p->sum*p->sum/rCnt)/(rCnt-1.0)));
+ }
+}
+#endif
+
+/*
+** The following structure keeps track of state information for the
+** count() aggregate function.
+*/
+typedef struct CountCtx CountCtx;
+struct CountCtx {
+ int n;
+};
+
+/*
+** Routines to implement the count() aggregate function.
+*/
+static void countStep(sqlite_func *context, int argc, const char **argv){
+ CountCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( (argc==0 || argv[0]) && p ){
+ p->n++;
+ }
+}
+static void countFinalize(sqlite_func *context){
+ CountCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ sqlite_set_result_int(context, p ? p->n : 0);
+}
+
+/*
+** This function tracks state information for the min() and max()
+** aggregate functions.
+*/
+typedef struct MinMaxCtx MinMaxCtx;
+struct MinMaxCtx {
+ char *z; /* The best so far */
+ char zBuf[28]; /* Space that can be used for storage */
+};
+
+/*
+** Routines to implement min() and max() aggregate functions.
+*/
+static void minStep(sqlite_func *context, int argc, const char **argv){
+ MinMaxCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p==0 || argc<1 || argv[0]==0 ) return;
+ if( p->z==0 || sqliteCompare(argv[0],p->z)<0 ){
+ int len;
+ if( p->z && p->z!=p->zBuf ){
+ sqliteFree(p->z);
+ }
+ len = strlen(argv[0]);
+ if( len < sizeof(p->zBuf) ){
+ p->z = p->zBuf;
+ }else{
+ p->z = sqliteMalloc( len+1 );
+ if( p->z==0 ) return;
+ }
+ strcpy(p->z, argv[0]);
+ }
+}
+static void maxStep(sqlite_func *context, int argc, const char **argv){
+ MinMaxCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p==0 || argc<1 || argv[0]==0 ) return;
+ if( p->z==0 || sqliteCompare(argv[0],p->z)>0 ){
+ int len;
+ if( p->z && p->z!=p->zBuf ){
+ sqliteFree(p->z);
+ }
+ len = strlen(argv[0]);
+ if( len < sizeof(p->zBuf) ){
+ p->z = p->zBuf;
+ }else{
+ p->z = sqliteMalloc( len+1 );
+ if( p->z==0 ) return;
+ }
+ strcpy(p->z, argv[0]);
+ }
+}
+static void minMaxFinalize(sqlite_func *context){
+ MinMaxCtx *p;
+ p = sqlite_aggregate_context(context, sizeof(*p));
+ if( p && p->z ){
+ sqlite_set_result_string(context, p->z, strlen(p->z));
+ }
+ if( p && p->z && p->z!=p->zBuf ){
+ sqliteFree(p->z);
+ }
+}
+
+/*
+** This function registered all of the above C functions as SQL
+** functions. This should be the only routine in this file with
+** external linkage.
+*/
+void sqliteRegisterBuiltinFunctions(sqlite *db){
+ static struct {
+ char *zName;
+ int nArg;
+ int dataType;
+ void (*xFunc)(sqlite_func*,int,const char**);
+ } aFuncs[] = {
+ { "min", -1, SQLITE_ARGS, minFunc },
+ { "min", 0, 0, 0 },
+ { "max", -1, SQLITE_ARGS, maxFunc },
+ { "max", 0, 0, 0 },
+ { "length", 1, SQLITE_NUMERIC, lengthFunc },
+ { "substr", 3, SQLITE_TEXT, substrFunc },
+ { "abs", 1, SQLITE_NUMERIC, absFunc },
+ { "round", 1, SQLITE_NUMERIC, roundFunc },
+ { "round", 2, SQLITE_NUMERIC, roundFunc },
+ { "upper", 1, SQLITE_TEXT, upperFunc },
+ { "lower", 1, SQLITE_TEXT, lowerFunc },
+ { "coalesce", -1, SQLITE_ARGS, ifnullFunc },
+ { "coalesce", 0, 0, 0 },
+ { "coalesce", 1, 0, 0 },
+ { "ifnull", 2, SQLITE_ARGS, ifnullFunc },
+ { "random", -1, SQLITE_NUMERIC, randomFunc },
+ { "like", 2, SQLITE_NUMERIC, likeFunc },
+ { "glob", 2, SQLITE_NUMERIC, globFunc },
+ { "nullif", 2, SQLITE_ARGS, nullifFunc },
+ { "sqlite_version",0,SQLITE_TEXT, versionFunc},
+#ifdef SQLITE_TEST
+ { "randstr", 2, SQLITE_TEXT, randStr },
+#endif
+ };
+ static struct {
+ char *zName;
+ int nArg;
+ int dataType;
+ void (*xStep)(sqlite_func*,int,const char**);
+ void (*xFinalize)(sqlite_func*);
+ } aAggs[] = {
+ { "min", 1, 0, minStep, minMaxFinalize },
+ { "max", 1, 0, maxStep, minMaxFinalize },
+ { "sum", 1, SQLITE_NUMERIC, sumStep, sumFinalize },
+ { "avg", 1, SQLITE_NUMERIC, sumStep, avgFinalize },
+ { "count", 0, SQLITE_NUMERIC, countStep, countFinalize },
+ { "count", 1, SQLITE_NUMERIC, countStep, countFinalize },
+#if 0
+ { "stddev", 1, SQLITE_NUMERIC, stdDevStep, stdDevFinalize },
+#endif
+ };
+ int i;
+
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
+ sqlite_create_function(db, aFuncs[i].zName,
+ aFuncs[i].nArg, aFuncs[i].xFunc, 0);
+ if( aFuncs[i].xFunc ){
+ sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType);
+ }
+ }
+ sqlite_create_function(db, "last_insert_rowid", 0,
+ last_insert_rowid, db);
+ sqlite_function_type(db, "last_insert_rowid", SQLITE_NUMERIC);
+ for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
+ sqlite_create_aggregate(db, aAggs[i].zName,
+ aAggs[i].nArg, aAggs[i].xStep, aAggs[i].xFinalize, 0);
+ sqlite_function_type(db, aAggs[i].zName, aAggs[i].dataType);
+ }
+}
--- /dev/null
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of generic hash-tables
+** used in SQLite.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+#include <assert.h>
+
+/* Turn bulk memory into a hash table object by initializing the
+** fields of the Hash structure.
+**
+** "new" is a pointer to the hash table that is to be initialized.
+** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
+** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
+** determines what kind of key the hash table will use. "copyKey" is
+** true if the hash table should make its own private copy of keys and
+** false if it should just use the supplied pointer. CopyKey only makes
+** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
+** for other key classes.
+*/
+void sqliteHashInit(Hash *new, int keyClass, int copyKey){
+ assert( new!=0 );
+ assert( keyClass>=SQLITE_HASH_INT && keyClass<=SQLITE_HASH_BINARY );
+ new->keyClass = keyClass;
+ new->copyKey = copyKey &&
+ (keyClass==SQLITE_HASH_STRING || keyClass==SQLITE_HASH_BINARY);
+ new->first = 0;
+ new->count = 0;
+ new->htsize = 0;
+ new->ht = 0;
+}
+
+/* Remove all entries from a hash table. Reclaim all memory.
+** Call this routine to delete a hash table or to reset a hash table
+** to the empty state.
+*/
+void sqliteHashClear(Hash *pH){
+ HashElem *elem; /* For looping over all elements of the table */
+
+ assert( pH!=0 );
+ elem = pH->first;
+ pH->first = 0;
+ if( pH->ht ) sqliteFree(pH->ht);
+ pH->ht = 0;
+ pH->htsize = 0;
+ while( elem ){
+ HashElem *next_elem = elem->next;
+ if( pH->copyKey && elem->pKey ){
+ sqliteFree(elem->pKey);
+ }
+ sqliteFree(elem);
+ elem = next_elem;
+ }
+ pH->count = 0;
+}
+
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_INT
+*/
+static int intHash(const void *pKey, int nKey){
+ return nKey ^ (nKey<<8) ^ (nKey>>8);
+}
+static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ return n2 - n1;
+}
+
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
+*/
+static int ptrHash(const void *pKey, int nKey){
+ uptr x = Addr(pKey);
+ return x ^ (x<<8) ^ (x>>8);
+}
+static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( pKey1==pKey2 ) return 0;
+ if( pKey1<pKey2 ) return -1;
+ return 1;
+}
+
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_STRING
+*/
+static int strHash(const void *pKey, int nKey){
+ return sqliteHashNoCase((const char*)pKey, nKey);
+}
+static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return n2-n1;
+ return sqliteStrNICmp((const char*)pKey1,(const char*)pKey2,n1);
+}
+
+/*
+** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
+*/
+static int binHash(const void *pKey, int nKey){
+ int h = 0;
+ const char *z = (const char *)pKey;
+ while( nKey-- > 0 ){
+ h = (h<<3) ^ h ^ *(z++);
+ }
+ if( h<0 ) h = -h;
+ return h;
+}
+static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
+ if( n1!=n2 ) return n2-n1;
+ return memcmp(pKey1,pKey2,n1);
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** The C syntax in this function definition may be unfamilar to some
+** programmers, so we provide the following additional explanation:
+**
+** The name of the function is "hashFunction". The function takes a
+** single parameter "keyClass". The return value of hashFunction()
+** is a pointer to another function. Specifically, the return value
+** of hashFunction() is a pointer to a function that takes two parameters
+** with types "const void*" and "int" and returns an "int".
+*/
+static int (*hashFunction(int keyClass))(const void*,int){
+ switch( keyClass ){
+ case SQLITE_HASH_INT: return &intHash;
+ case SQLITE_HASH_POINTER: return &ptrHash;
+ case SQLITE_HASH_STRING: return &strHash;
+ case SQLITE_HASH_BINARY: return &binHash;;
+ default: break;
+ }
+ return 0;
+}
+
+/*
+** Return a pointer to the appropriate hash function given the key class.
+**
+** For help in interpreted the obscure C code in the function definition,
+** see the header comment on the previous function.
+*/
+static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
+ switch( keyClass ){
+ case SQLITE_HASH_INT: return &intCompare;
+ case SQLITE_HASH_POINTER: return &ptrCompare;
+ case SQLITE_HASH_STRING: return &strCompare;
+ case SQLITE_HASH_BINARY: return &binCompare;
+ default: break;
+ }
+ return 0;
+}
+
+
+/* Resize the hash table so that it cantains "new_size" buckets.
+** "new_size" must be a power of 2. The hash table might fail
+** to resize if sqliteMalloc() fails.
+*/
+static void rehash(Hash *pH, int new_size){
+ struct _ht *new_ht; /* The new hash table */
+ HashElem *elem, *next_elem; /* For looping over existing elements */
+ HashElem *x; /* Element being copied to new hash table */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( (new_size & (new_size-1))==0 );
+ new_ht = (struct _ht *)sqliteMalloc( new_size*sizeof(struct _ht) );
+ if( new_ht==0 ) return;
+ if( pH->ht ) sqliteFree(pH->ht);
+ pH->ht = new_ht;
+ pH->htsize = new_size;
+ xHash = hashFunction(pH->keyClass);
+ for(elem=pH->first, pH->first=0; elem; elem = next_elem){
+ int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
+ next_elem = elem->next;
+ x = new_ht[h].chain;
+ if( x ){
+ elem->next = x;
+ elem->prev = x->prev;
+ if( x->prev ) x->prev->next = elem;
+ else pH->first = elem;
+ x->prev = elem;
+ }else{
+ elem->next = pH->first;
+ if( pH->first ) pH->first->prev = elem;
+ elem->prev = 0;
+ pH->first = elem;
+ }
+ new_ht[h].chain = elem;
+ new_ht[h].count++;
+ }
+}
+
+/* This function (for internal use only) locates an element in an
+** hash table that matches the given key. The hash for this key has
+** already been computed and is passed as the 4th parameter.
+*/
+static HashElem *findElementGivenHash(
+ const Hash *pH, /* The pH to be searched */
+ const void *pKey, /* The key we are searching for */
+ int nKey,
+ int h /* The hash for this key. */
+){
+ HashElem *elem; /* Used to loop thru the element list */
+ int count; /* Number of elements left to test */
+ int (*xCompare)(const void*,int,const void*,int); /* comparison function */
+
+ if( pH->ht ){
+ elem = pH->ht[h].chain;
+ count = pH->ht[h].count;
+ xCompare = compareFunction(pH->keyClass);
+ while( count-- && elem ){
+ if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
+ return elem;
+ }
+ elem = elem->next;
+ }
+ }
+ return 0;
+}
+
+/* Remove a single entry from the hash table given a pointer to that
+** element and a hash on the element's key.
+*/
+static void removeElementGivenHash(
+ Hash *pH, /* The pH containing "elem" */
+ HashElem* elem, /* The element to be removed from the pH */
+ int h /* Hash value for the element */
+){
+ if( elem->prev ){
+ elem->prev->next = elem->next;
+ }else{
+ pH->first = elem->next;
+ }
+ if( elem->next ){
+ elem->next->prev = elem->prev;
+ }
+ if( pH->ht[h].chain==elem ){
+ pH->ht[h].chain = elem->next;
+ }
+ pH->ht[h].count--;
+ if( pH->ht[h].count<=0 ){
+ pH->ht[h].chain = 0;
+ }
+ if( pH->copyKey && elem->pKey ){
+ sqliteFree(elem->pKey);
+ }
+ sqliteFree( elem );
+ pH->count--;
+}
+
+/* Attempt to locate an element of the hash table pH with a key
+** that matches pKey,nKey. Return the data for this element if it is
+** found, or NULL if there is no match.
+*/
+void *sqliteHashFind(const Hash *pH, const void *pKey, int nKey){
+ int h; /* A hash on key */
+ HashElem *elem; /* The element that matches key */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ if( pH==0 || pH->ht==0 ) return 0;
+ xHash = hashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ h = (*xHash)(pKey,nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
+ return elem ? elem->data : 0;
+}
+
+/* Insert an element into the hash table pH. The key is pKey,nKey
+** and the data is "data".
+**
+** If no element exists with a matching key, then a new
+** element is created. A copy of the key is made if the copyKey
+** flag is set. NULL is returned.
+**
+** If another element already exists with the same key, then the
+** new data replaces the old data and the old data is returned.
+** The key is not copied in this instance. If a malloc fails, then
+** the new data is returned and the hash table is unchanged.
+**
+** If the "data" parameter to this function is NULL, then the
+** element corresponding to "key" is removed from the hash table.
+*/
+void *sqliteHashInsert(Hash *pH, const void *pKey, int nKey, void *data){
+ int hraw; /* Raw hash value of the key */
+ int h; /* the hash of the key modulo hash table size */
+ HashElem *elem; /* Used to loop thru the element list */
+ HashElem *new_elem; /* New element added to the pH */
+ int (*xHash)(const void*,int); /* The hash function */
+
+ assert( pH!=0 );
+ xHash = hashFunction(pH->keyClass);
+ assert( xHash!=0 );
+ hraw = (*xHash)(pKey, nKey);
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ elem = findElementGivenHash(pH,pKey,nKey,h);
+ if( elem ){
+ void *old_data = elem->data;
+ if( data==0 ){
+ removeElementGivenHash(pH,elem,h);
+ }else{
+ elem->data = data;
+ }
+ return old_data;
+ }
+ if( data==0 ) return 0;
+ new_elem = (HashElem*)sqliteMalloc( sizeof(HashElem) );
+ if( new_elem==0 ) return data;
+ if( pH->copyKey && pKey!=0 ){
+ new_elem->pKey = sqliteMallocRaw( nKey );
+ if( new_elem->pKey==0 ){
+ sqliteFree(new_elem);
+ return data;
+ }
+ memcpy((void*)new_elem->pKey, pKey, nKey);
+ }else{
+ new_elem->pKey = (void*)pKey;
+ }
+ new_elem->nKey = nKey;
+ pH->count++;
+ if( pH->htsize==0 ) rehash(pH,8);
+ if( pH->htsize==0 ){
+ pH->count = 0;
+ sqliteFree(new_elem);
+ return data;
+ }
+ if( pH->count > pH->htsize ){
+ rehash(pH,pH->htsize*2);
+ }
+ assert( (pH->htsize & (pH->htsize-1))==0 );
+ h = hraw & (pH->htsize-1);
+ elem = pH->ht[h].chain;
+ if( elem ){
+ new_elem->next = elem;
+ new_elem->prev = elem->prev;
+ if( elem->prev ){ elem->prev->next = new_elem; }
+ else { pH->first = new_elem; }
+ elem->prev = new_elem;
+ }else{
+ new_elem->next = pH->first;
+ new_elem->prev = 0;
+ if( pH->first ){ pH->first->prev = new_elem; }
+ pH->first = new_elem;
+ }
+ pH->ht[h].count++;
+ pH->ht[h].chain = new_elem;
+ new_elem->data = data;
+ return 0;
+}
--- /dev/null
+/*
+** 2001 September 22
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the header file for the generic hash-table implemenation
+** used in SQLite.
+**
+** $Id$
+*/
+#ifndef _SQLITE_HASH_H_
+#define _SQLITE_HASH_H_
+
+/* Forward declarations of structures. */
+typedef struct Hash Hash;
+typedef struct HashElem HashElem;
+
+/* A complete hash table is an instance of the following structure.
+** The internals of this structure are intended to be opaque -- client
+** code should not attempt to access or modify the fields of this structure
+** directly. Change this structure only by using the routines below.
+** However, many of the "procedures" and "functions" for modifying and
+** accessing this structure are really macros, so we can't really make
+** this structure opaque.
+*/
+struct Hash {
+ char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
+ char copyKey; /* True if copy of key made on insert */
+ int count; /* Number of entries in this table */
+ HashElem *first; /* The first element of the array */
+ int htsize; /* Number of buckets in the hash table */
+ struct _ht { /* the hash table */
+ int count; /* Number of entries with this hash */
+ HashElem *chain; /* Pointer to first entry with this hash */
+ } *ht;
+};
+
+/* Each element in the hash table is an instance of the following
+** structure. All elements are stored on a single doubly-linked list.
+**
+** Again, this structure is intended to be opaque, but it can't really
+** be opaque because it is used by macros.
+*/
+struct HashElem {
+ HashElem *next, *prev; /* Next and previous elements in the table */
+ void *data; /* Data associated with this element */
+ void *pKey; int nKey; /* Key associated with this element */
+};
+
+/*
+** There are 4 different modes of operation for a hash table:
+**
+** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
+**
+** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
+**
+** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
+** (including the null-terminator, if any). Case
+** is ignored in comparisons.
+**
+** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
+** memcmp() is used to compare keys.
+**
+** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
+** if the copyKey parameter to HashInit is 1.
+*/
+#define SQLITE_HASH_INT 1
+#define SQLITE_HASH_POINTER 2
+#define SQLITE_HASH_STRING 3
+#define SQLITE_HASH_BINARY 4
+
+/*
+** Access routines. To delete, insert a NULL pointer.
+*/
+void sqliteHashInit(Hash*, int keytype, int copyKey);
+void *sqliteHashInsert(Hash*, const void *pKey, int nKey, void *pData);
+void *sqliteHashFind(const Hash*, const void *pKey, int nKey);
+void sqliteHashClear(Hash*);
+
+/*
+** Macros for looping over all elements of a hash table. The idiom is
+** like this:
+**
+** Hash h;
+** HashElem *p;
+** ...
+** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
+** SomeStructure *pData = sqliteHashData(p);
+** // do something with pData
+** }
+*/
+#define sqliteHashFirst(H) ((H)->first)
+#define sqliteHashNext(E) ((E)->next)
+#define sqliteHashData(E) ((E)->data)
+#define sqliteHashKey(E) ((E)->pKey)
+#define sqliteHashKeysize(E) ((E)->nKey)
+
+/*
+** Number of entries in a hash table
+*/
+#define sqliteHashCount(H) ((H)->count)
+
+#endif /* _SQLITE_HASH_H_ */
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle INSERT statements in SQLite.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+
+/*
+** This routine is call to handle SQL of the following forms:
+**
+** insert into TABLE (IDLIST) values(EXPRLIST)
+** insert into TABLE (IDLIST) select
+**
+** The IDLIST following the table name is always optional. If omitted,
+** then a list of all columns for the table is substituted. The IDLIST
+** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
+**
+** The pList parameter holds EXPRLIST in the first form of the INSERT
+** statement above, and pSelect is NULL. For the second form, pList is
+** NULL and pSelect is a pointer to the select statement used to generate
+** data for the insert.
+**
+** The code generated follows one of three templates. For a simple
+** select with data coming from a VALUES clause, the code executes
+** once straight down through. The template looks like this:
+**
+** open write cursor to <table> and its indices
+** puts VALUES clause expressions onto the stack
+** write the resulting record into <table>
+** cleanup
+**
+** If the statement is of the form
+**
+** INSERT INTO <table> SELECT ...
+**
+** And the SELECT clause does not read from <table> at any time, then
+** the generated code follows this template:
+**
+** goto B
+** A: setup for the SELECT
+** loop over the tables in the SELECT
+** gosub C
+** end loop
+** cleanup after the SELECT
+** goto D
+** B: open write cursor to <table> and its indices
+** goto A
+** C: insert the select result into <table>
+** return
+** D: cleanup
+**
+** The third template is used if the insert statement takes its
+** values from a SELECT but the data is being inserted into a table
+** that is also read as part of the SELECT. In the third form,
+** we have to use a intermediate table to store the results of
+** the select. The template is like this:
+**
+** goto B
+** A: setup for the SELECT
+** loop over the tables in the SELECT
+** gosub C
+** end loop
+** cleanup after the SELECT
+** goto D
+** C: insert the select result into the intermediate table
+** return
+** B: open a cursor to an intermediate table
+** goto A
+** D: open write cursor to <table> and its indices
+** loop over the intermediate table
+** transfer values form intermediate table into <table>
+** end the loop
+** cleanup
+*/
+void sqliteInsert(
+ Parse *pParse, /* Parser context */
+ Token *pTableName, /* Name of table into which we are inserting */
+ ExprList *pList, /* List of values to be inserted */
+ Select *pSelect, /* A SELECT statement to use as the data source */
+ IdList *pColumn, /* Column names corresponding to IDLIST. */
+ int onError /* How to handle constraint errors */
+){
+ Table *pTab; /* The table to insert into */
+ char *zTab = 0; /* Name of the table into which we are inserting */
+ int i, j, idx; /* Loop counters */
+ Vdbe *v; /* Generate code into this virtual machine */
+ Index *pIdx; /* For looping over indices of the table */
+ int nColumn; /* Number of columns in the data */
+ int base; /* First available cursor */
+ int iCont, iBreak; /* Beginning and end of the loop over srcTab */
+ sqlite *db; /* The main database structure */
+ int openOp; /* Opcode used to open cursors */
+ int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
+ int endOfLoop; /* Label for the end of the insertion loop */
+ int useTempTable; /* Store SELECT results in intermediate table */
+ int srcTab; /* Data comes from this temporary cursor if >=0 */
+ int iSelectLoop; /* Address of code that implements the SELECT */
+ int iCleanup; /* Address of the cleanup code */
+ int iInsertBlock; /* Address of the subroutine used to insert data */
+ int iCntMem; /* Memory cell used for the row counter */
+
+ int row_triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
+ int newIdx = -1;
+
+ if( pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
+ db = pParse->db;
+
+ /* Locate the table into which we will be inserting new information.
+ */
+ zTab = sqliteTableNameFromToken(pTableName);
+ if( zTab==0 ) goto insert_cleanup;
+ pTab = sqliteFindTable(pParse->db, zTab);
+ if( pTab==0 ){
+ sqliteSetString(&pParse->zErrMsg, "no such table: ", zTab, 0);
+ pParse->nErr++;
+ goto insert_cleanup;
+ }
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0) ){
+ goto insert_cleanup;
+ }
+
+ /* Ensure that:
+ * (a) the table is not read-only,
+ * (b) that if it is a view then ON INSERT triggers exist
+ */
+ row_triggers_exist =
+ sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT,
+ TK_BEFORE, TK_ROW, 0) ||
+ sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT, TK_AFTER, TK_ROW, 0);
+ if( pTab->readOnly || (pTab->pSelect && !row_triggers_exist) ){
+ sqliteSetString(&pParse->zErrMsg,
+ pTab->pSelect ? "view " : "table ",
+ zTab,
+ " may not be modified", 0);
+ pParse->nErr++;
+ goto insert_cleanup;
+ }
+ sqliteFree(zTab);
+ zTab = 0;
+
+ if( pTab==0 ) goto insert_cleanup;
+
+ /* If pTab is really a view, make sure it has been initialized.
+ */
+ if( pTab->pSelect ){
+ if( sqliteViewGetColumnNames(pParse, pTab) ){
+ goto insert_cleanup;
+ }
+ }
+
+ /* Allocate a VDBE
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) goto insert_cleanup;
+ sqliteBeginWriteOperation(pParse, pSelect || row_triggers_exist,
+ !row_triggers_exist && pTab->isTemp);
+
+ /* if there are row triggers, allocate a temp table for new.* references. */
+ if( row_triggers_exist ){
+ newIdx = pParse->nTab++;
+ }
+
+ /* Figure out how many columns of data are supplied. If the data
+ ** is coming from a SELECT statement, then this step also generates
+ ** all the code to implement the SELECT statement and invoke a subroutine
+ ** to process each row of the result. (Template 2.) If the SELECT
+ ** statement uses the the table that is being inserted into, then the
+ ** subroutine is also coded here. That subroutine stores the SELECT
+ ** results in a temporary table. (Template 3.)
+ */
+ if( pSelect ){
+ /* Data is coming from a SELECT. Generate code to implement that SELECT
+ */
+ int rc, iInitCode;
+ int opCode;
+ iInitCode = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
+ iSelectLoop = sqliteVdbeCurrentAddr(v);
+ iInsertBlock = sqliteVdbeMakeLabel(v);
+ rc = sqliteSelect(pParse, pSelect, SRT_Subroutine, iInsertBlock, 0,0,0);
+ if( rc || pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
+ iCleanup = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Goto, 0, iCleanup);
+ assert( pSelect->pEList );
+ nColumn = pSelect->pEList->nExpr;
+
+ /* Set useTempTable to TRUE if the result of the SELECT statement
+ ** should be written into a temporary table. Set to FALSE if each
+ ** row of the SELECT can be written directly into the result table.
+ */
+ opCode = pTab->isTemp ? OP_OpenTemp : OP_Open;
+ useTempTable = row_triggers_exist || sqliteVdbeFindOp(v,opCode,pTab->tnum);
+
+ if( useTempTable ){
+ /* Generate the subroutine that SELECT calls to process each row of
+ ** the result. Store the result in a temporary table
+ */
+ srcTab = pParse->nTab++;
+ sqliteVdbeResolveLabel(v, iInsertBlock);
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+ sqliteVdbeAddOp(v, OP_NewRecno, srcTab, 0);
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, srcTab, 0);
+ sqliteVdbeAddOp(v, OP_Return, 0, 0);
+
+ /* The following code runs first because the GOTO at the very top
+ ** of the program jumps to it. Create the temporary table, then jump
+ ** back up and execute the SELECT code above.
+ */
+ sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
+ sqliteVdbeAddOp(v, OP_OpenTemp, srcTab, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
+ sqliteVdbeResolveLabel(v, iCleanup);
+ }else{
+ sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
+ }
+ }else{
+ /* This is the case if the data for the INSERT is coming from a VALUES
+ ** clause
+ */
+ SrcList dummy;
+ assert( pList!=0 );
+ srcTab = -1;
+ useTempTable = 0;
+ assert( pList );
+ nColumn = pList->nExpr;
+ dummy.nSrc = 0;
+ for(i=0; i<nColumn; i++){
+ if( sqliteExprResolveIds(pParse, 0, &dummy, 0, pList->a[i].pExpr) ){
+ goto insert_cleanup;
+ }
+ if( sqliteExprCheck(pParse, pList->a[i].pExpr, 0, 0) ){
+ goto insert_cleanup;
+ }
+ }
+ }
+
+ /* Make sure the number of columns in the source data matches the number
+ ** of columns to be inserted into the table.
+ */
+ if( pColumn==0 && nColumn!=pTab->nCol ){
+ char zNum1[30];
+ char zNum2[30];
+ sprintf(zNum1,"%d", nColumn);
+ sprintf(zNum2,"%d", pTab->nCol);
+ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName,
+ " has ", zNum2, " columns but ",
+ zNum1, " values were supplied", 0);
+ pParse->nErr++;
+ goto insert_cleanup;
+ }
+ if( pColumn!=0 && nColumn!=pColumn->nId ){
+ char zNum1[30];
+ char zNum2[30];
+ sprintf(zNum1,"%d", nColumn);
+ sprintf(zNum2,"%d", pColumn->nId);
+ sqliteSetString(&pParse->zErrMsg, zNum1, " values for ",
+ zNum2, " columns", 0);
+ pParse->nErr++;
+ goto insert_cleanup;
+ }
+
+ /* If the INSERT statement included an IDLIST term, then make sure
+ ** all elements of the IDLIST really are columns of the table and
+ ** remember the column indices.
+ **
+ ** If the table has an INTEGER PRIMARY KEY column and that column
+ ** is named in the IDLIST, then record in the keyColumn variable
+ ** the index into IDLIST of the primary key column. keyColumn is
+ ** the index of the primary key as it appears in IDLIST, not as
+ ** is appears in the original table. (The index of the primary
+ ** key in the original table is pTab->iPKey.)
+ */
+ if( pColumn ){
+ for(i=0; i<pColumn->nId; i++){
+ pColumn->a[i].idx = -1;
+ }
+ for(i=0; i<pColumn->nId; i++){
+ for(j=0; j<pTab->nCol; j++){
+ if( sqliteStrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
+ pColumn->a[i].idx = j;
+ if( j==pTab->iPKey ){
+ keyColumn = i;
+ }
+ break;
+ }
+ }
+ if( j>=pTab->nCol ){
+ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName,
+ " has no column named ", pColumn->a[i].zName, 0);
+ pParse->nErr++;
+ goto insert_cleanup;
+ }
+ }
+ }
+
+ /* If there is no IDLIST term but the table has an integer primary
+ ** key, the set the keyColumn variable to the primary key column index
+ ** in the original table definition.
+ */
+ if( pColumn==0 ){
+ keyColumn = pTab->iPKey;
+ }
+
+ /* Open the temp table for FOR EACH ROW triggers
+ */
+ if( row_triggers_exist ){
+ sqliteVdbeAddOp(v, OP_OpenTemp, newIdx, 0);
+ }
+
+ /* Initialize the count of rows to be inserted
+ */
+ if( db->flags & SQLITE_CountRows ){
+ iCntMem = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, iCntMem, 1);
+ }
+
+ /* Open tables and indices if there are no row triggers */
+ if( !row_triggers_exist ){
+ base = pParse->nTab;
+ openOp = pTab->isTemp ? OP_OpenWrAux : OP_OpenWrite;
+ sqliteVdbeAddOp(v, openOp, base, pTab->tnum);
+ sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
+ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
+ sqliteVdbeAddOp(v, openOp, idx+base, pIdx->tnum);
+ sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC);
+ }
+ pParse->nTab += idx;
+ }
+
+ /* If the data source is a temporary table, then we have to create
+ ** a loop because there might be multiple rows of data. If the data
+ ** source is a subroutine call from the SELECT statement, then we need
+ ** to launch the SELECT statement processing.
+ */
+ if( useTempTable ){
+ iBreak = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Rewind, srcTab, iBreak);
+ iCont = sqliteVdbeCurrentAddr(v);
+ }else if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
+ sqliteVdbeResolveLabel(v, iInsertBlock);
+ }
+
+ endOfLoop = sqliteVdbeMakeLabel(v);
+ if( row_triggers_exist ){
+
+ /* build the new.* reference row */
+ sqliteVdbeAddOp(v, OP_Integer, 13, 0);
+ for(i=0; i<pTab->nCol; i++){
+ if( pColumn==0 ){
+ j = i;
+ }else{
+ for(j=0; j<pColumn->nId; j++){
+ if( pColumn->a[j].idx==i ) break;
+ }
+ }
+ if( pColumn && j>=pColumn->nId ){
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC);
+ }else if( useTempTable ){
+ sqliteVdbeAddOp(v, OP_Column, srcTab, j);
+ }else if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Dup, nColumn-j-1, 1);
+ }else{
+ sqliteExprCode(pParse, pList->a[j].pExpr);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
+ sqliteVdbeAddOp(v, OP_Rewind, newIdx, 0);
+
+ /* Fire BEFORE triggers */
+ if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_BEFORE, pTab, newIdx, -1,
+ onError, endOfLoop) ){
+ goto insert_cleanup;
+ }
+
+ /* Open the tables and indices for the INSERT */
+ if( !pTab->pSelect ){
+ base = pParse->nTab;
+ openOp = pTab->isTemp ? OP_OpenWrAux : OP_OpenWrite;
+ sqliteVdbeAddOp(v, openOp, base, pTab->tnum);
+ sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
+ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
+ sqliteVdbeAddOp(v, openOp, idx+base, pIdx->tnum);
+ sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC);
+ }
+ pParse->nTab += idx;
+ }
+ }
+
+ /* Push the record number for the new entry onto the stack. The
+ ** record number is a randomly generate integer created by NewRecno
+ ** except when the table has an INTEGER PRIMARY KEY column, in which
+ ** case the record number is the same as that column.
+ */
+ if( !pTab->pSelect ){
+ if( keyColumn>=0 ){
+ if( useTempTable ){
+ sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
+ }else if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
+ }else{
+ sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
+ }
+ /* If the PRIMARY KEY expression is NULL, then use OP_NewRecno
+ ** to generate a unique primary key value.
+ */
+ sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
+ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
+ }
+
+ /* Push onto the stack, data for all columns of the new entry, beginning
+ ** with the first column.
+ */
+ for(i=0; i<pTab->nCol; i++){
+ if( i==pTab->iPKey ){
+ /* The value of the INTEGER PRIMARY KEY column is always a NULL.
+ ** Whenever this column is read, the record number will be substituted
+ ** in its place. So will fill this column with a NULL to avoid
+ ** taking up data space with information that will never be used. */
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ continue;
+ }
+ if( pColumn==0 ){
+ j = i;
+ }else{
+ for(j=0; j<pColumn->nId; j++){
+ if( pColumn->a[j].idx==i ) break;
+ }
+ }
+ if( pColumn && j>=pColumn->nId ){
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC);
+ }else if( useTempTable ){
+ sqliteVdbeAddOp(v, OP_Column, srcTab, j);
+ }else if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Dup, i+nColumn-j, 1);
+ }else{
+ sqliteExprCode(pParse, pList->a[j].pExpr);
+ }
+ }
+
+ /* Generate code to check constraints and generate index keys and
+ ** do the insertion.
+ */
+ sqliteGenerateConstraintChecks(pParse, pTab, base, 0,0,0,onError,endOfLoop);
+ sqliteCompleteInsertion(pParse, pTab, base, 0,0,0);
+
+ /* Update the count of rows that are inserted
+ */
+ if( (db->flags & SQLITE_CountRows)!=0 ){
+ sqliteVdbeAddOp(v, OP_MemIncr, iCntMem, 0);
+ }
+ }
+
+ if( row_triggers_exist ){
+ /* Close all tables opened */
+ if( !pTab->pSelect ){
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
+ sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
+ }
+ }
+
+ /* Code AFTER triggers */
+ if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_AFTER, pTab, newIdx, -1,
+ onError, endOfLoop) ){
+ goto insert_cleanup;
+ }
+ }
+
+ /* The bottom of the loop, if the data source is a SELECT statement
+ */
+ sqliteVdbeResolveLabel(v, endOfLoop);
+ if( useTempTable ){
+ sqliteVdbeAddOp(v, OP_Next, srcTab, iCont);
+ sqliteVdbeResolveLabel(v, iBreak);
+ sqliteVdbeAddOp(v, OP_Close, srcTab, 0);
+ }else if( pSelect ){
+ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
+ sqliteVdbeAddOp(v, OP_Return, 0, 0);
+ sqliteVdbeResolveLabel(v, iCleanup);
+ }
+
+ if( !row_triggers_exist ){
+ /* Close all tables opened */
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
+ sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
+ }
+ }
+
+ sqliteEndWriteOperation(pParse);
+
+ /*
+ ** Return the number of rows inserted.
+ */
+ if( db->flags & SQLITE_CountRows ){
+ sqliteVdbeAddOp(v, OP_ColumnName, 0, 0);
+ sqliteVdbeChangeP3(v, -1, "rows inserted", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_MemLoad, iCntMem, 0);
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
+ }
+
+insert_cleanup:
+ if( pList ) sqliteExprListDelete(pList);
+ if( pSelect ) sqliteSelectDelete(pSelect);
+ if ( zTab ) sqliteFree(zTab);
+ sqliteIdListDelete(pColumn);
+}
+
+/*
+** Generate code to do a constraint check prior to an INSERT or an UPDATE.
+**
+** When this routine is called, the stack contains (from bottom to top)
+** the following values:
+**
+** 1. The recno of the row to be updated before it is updated. This
+** value is omitted unless we are doing an UPDATE that involves a
+** change to the record number.
+**
+** 2. The recno of the row after the update.
+**
+** 3. The data in the first column of the entry after the update.
+**
+** i. Data from middle columns...
+**
+** N. The data in the last column of the entry after the update.
+**
+** The old recno shown as entry (1) above is omitted unless both isUpdate
+** and recnoChng are 1. isUpdate is true for UPDATEs and false for
+** INSERTs and recnoChng is true if the record number is being changed.
+**
+** The code generated by this routine pushes additional entries onto
+** the stack which are the keys for new index entries for the new record.
+** The order of index keys is the same as the order of the indices on
+** the pTable->pIndex list. A key is only created for index i if
+** aIdxUsed!=0 and aIdxUsed[i]!=0.
+**
+** This routine also generates code to check constraints. NOT NULL,
+** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
+** then the appropriate action is performed. There are five possible
+** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
+**
+** Constraint type Action What Happens
+** --------------- ---------- ----------------------------------------
+** any ROLLBACK The current transaction is rolled back and
+** sqlite_exec() returns immediately with a
+** return code of SQLITE_CONSTRAINT.
+**
+** any ABORT Back out changes from the current command
+** only (do not do a complete rollback) then
+** cause sqlite_exec() to return immediately
+** with SQLITE_CONSTRAINT.
+**
+** any FAIL Sqlite_exec() returns immediately with a
+** return code of SQLITE_CONSTRAINT. The
+** transaction is not rolled back and any
+** prior changes are retained.
+**
+** any IGNORE The record number and data is popped from
+** the stack and there is an immediate jump
+** to label ignoreDest.
+**
+** NOT NULL REPLACE The NULL value is replace by the default
+** value for that column. If the default value
+** is NULL, the action is the same as ABORT.
+**
+** UNIQUE REPLACE The other row that conflicts with the row
+** being inserted is removed.
+**
+** CHECK REPLACE Illegal. The results in an exception.
+**
+** Which action to take is determined by the overrideError parameter.
+** Or if overrideError==OE_Default, then the pParse->onError parameter
+** is used. Or if pParse->onError==OE_Default then the onError value
+** for the constraint is used.
+**
+** The calling routine must open a read/write cursor for pTab with
+** cursor number "base". All indices of pTab must also have open
+** read/write cursors with cursor number base+i for the i-th cursor.
+** Except, if there is no possibility of a REPLACE action then
+** cursors do not need to be open for indices where aIdxUsed[i]==0.
+**
+** If the isUpdate flag is true, it means that the "base" cursor is
+** initially pointing to an entry that is being updated. The isUpdate
+** flag causes extra code to be generated so that the "base" cursor
+** is still pointing at the same entry after the routine returns.
+** Without the isUpdate flag, the "base" cursor might be moved.
+*/
+void sqliteGenerateConstraintChecks(
+ Parse *pParse, /* The parser context */
+ Table *pTab, /* the table into which we are inserting */
+ int base, /* Index of a read/write cursor pointing at pTab */
+ char *aIdxUsed, /* Which indices are used. NULL means all are used */
+ int recnoChng, /* True if the record number will change */
+ int isUpdate, /* True for UPDATE, False for INSERT */
+ int overrideError, /* Override onError to this if not OE_Default */
+ int ignoreDest /* Jump to this label on an OE_Ignore resolution */
+){
+ int i;
+ Vdbe *v;
+ int nCol;
+ int onError;
+ int addr;
+ int extra;
+ int iCur;
+ Index *pIdx;
+ int seenReplace = 0;
+ int jumpInst1, jumpInst2;
+ int contAddr;
+ int hasTwoRecnos = (isUpdate && recnoChng);
+
+ v = sqliteGetVdbe(pParse);
+ assert( v!=0 );
+ assert( pTab->pSelect==0 ); /* This table is not a VIEW */
+ nCol = pTab->nCol;
+
+ /* Test all NOT NULL constraints.
+ */
+ for(i=0; i<nCol; i++){
+ if( i==pTab->iPKey ){
+ /* Fix me: Make sure the INTEGER PRIMARY KEY is not NULL. */
+ continue;
+ }
+ onError = pTab->aCol[i].notNull;
+ if( onError==OE_None ) continue;
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = pParse->db->onError;
+ if( onError==OE_Default ) onError = OE_Abort;
+ }
+ if( onError==OE_Replace && pTab->aCol[i].zDflt==0 ){
+ onError = OE_Abort;
+ }
+ sqliteVdbeAddOp(v, OP_Dup, nCol-1-i, 1);
+ addr = sqliteVdbeAddOp(v, OP_NotNull, 1, 0);
+ switch( onError ){
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ char *zMsg = 0;
+ sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
+ sqliteSetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
+ " may not be NULL", 0);
+ sqliteVdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
+ break;
+ }
+ case OE_Ignore: {
+ sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
+ break;
+ }
+ case OE_Replace: {
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Push, nCol-i, 0);
+ break;
+ }
+ default: assert(0);
+ }
+ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
+ }
+
+ /* Test all CHECK constraints
+ */
+ /**** TBD ****/
+
+ /* If we have an INTEGER PRIMARY KEY, make sure the primary key
+ ** of the new record does not previously exist. Except, if this
+ ** is an UPDATE and the primary key is not changing, that is OK.
+ ** Also, if the conflict resolution policy is REPLACE, then we
+ ** can skip this test.
+ */
+ if( (recnoChng || !isUpdate) && pTab->iPKey>=0 ){
+ onError = pTab->keyConf;
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = pParse->db->onError;
+ if( onError==OE_Default ) onError = OE_Abort;
+ }
+ if( onError!=OE_Replace ){
+ if( isUpdate ){
+ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
+ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
+ jumpInst1 = sqliteVdbeAddOp(v, OP_Eq, 0, 0);
+ }
+ sqliteVdbeAddOp(v, OP_Dup, nCol, 1);
+ jumpInst2 = sqliteVdbeAddOp(v, OP_NotExists, base, 0);
+ switch( onError ){
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
+ sqliteVdbeChangeP3(v, -1, "PRIMARY KEY must be unique", P3_STATIC);
+ break;
+ }
+ case OE_Ignore: {
+ sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
+ break;
+ }
+ default: assert(0);
+ }
+ contAddr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeChangeP2(v, jumpInst2, contAddr);
+ if( isUpdate ){
+ sqliteVdbeChangeP2(v, jumpInst1, contAddr);
+ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
+ }
+ }
+ }
+
+ /* Test all UNIQUE constraints by creating entries for each UNIQUE
+ ** index and making sure that duplicate entries do not already exist.
+ ** Add the new records to the indices as we go.
+ */
+ extra = 0;
+ for(extra=(-1), iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
+ if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;
+ extra++;
+ sqliteVdbeAddOp(v, OP_Dup, nCol+extra, 1);
+ for(i=0; i<pIdx->nColumn; i++){
+ int idx = pIdx->aiColumn[i];
+ if( idx==pTab->iPKey ){
+ sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
+ }else{
+ sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
+ }
+ }
+ jumpInst1 = sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
+ if( pParse->db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
+ onError = pIdx->onError;
+ if( onError==OE_None ) continue;
+ if( overrideError!=OE_Default ){
+ onError = overrideError;
+ }else if( onError==OE_Default ){
+ onError = pParse->db->onError;
+ if( onError==OE_Default ) onError = OE_Abort;
+ }
+ sqliteVdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRecnos, 1);
+ jumpInst2 = sqliteVdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
+ switch( onError ){
+ case OE_Rollback:
+ case OE_Abort:
+ case OE_Fail: {
+ sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
+ sqliteVdbeChangeP3(v, -1, "uniqueness constraint failed", P3_STATIC);
+ break;
+ }
+ case OE_Ignore: {
+ assert( seenReplace==0 );
+ sqliteVdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRecnos, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
+ break;
+ }
+ case OE_Replace: {
+ sqliteGenerateRowDelete(pParse->db, v, pTab, base, 0);
+ if( isUpdate ){
+ sqliteVdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRecnos, 1);
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
+ }
+ seenReplace = 1;
+ break;
+ }
+ default: assert(0);
+ }
+ contAddr = sqliteVdbeCurrentAddr(v);
+#if NULL_DISTINCT_FOR_UNIQUE
+ sqliteVdbeChangeP2(v, jumpInst1, contAddr);
+#endif
+ sqliteVdbeChangeP2(v, jumpInst2, contAddr);
+ }
+}
+
+/*
+** This routine generates code to finish the INSERT or UPDATE operation
+** that was started by a prior call to sqliteGenerateConstraintChecks.
+** The stack must contain keys for all active indices followed by data
+** and the recno for the new entry. This routine creates the new
+** entries in all indices and in the main table.
+**
+** The arguments to this routine should be the same as the first six
+** arguments to sqliteGenerateConstraintChecks.
+*/
+void sqliteCompleteInsertion(
+ Parse *pParse, /* The parser context */
+ Table *pTab, /* the table into which we are inserting */
+ int base, /* Index of a read/write cursor pointing at pTab */
+ char *aIdxUsed, /* Which indices are used. NULL means all are used */
+ int recnoChng, /* True if the record number will change */
+ int isUpdate /* True for UPDATE, False for INSERT */
+){
+ int i;
+ Vdbe *v;
+ int nIdx;
+ Index *pIdx;
+
+ v = sqliteGetVdbe(pParse);
+ assert( v!=0 );
+ assert( pTab->pSelect==0 ); /* This table is not a VIEW */
+ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
+ for(i=nIdx-1; i>=0; i--){
+ if( aIdxUsed && aIdxUsed[i]==0 ) continue;
+ sqliteVdbeAddOp(v, OP_IdxPut, base+i+1, 0);
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, base, pParse->trigStack?0:1);
+ if( isUpdate && recnoChng ){
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ }
+}
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Main file for the SQLite library. The routines in this file
+** implement the programmer interface to the library. Routines in
+** other files are for internal use by SQLite and should not be
+** accessed by users of the library.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+#include "os.h"
+#include <ctype.h>
+
+/*
+** A pointer to this structure is used to communicate information
+** from sqliteInit into the sqliteInitCallback.
+*/
+typedef struct {
+ sqlite *db; /* The database being initialized */
+ char **pzErrMsg; /* Error message stored here */
+} InitData;
+
+
+/*
+** This is the callback routine for the code that initializes the
+** database. See sqliteInit() below for additional information.
+**
+** Each callback contains the following information:
+**
+** argv[0] = "file-format" or "schema-cookie" or "table" or "index"
+** argv[1] = table or index name or meta statement type.
+** argv[2] = root page number for table or index. NULL for meta.
+** argv[3] = SQL text for a CREATE TABLE or CREATE INDEX statement.
+** argv[4] = "1" for temporary files, "0" for main database
+**
+*/
+static
+int sqliteInitCallback(void *pInit, int argc, char **argv, char **azColName){
+ InitData *pData = (InitData*)pInit;
+ Parse sParse;
+ int nErr = 0;
+
+ /* TODO: Do some validity checks on all fields. In particular,
+ ** make sure fields do not contain NULLs. Otherwise we might core
+ ** when attempting to initialize from a corrupt database file. */
+
+ assert( argc==5 );
+ switch( argv[0][0] ){
+ case 'v':
+ case 'i':
+ case 't': { /* CREATE TABLE, CREATE INDEX, or CREATE VIEW statements */
+ if( argv[3] && argv[3][0] ){
+ /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
+ ** But because sParse.initFlag is set to 1, no VDBE code is generated
+ ** or executed. All the parser does is build the internal data
+ ** structures that describe the table, index, or view.
+ */
+ memset(&sParse, 0, sizeof(sParse));
+ sParse.db = pData->db;
+ sParse.initFlag = 1;
+ sParse.isTemp = argv[4][0] - '0';
+ sParse.newTnum = atoi(argv[2]);
+ sParse.useCallback = 1;
+ sqliteRunParser(&sParse, argv[3], pData->pzErrMsg);
+ }else{
+ /* If the SQL column is blank it means this is an index that
+ ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
+ ** constraint for a CREATE TABLE. The index should have already
+ ** been created when we processed the CREATE TABLE. All we have
+ ** to do here is record the root page number for that index.
+ */
+ Index *pIndex = sqliteFindIndex(pData->db, argv[1]);
+ if( pIndex==0 || pIndex->tnum!=0 ){
+ /* This can occur if there exists an index on a TEMP table which
+ ** has the same name as another index on a permanent index. Since
+ ** the permanent table is hidden by the TEMP table, we can also
+ ** safely ignore the index on the permanent table.
+ */
+ /* Do Nothing */;
+ }else{
+ pIndex->tnum = atoi(argv[2]);
+ }
+ }
+ break;
+ }
+ default: {
+ /* This can not happen! */
+ nErr = 1;
+ assert( nErr==0 );
+ }
+ }
+ return nErr;
+}
+
+/*
+** This is a callback procedure used to reconstruct a table. The
+** name of the table to be reconstructed is passed in as argv[0].
+**
+** This routine is used to automatically upgrade a database from
+** format version 1 or 2 to version 3. The correct operation of
+** this routine relys on the fact that no indices are used when
+** copying a table out to a temporary file.
+*/
+static
+int upgrade_3_callback(void *pInit, int argc, char **argv, char **NotUsed){
+ InitData *pData = (InitData*)pInit;
+ int rc;
+ Table *pTab;
+ Trigger *pTrig;
+ char *zErr = 0;
+
+ pTab = sqliteFindTable(pData->db, argv[0]);
+ assert( pTab!=0 );
+ assert( sqliteStrICmp(pTab->zName, argv[0])==0 );
+ if( pTab ){
+ pTrig = pTab->pTrigger;
+ pTab->pTrigger = 0; /* Disable all triggers before rebuilding the table */
+ }
+ rc = sqlite_exec_printf(pData->db,
+ "CREATE TEMP TABLE sqlite_x AS SELECT * FROM '%q'; "
+ "DELETE FROM '%q'; "
+ "INSERT INTO '%q' SELECT * FROM sqlite_x; "
+ "DROP TABLE sqlite_x;",
+ 0, 0, &zErr, argv[0], argv[0], argv[0]);
+ if( zErr ){
+ sqliteSetString(pData->pzErrMsg, zErr, 0);
+ sqlite_freemem(zErr);
+ }
+
+ /* If an error occurred in the SQL above, then the transaction will
+ ** rollback which will delete the internal symbol tables. This will
+ ** cause the structure that pTab points to be deleted. In case that
+ ** happened, we need to refetch pTab.
+ */
+ pTab = sqliteFindTable(pData->db, argv[0]);
+ if( pTab ){
+ assert( sqliteStrICmp(pTab->zName, argv[0])==0 );
+ pTab->pTrigger = pTrig; /* Re-enable triggers */
+ }
+ return rc!=SQLITE_OK;
+}
+
+
+
+/*
+** Attempt to read the database schema and initialize internal
+** data structures. Return one of the SQLITE_ error codes to
+** indicate success or failure.
+**
+** After the database is initialized, the SQLITE_Initialized
+** bit is set in the flags field of the sqlite structure. An
+** attempt is made to initialize the database as soon as it
+** is opened. If that fails (perhaps because another process
+** has the sqlite_master table locked) than another attempt
+** is made the first time the database is accessed.
+*/
+int sqliteInit(sqlite *db, char **pzErrMsg){
+ int rc;
+ BtCursor *curMain;
+ int size;
+ Table *pTab;
+ char *azArg[6];
+ int meta[SQLITE_N_BTREE_META];
+ Parse sParse;
+ InitData initData;
+
+ /*
+ ** The master database table has a structure like this
+ */
+ static char master_schema[] =
+ "CREATE TABLE sqlite_master(\n"
+ " type text,\n"
+ " name text,\n"
+ " tbl_name text,\n"
+ " rootpage integer,\n"
+ " sql text\n"
+ ")"
+ ;
+ static char temp_master_schema[] =
+ "CREATE TEMP TABLE sqlite_temp_master(\n"
+ " type text,\n"
+ " name text,\n"
+ " tbl_name text,\n"
+ " rootpage integer,\n"
+ " sql text\n"
+ ")"
+ ;
+
+ /* The following SQL will read the schema from the master tables.
+ ** The first version works with SQLite file formats 2 or greater.
+ ** The second version is for format 1 files.
+ **
+ ** Beginning with file format 2, the rowid for new table entries
+ ** (including entries in sqlite_master) is an increasing integer.
+ ** So for file format 2 and later, we can play back sqlite_master
+ ** and all the CREATE statements will appear in the right order.
+ ** But with file format 1, table entries were random and so we
+ ** have to make sure the CREATE TABLEs occur before their corresponding
+ ** CREATE INDEXs. (We don't have to deal with CREATE VIEW or
+ ** CREATE TRIGGER in file format 1 because those constructs did
+ ** not exist then.)
+ */
+ static char init_script[] =
+ "SELECT type, name, rootpage, sql, 1 FROM sqlite_temp_master "
+ "UNION ALL "
+ "SELECT type, name, rootpage, sql, 0 FROM sqlite_master";
+ static char older_init_script[] =
+ "SELECT type, name, rootpage, sql, 1 FROM sqlite_temp_master "
+ "UNION ALL "
+ "SELECT type, name, rootpage, sql, 0 FROM sqlite_master "
+ "WHERE type='table' "
+ "UNION ALL "
+ "SELECT type, name, rootpage, sql, 0 FROM sqlite_master "
+ "WHERE type='index'";
+
+
+ /* Construct the schema tables: sqlite_master and sqlite_temp_master
+ */
+ azArg[0] = "table";
+ azArg[1] = MASTER_NAME;
+ azArg[2] = "2";
+ azArg[3] = master_schema;
+ azArg[4] = "0";
+ azArg[5] = 0;
+ initData.db = db;
+ initData.pzErrMsg = pzErrMsg;
+ sqliteInitCallback(&initData, 5, azArg, 0);
+ pTab = sqliteFindTable(db, MASTER_NAME);
+ if( pTab ){
+ pTab->readOnly = 1;
+ }
+ azArg[1] = TEMP_MASTER_NAME;
+ azArg[3] = temp_master_schema;
+ azArg[4] = "1";
+ sqliteInitCallback(&initData, 5, azArg, 0);
+ pTab = sqliteFindTable(db, TEMP_MASTER_NAME);
+ if( pTab ){
+ pTab->readOnly = 1;
+ }
+
+ /* Create a cursor to hold the database open
+ */
+ if( db->pBe==0 ) return SQLITE_OK;
+ rc = sqliteBtreeCursor(db->pBe, 2, 0, &curMain);
+ if( rc ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(rc), 0);
+ sqliteResetInternalSchema(db);
+ return rc;
+ }
+
+ /* Get the database meta information
+ */
+ rc = sqliteBtreeGetMeta(db->pBe, meta);
+ if( rc ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(rc), 0);
+ sqliteResetInternalSchema(db);
+ sqliteBtreeCloseCursor(curMain);
+ return rc;
+ }
+ db->schema_cookie = meta[1];
+ db->next_cookie = db->schema_cookie;
+ db->file_format = meta[2];
+ size = meta[3];
+ if( size==0 ){ size = MAX_PAGES; }
+ db->cache_size = size;
+ sqliteBtreeSetCacheSize(db->pBe, size);
+ db->safety_level = meta[4];
+ if( db->safety_level==0 ) db->safety_level = 2;
+ sqliteBtreeSetSafetyLevel(db->pBe, db->safety_level);
+
+ /*
+ ** file_format==1 Version 2.1.0.
+ ** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY.
+ ** file_format==3 Version 2.6.0. Fix empty-string index bug.
+ ** file_format==4 Version 2.7.0. Add support for separate numeric and
+ ** text datatypes.
+ */
+ if( db->file_format==0 ){
+ /* This happens if the database was initially empty */
+ db->file_format = 4;
+ }else if( db->file_format>4 ){
+ sqliteBtreeCloseCursor(curMain);
+ sqliteSetString(pzErrMsg, "unsupported file format", 0);
+ return SQLITE_ERROR;
+ }
+
+ /* Read the schema information out of the schema tables
+ */
+ memset(&sParse, 0, sizeof(sParse));
+ sParse.db = db;
+ sParse.pBe = db->pBe;
+ sParse.xCallback = sqliteInitCallback;
+ sParse.pArg = (void*)&initData;
+ sParse.initFlag = 1;
+ sParse.useCallback = 1;
+ sqliteRunParser(&sParse,
+ db->file_format>=2 ? init_script : older_init_script,
+ pzErrMsg);
+ if( sqlite_malloc_failed ){
+ sqliteSetString(pzErrMsg, "out of memory", 0);
+ sParse.rc = SQLITE_NOMEM;
+ sqliteBtreeRollback(db->pBe);
+ sqliteResetInternalSchema(db);
+ }
+ if( sParse.rc==SQLITE_OK ){
+ db->flags |= SQLITE_Initialized;
+ sqliteCommitInternalChanges(db);
+ }else{
+ db->flags &= ~SQLITE_Initialized;
+ sqliteResetInternalSchema(db);
+ }
+ sqliteBtreeCloseCursor(curMain);
+ return sParse.rc;
+}
+
+/*
+** The version of the library
+*/
+const char rcsid[] = "@(#) \044Id: SQLite version " SQLITE_VERSION " $";
+const char sqlite_version[] = SQLITE_VERSION;
+
+/*
+** Does the library expect data to be encoded as UTF-8 or iso8859? The
+** following global constant always lets us know.
+*/
+#ifdef SQLITE_UTF8
+const char sqlite_encoding[] = "UTF-8";
+#else
+const char sqlite_encoding[] = "iso8859";
+#endif
+
+/*
+** Open a new SQLite database. Construct an "sqlite" structure to define
+** the state of this database and return a pointer to that structure.
+**
+** An attempt is made to initialize the in-memory data structures that
+** hold the database schema. But if this fails (because the schema file
+** is locked) then that step is deferred until the first call to
+** sqlite_exec().
+*/
+sqlite *sqlite_open(const char *zFilename, int mode, char **pzErrMsg){
+ sqlite *db;
+ int rc;
+
+ /* Allocate the sqlite data structure */
+ db = sqliteMalloc( sizeof(sqlite) );
+ if( pzErrMsg ) *pzErrMsg = 0;
+ if( db==0 ) goto no_mem_on_open;
+ sqliteHashInit(&db->tblHash, SQLITE_HASH_STRING, 0);
+ sqliteHashInit(&db->idxHash, SQLITE_HASH_STRING, 0);
+ sqliteHashInit(&db->trigHash, SQLITE_HASH_STRING, 0);
+ sqliteHashInit(&db->aFunc, SQLITE_HASH_STRING, 1);
+ sqliteHashInit(&db->aFKey, SQLITE_HASH_STRING, 1);
+ db->onError = OE_Default;
+ db->priorNewRowid = 0;
+ db->magic = SQLITE_MAGIC_BUSY;
+
+ /* Open the backend database driver */
+ rc = sqliteBtreeOpen(zFilename, 0, MAX_PAGES, &db->pBe);
+ if( rc!=SQLITE_OK ){
+ switch( rc ){
+ default: {
+ sqliteSetString(pzErrMsg, "unable to open database: ", zFilename, 0);
+ }
+ }
+ sqliteFree(db);
+ sqliteStrRealloc(pzErrMsg);
+ return 0;
+ }
+
+ /* Attempt to read the schema */
+ sqliteRegisterBuiltinFunctions(db);
+ rc = sqliteInit(db, pzErrMsg);
+ db->magic = SQLITE_MAGIC_OPEN;
+ if( sqlite_malloc_failed ){
+ sqlite_close(db);
+ goto no_mem_on_open;
+ }else if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
+ sqlite_close(db);
+ sqliteStrRealloc(pzErrMsg);
+ return 0;
+ }else if( pzErrMsg ){
+ sqliteFree(*pzErrMsg);
+ *pzErrMsg = 0;
+ }
+
+ /* If the database is in formats 1 or 2, then upgrade it to
+ ** version 3. This will reconstruct all indices. If the
+ ** upgrade fails for any reason (ex: out of disk space, database
+ ** is read only, interrupt received, etc.) then refuse to open.
+ */
+ if( rc==SQLITE_OK && db->file_format<3 ){
+ char *zErr = 0;
+ InitData initData;
+ int meta[SQLITE_N_BTREE_META];
+
+ initData.db = db;
+ initData.pzErrMsg = &zErr;
+ db->file_format = 3;
+ rc = sqlite_exec(db,
+ "BEGIN; SELECT name FROM sqlite_master WHERE type='table';",
+ upgrade_3_callback,
+ &initData,
+ &zErr);
+ if( rc==SQLITE_OK ){
+ sqliteBtreeGetMeta(db->pBe, meta);
+ meta[2] = 4;
+ sqliteBtreeUpdateMeta(db->pBe, meta);
+ sqlite_exec(db, "COMMIT", 0, 0, 0);
+ }
+ if( rc!=SQLITE_OK ){
+ sqliteSetString(pzErrMsg,
+ "unable to upgrade database to the version 2.6 format",
+ zErr ? ": " : 0, zErr, 0);
+ sqlite_freemem(zErr);
+ sqliteStrRealloc(pzErrMsg);
+ sqlite_close(db);
+ return 0;
+ }
+ sqlite_freemem(zErr);
+ }
+
+ /* Return a pointer to the newly opened database structure */
+ return db;
+
+no_mem_on_open:
+ sqliteSetString(pzErrMsg, "out of memory", 0);
+ sqliteStrRealloc(pzErrMsg);
+ return 0;
+}
+
+/*
+** Return the ROWID of the most recent insert
+*/
+int sqlite_last_insert_rowid(sqlite *db){
+ return db->lastRowid;
+}
+
+/*
+** Return the number of changes in the most recent call to sqlite_exec().
+*/
+int sqlite_changes(sqlite *db){
+ return db->nChange;
+}
+
+/*
+** Close an existing SQLite database
+*/
+void sqlite_close(sqlite *db){
+ HashElem *i;
+ db->want_to_close = 1;
+ if( sqliteSafetyCheck(db) || sqliteSafetyOn(db) ){
+ /* printf("DID NOT CLOSE\n"); fflush(stdout); */
+ return;
+ }
+ db->magic = SQLITE_MAGIC_CLOSED;
+ sqliteBtreeClose(db->pBe);
+ sqliteResetInternalSchema(db);
+ if( db->pBeTemp ){
+ sqliteBtreeClose(db->pBeTemp);
+ }
+ for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
+ FuncDef *pFunc, *pNext;
+ for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
+ pNext = pFunc->pNext;
+ sqliteFree(pFunc);
+ }
+ }
+ sqliteHashClear(&db->aFunc);
+ sqliteHashClear(&db->aFKey);
+ sqliteFree(db);
+}
+
+/*
+** Return TRUE if the given SQL string ends in a semicolon.
+**
+** Special handling is require for CREATE TRIGGER statements.
+** Whenever the CREATE TRIGGER keywords are seen, the statement
+** must end with ";END;".
+*/
+int sqlite_complete(const char *zSql){
+ int isComplete = 1;
+ int requireEnd = 0;
+ int seenText = 0;
+ int seenCreate = 0;
+ while( *zSql ){
+ switch( *zSql ){
+ case ';': {
+ isComplete = 1;
+ seenText = 1;
+ seenCreate = 0;
+ break;
+ }
+ case ' ':
+ case '\t':
+ case '\n':
+ case '\f': {
+ break;
+ }
+ case '[': {
+ isComplete = 0;
+ seenText = 1;
+ seenCreate = 0;
+ zSql++;
+ while( *zSql && *zSql!=']' ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ break;
+ }
+ case '"':
+ case '\'': {
+ int c = *zSql;
+ isComplete = 0;
+ seenText = 1;
+ seenCreate = 0;
+ zSql++;
+ while( *zSql && *zSql!=c ){ zSql++; }
+ if( *zSql==0 ) return 0;
+ break;
+ }
+ case '-': {
+ if( zSql[1]!='-' ){
+ isComplete = 0;
+ seenCreate = 0;
+ break;
+ }
+ while( *zSql && *zSql!='\n' ){ zSql++; }
+ if( *zSql==0 ) return seenText && isComplete && requireEnd==0;
+ break;
+ }
+ case 'c':
+ case 'C': {
+ seenText = 1;
+ if( !isComplete ) break;
+ isComplete = 0;
+ if( sqliteStrNICmp(zSql, "create", 6)!=0 ) break;
+ if( !isspace(zSql[6]) ) break;
+ zSql += 5;
+ seenCreate = 1;
+ while( isspace(zSql[1]) ) zSql++;
+ if( sqliteStrNICmp(&zSql[1],"trigger", 7)!=0 ) break;
+ zSql += 7;
+ requireEnd++;
+ break;
+ }
+ case 't':
+ case 'T': {
+ seenText = 1;
+ if( !seenCreate ) break;
+ seenCreate = 0;
+ isComplete = 0;
+ if( sqliteStrNICmp(zSql, "trigger", 7)!=0 ) break;
+ if( !isspace(zSql[7]) ) break;
+ zSql += 6;
+ requireEnd++;
+ break;
+ }
+ case 'e':
+ case 'E': {
+ seenCreate = 0;
+ seenText = 1;
+ if( !isComplete ) break;
+ isComplete = 0;
+ if( requireEnd==0 ) break;
+ if( sqliteStrNICmp(zSql, "end", 3)!=0 ) break;
+ zSql += 2;
+ while( isspace(zSql[1]) ) zSql++;
+ if( zSql[1]==';' ){
+ zSql++;
+ isComplete = 1;
+ requireEnd--;
+ }
+ break;
+ }
+ default: {
+ seenCreate = 0;
+ seenText = 1;
+ isComplete = 0;
+ break;
+ }
+ }
+ zSql++;
+ }
+ return seenText && isComplete && requireEnd==0;
+}
+
+/*
+** This routine does the work of either sqlite_exec() or sqlite_compile().
+** It works like sqlite_exec() if pVm==NULL and it works like sqlite_compile()
+** otherwise.
+*/
+static int sqliteMain(
+ sqlite *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ sqlite_callback xCallback, /* Invoke this callback routine */
+ void *pArg, /* First argument to xCallback() */
+ const char **pzTail, /* OUT: Next statement after the first */
+ sqlite_vm **ppVm, /* OUT: The virtual machine */
+ char **pzErrMsg /* OUT: Write error messages here */
+){
+ Parse sParse;
+
+ if( pzErrMsg ) *pzErrMsg = 0;
+ if( sqliteSafetyOn(db) ) goto exec_misuse;
+ if( (db->flags & SQLITE_Initialized)==0 ){
+ int rc, cnt = 1;
+ while( (rc = sqliteInit(db, pzErrMsg))==SQLITE_BUSY
+ && db->xBusyCallback && db->xBusyCallback(db->pBusyArg, "", cnt++)!=0 ){}
+ if( rc!=SQLITE_OK ){
+ sqliteStrRealloc(pzErrMsg);
+ sqliteSafetyOff(db);
+ return rc;
+ }
+ if( pzErrMsg ){
+ sqliteFree(*pzErrMsg);
+ *pzErrMsg = 0;
+ }
+ }
+ if( db->file_format<3 ){
+ sqliteSafetyOff(db);
+ sqliteSetString(pzErrMsg, "obsolete database file format", 0);
+ return SQLITE_ERROR;
+ }
+ if( db->pVdbe==0 ){ db->nChange = 0; }
+ memset(&sParse, 0, sizeof(sParse));
+ sParse.db = db;
+ sParse.pBe = db->pBe;
+ sParse.xCallback = xCallback;
+ sParse.pArg = pArg;
+ sParse.useCallback = ppVm==0;
+#ifndef SQLITE_OMIT_TRACE
+ if( db->xTrace ) db->xTrace(db->pTraceArg, zSql);
+#endif
+ sqliteRunParser(&sParse, zSql, pzErrMsg);
+ if( sqlite_malloc_failed ){
+ sqliteSetString(pzErrMsg, "out of memory", 0);
+ sParse.rc = SQLITE_NOMEM;
+ sqliteBtreeRollback(db->pBe);
+ if( db->pBeTemp ) sqliteBtreeRollback(db->pBeTemp);
+ db->flags &= ~SQLITE_InTrans;
+ sqliteResetInternalSchema(db);
+ }
+ if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
+ if( sParse.rc!=SQLITE_OK && pzErrMsg && *pzErrMsg==0 ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(sParse.rc), 0);
+ }
+ sqliteStrRealloc(pzErrMsg);
+ if( sParse.rc==SQLITE_SCHEMA ){
+ sqliteResetInternalSchema(db);
+ }
+ if( sParse.useCallback==0 ){
+ assert( ppVm );
+ *ppVm = (sqlite_vm*)sParse.pVdbe;
+ *pzTail = sParse.zTail;
+ }
+ if( sqliteSafetyOff(db) ) goto exec_misuse;
+ return sParse.rc;
+
+exec_misuse:
+ if( pzErrMsg ){
+ *pzErrMsg = 0;
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), 0);
+ sqliteStrRealloc(pzErrMsg);
+ }
+ return SQLITE_MISUSE;
+}
+
+/*
+** Execute SQL code. Return one of the SQLITE_ success/failure
+** codes. Also write an error message into memory obtained from
+** malloc() and make *pzErrMsg point to that message.
+**
+** If the SQL is a query, then for each row in the query result
+** the xCallback() function is called. pArg becomes the first
+** argument to xCallback(). If xCallback=NULL then no callback
+** is invoked, even for queries.
+*/
+int sqlite_exec(
+ sqlite *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ sqlite_callback xCallback, /* Invoke this callback routine */
+ void *pArg, /* First argument to xCallback() */
+ char **pzErrMsg /* Write error messages here */
+){
+ return sqliteMain(db, zSql, xCallback, pArg, 0, 0, pzErrMsg);
+}
+
+/*
+** Compile a single statement of SQL into a virtual machine. Return one
+** of the SQLITE_ success/failure codes. Also write an error message into
+** memory obtained from malloc() and make *pzErrMsg point to that message.
+*/
+int sqlite_compile(
+ sqlite *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ const char **pzTail, /* OUT: Next statement after the first */
+ sqlite_vm **ppVm, /* OUT: The virtual machine */
+ char **pzErrMsg /* OUT: Write error messages here */
+){
+ return sqliteMain(db, zSql, 0, 0, pzTail, ppVm, pzErrMsg);
+}
+
+/*
+** The following routine destroys a virtual machine that is created by
+** the sqlite_compile() routine.
+**
+** The integer returned is an SQLITE_ success/failure code that describes
+** the result of executing the virtual machine. An error message is
+** written into memory obtained from malloc and *pzErrMsg is made to
+** point to that error if pzErrMsg is not NULL. The calling routine
+** should use sqlite_freemem() to delete the message when it has finished
+** with it.
+*/
+int sqlite_finalize(
+ sqlite_vm *pVm, /* The virtual machine to be destroyed */
+ char **pzErrMsg /* OUT: Write error messages here */
+){
+ int rc = sqliteVdbeFinalize((Vdbe*)pVm, pzErrMsg);
+ sqliteStrRealloc(pzErrMsg);
+ return rc;
+}
+
+/*
+** Return a static string that describes the kind of error specified in the
+** argument.
+*/
+const char *sqlite_error_string(int rc){
+ const char *z;
+ switch( rc ){
+ case SQLITE_OK: z = "not an error"; break;
+ case SQLITE_ERROR: z = "SQL logic error or missing database"; break;
+ case SQLITE_INTERNAL: z = "internal SQLite implementation flaw"; break;
+ case SQLITE_PERM: z = "access permission denied"; break;
+ case SQLITE_ABORT: z = "callback requested query abort"; break;
+ case SQLITE_BUSY: z = "database is locked"; break;
+ case SQLITE_LOCKED: z = "database table is locked"; break;
+ case SQLITE_NOMEM: z = "out of memory"; break;
+ case SQLITE_READONLY: z = "attempt to write a readonly database"; break;
+ case SQLITE_INTERRUPT: z = "interrupted"; break;
+ case SQLITE_IOERR: z = "disk I/O error"; break;
+ case SQLITE_CORRUPT: z = "database disk image is malformed"; break;
+ case SQLITE_NOTFOUND: z = "table or record not found"; break;
+ case SQLITE_FULL: z = "database is full"; break;
+ case SQLITE_CANTOPEN: z = "unable to open database file"; break;
+ case SQLITE_PROTOCOL: z = "database locking protocol failure"; break;
+ case SQLITE_EMPTY: z = "table contains no data"; break;
+ case SQLITE_SCHEMA: z = "database schema has changed"; break;
+ case SQLITE_TOOBIG: z = "too much data for one table row"; break;
+ case SQLITE_CONSTRAINT: z = "constraint failed"; break;
+ case SQLITE_MISMATCH: z = "datatype mismatch"; break;
+ case SQLITE_MISUSE: z = "library routine called out of sequence";break;
+ case SQLITE_NOLFS: z = "kernel lacks large file support"; break;
+ case SQLITE_AUTH: z = "authorization denied"; break;
+ default: z = "unknown error"; break;
+ }
+ return z;
+}
+
+/*
+** This routine implements a busy callback that sleeps and tries
+** again until a timeout value is reached. The timeout value is
+** an integer number of milliseconds passed in as the first
+** argument.
+*/
+static int sqliteDefaultBusyCallback(
+ void *Timeout, /* Maximum amount of time to wait */
+ const char *NotUsed, /* The name of the table that is busy */
+ int count /* Number of times table has been busy */
+){
+#if SQLITE_MIN_SLEEP_MS==1
+ int delay = 10;
+ int prior_delay = 0;
+ int timeout = (int)Timeout;
+ int i;
+
+ for(i=1; i<count; i++){
+ prior_delay += delay;
+ delay = delay*2;
+ if( delay>=1000 ){
+ delay = 1000;
+ prior_delay += 1000*(count - i - 1);
+ break;
+ }
+ }
+ if( prior_delay + delay > timeout ){
+ delay = timeout - prior_delay;
+ if( delay<=0 ) return 0;
+ }
+ sqliteOsSleep(delay);
+ return 1;
+#else
+ int timeout = (int)Timeout;
+ if( (count+1)*1000 > timeout ){
+ return 0;
+ }
+ sqliteOsSleep(1000);
+ return 1;
+#endif
+}
+
+/*
+** This routine sets the busy callback for an Sqlite database to the
+** given callback function with the given argument.
+*/
+void sqlite_busy_handler(
+ sqlite *db,
+ int (*xBusy)(void*,const char*,int),
+ void *pArg
+){
+ db->xBusyCallback = xBusy;
+ db->pBusyArg = pArg;
+}
+
+/*
+** This routine installs a default busy handler that waits for the
+** specified number of milliseconds before returning 0.
+*/
+void sqlite_busy_timeout(sqlite *db, int ms){
+ if( ms>0 ){
+ sqlite_busy_handler(db, sqliteDefaultBusyCallback, (void*)ms);
+ }else{
+ sqlite_busy_handler(db, 0, 0);
+ }
+}
+
+/*
+** Cause any pending operation to stop at its earliest opportunity.
+*/
+void sqlite_interrupt(sqlite *db){
+ db->flags |= SQLITE_Interrupt;
+}
+
+/*
+** Windows systems should call this routine to free memory that
+** is returned in the in the errmsg parameter of sqlite_open() when
+** SQLite is a DLL. For some reason, it does not work to call free()
+** directly.
+**
+** Note that we need to call free() not sqliteFree() here, since every
+** string that is exported from SQLite should have already passed through
+** sqliteStrRealloc().
+*/
+void sqlite_freemem(void *p){ free(p); }
+
+/*
+** Windows systems need functions to call to return the sqlite_version
+** and sqlite_encoding strings since they are unable to access constants
+** within DLLs.
+*/
+const char *sqlite_libversion(void){ return sqlite_version; }
+const char *sqlite_libencoding(void){ return sqlite_encoding; }
+
+/*
+** Create new user-defined functions. The sqlite_create_function()
+** routine creates a regular function and sqlite_create_aggregate()
+** creates an aggregate function.
+**
+** Passing a NULL xFunc argument or NULL xStep and xFinalize arguments
+** disables the function. Calling sqlite_create_function() with the
+** same name and number of arguments as a prior call to
+** sqlite_create_aggregate() disables the prior call to
+** sqlite_create_aggregate(), and vice versa.
+**
+** If nArg is -1 it means that this function will accept any number
+** of arguments, including 0.
+*/
+int sqlite_create_function(
+ sqlite *db, /* Add the function to this database connection */
+ const char *zName, /* Name of the function to add */
+ int nArg, /* Number of arguments */
+ void (*xFunc)(sqlite_func*,int,const char**), /* The implementation */
+ void *pUserData /* User data */
+){
+ FuncDef *p;
+ int nName;
+ if( db==0 || zName==0 || sqliteSafetyCheck(db) ) return 1;
+ nName = strlen(zName);
+ if( nName>255 ) return 1;
+ p = sqliteFindFunction(db, zName, nName, nArg, 1);
+ if( p==0 ) return 1;
+ p->xFunc = xFunc;
+ p->xStep = 0;
+ p->xFinalize = 0;
+ p->pUserData = pUserData;
+ return 0;
+}
+int sqlite_create_aggregate(
+ sqlite *db, /* Add the function to this database connection */
+ const char *zName, /* Name of the function to add */
+ int nArg, /* Number of arguments */
+ void (*xStep)(sqlite_func*,int,const char**), /* The step function */
+ void (*xFinalize)(sqlite_func*), /* The finalizer */
+ void *pUserData /* User data */
+){
+ FuncDef *p;
+ int nName;
+ if( db==0 || zName==0 || sqliteSafetyCheck(db) ) return 1;
+ nName = strlen(zName);
+ if( nName>255 ) return 1;
+ p = sqliteFindFunction(db, zName, nName, nArg, 1);
+ if( p==0 ) return 1;
+ p->xFunc = 0;
+ p->xStep = xStep;
+ p->xFinalize = xFinalize;
+ p->pUserData = pUserData;
+ return 0;
+}
+
+/*
+** Change the datatype for all functions with a given name. See the
+** header comment for the prototype of this function in sqlite.h for
+** additional information.
+*/
+int sqlite_function_type(sqlite *db, const char *zName, int dataType){
+ FuncDef *p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, strlen(zName));
+ while( p ){
+ p->dataType = dataType;
+ p = p->pNext;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Register a trace function. The pArg from the previously registered trace
+** is returned.
+**
+** A NULL trace function means that no tracing is executes. A non-NULL
+** trace is a pointer to a function that is invoked at the start of each
+** sqlite_exec().
+*/
+void *sqlite_trace(sqlite *db, void (*xTrace)(void*,const char*), void *pArg){
+#ifndef SQLITE_OMIT_TRACE
+ void *pOld = db->pTraceArg;
+ db->xTrace = xTrace;
+ db->pTraceArg = pArg;
+ return pOld;
+#else
+ return 0;
+#endif
+}
+
+
+/*
+** Attempt to open the file named in the argument as the auxiliary database
+** file. The auxiliary database file is used to store TEMP tables. But
+** by using this API, it is possible to trick SQLite into opening two
+** separate databases and acting on them as if they were one.
+**
+** This routine closes the existing auxiliary database file, which will
+** cause any previously created TEMP tables to be dropped.
+**
+** The zName parameter can be a NULL pointer or an empty string to cause
+** a temporary file to be opened and automatically deleted when closed.
+*/
+int sqlite_open_aux_file(sqlite *db, const char *zName, char **pzErrMsg){
+ int rc;
+ if( zName && zName[0]==0 ) zName = 0;
+ if( sqliteSafetyOn(db) ) goto openaux_misuse;
+ sqliteResetInternalSchema(db);
+ if( db->pBeTemp!=0 ){
+ sqliteBtreeClose(db->pBeTemp);
+ }
+ rc = sqliteBtreeOpen(zName, 0, MAX_PAGES, &db->pBeTemp);
+ if( rc ){
+ if( zName==0 ) zName = "a temporary file";
+ sqliteSetString(pzErrMsg, "unable to open ", zName,
+ ": ", sqlite_error_string(rc), 0);
+ sqliteStrRealloc(pzErrMsg);
+ sqliteSafetyOff(db);
+ return rc;
+ }
+ rc = sqliteInit(db, pzErrMsg);
+ if( sqliteSafetyOff(db) ) goto openaux_misuse;
+ sqliteStrRealloc(pzErrMsg);
+ return rc;
+
+openaux_misuse:
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), 0);
+ sqliteStrRealloc(pzErrMsg);
+ return SQLITE_MISUSE;
+}
--- /dev/null
+/* Automatically generated file. Do not edit */
+char *sqliteOpcodeNames[] = { "???",
+ "Goto",
+ "Gosub",
+ "Return",
+ "Halt",
+ "Integer",
+ "String",
+ "Pop",
+ "Dup",
+ "Pull",
+ "Push",
+ "ColumnName",
+ "Callback",
+ "NullCallback",
+ "Concat",
+ "Add",
+ "Subtract",
+ "Multiply",
+ "Divide",
+ "Remainder",
+ "Function",
+ "BitAnd",
+ "BitOr",
+ "ShiftLeft",
+ "ShiftRight",
+ "AddImm",
+ "MustBeInt",
+ "Eq",
+ "Ne",
+ "Lt",
+ "Le",
+ "Gt",
+ "Ge",
+ "StrEq",
+ "StrNe",
+ "StrLt",
+ "StrLe",
+ "StrGt",
+ "StrGe",
+ "And",
+ "Or",
+ "Negative",
+ "AbsValue",
+ "Not",
+ "BitNot",
+ "Noop",
+ "If",
+ "IfNot",
+ "IsNull",
+ "NotNull",
+ "MakeRecord",
+ "MakeIdxKey",
+ "MakeKey",
+ "IncrKey",
+ "Checkpoint",
+ "Transaction",
+ "Commit",
+ "Rollback",
+ "ReadCookie",
+ "SetCookie",
+ "VerifyCookie",
+ "OpenAux",
+ "OpenWrAux",
+ "OpenWrite",
+ "Open",
+ "OpenTemp",
+ "RenameCursor",
+ "Close",
+ "MoveLt",
+ "MoveTo",
+ "Distinct",
+ "NotFound",
+ "Found",
+ "IsUnique",
+ "NotExists",
+ "NewRecno",
+ "PutIntKey",
+ "PutStrKey",
+ "Delete",
+ "KeyAsData",
+ "Column",
+ "Recno",
+ "FullKey",
+ "NullRow",
+ "Last",
+ "Rewind",
+ "Prev",
+ "Next",
+ "IdxPut",
+ "IdxDelete",
+ "IdxRecno",
+ "IdxLT",
+ "IdxGT",
+ "IdxGE",
+ "Destroy",
+ "Clear",
+ "CreateIndex",
+ "CreateTable",
+ "IntegrityCk",
+ "ListWrite",
+ "ListRewind",
+ "ListRead",
+ "ListReset",
+ "ListPush",
+ "ListPop",
+ "SortPut",
+ "SortMakeRec",
+ "SortMakeKey",
+ "Sort",
+ "SortNext",
+ "SortCallback",
+ "SortReset",
+ "FileOpen",
+ "FileRead",
+ "FileColumn",
+ "MemStore",
+ "MemLoad",
+ "MemIncr",
+ "AggReset",
+ "AggInit",
+ "AggFunc",
+ "AggFocus",
+ "AggSet",
+ "AggGet",
+ "AggNext",
+ "SetInsert",
+ "SetFound",
+ "SetNotFound",
+ "SetFirst",
+ "SetNext",
+};
--- /dev/null
+/* Automatically generated file. Do not edit */
+#define OP_Goto 1
+#define OP_Gosub 2
+#define OP_Return 3
+#define OP_Halt 4
+#define OP_Integer 5
+#define OP_String 6
+#define OP_Pop 7
+#define OP_Dup 8
+#define OP_Pull 9
+#define OP_Push 10
+#define OP_ColumnName 11
+#define OP_Callback 12
+#define OP_NullCallback 13
+#define OP_Concat 14
+#define OP_Add 15
+#define OP_Subtract 16
+#define OP_Multiply 17
+#define OP_Divide 18
+#define OP_Remainder 19
+#define OP_Function 20
+#define OP_BitAnd 21
+#define OP_BitOr 22
+#define OP_ShiftLeft 23
+#define OP_ShiftRight 24
+#define OP_AddImm 25
+#define OP_MustBeInt 26
+#define OP_Eq 27
+#define OP_Ne 28
+#define OP_Lt 29
+#define OP_Le 30
+#define OP_Gt 31
+#define OP_Ge 32
+#define OP_StrEq 33
+#define OP_StrNe 34
+#define OP_StrLt 35
+#define OP_StrLe 36
+#define OP_StrGt 37
+#define OP_StrGe 38
+#define OP_And 39
+#define OP_Or 40
+#define OP_Negative 41
+#define OP_AbsValue 42
+#define OP_Not 43
+#define OP_BitNot 44
+#define OP_Noop 45
+#define OP_If 46
+#define OP_IfNot 47
+#define OP_IsNull 48
+#define OP_NotNull 49
+#define OP_MakeRecord 50
+#define OP_MakeIdxKey 51
+#define OP_MakeKey 52
+#define OP_IncrKey 53
+#define OP_Checkpoint 54
+#define OP_Transaction 55
+#define OP_Commit 56
+#define OP_Rollback 57
+#define OP_ReadCookie 58
+#define OP_SetCookie 59
+#define OP_VerifyCookie 60
+#define OP_OpenAux 61
+#define OP_OpenWrAux 62
+#define OP_OpenWrite 63
+#define OP_Open 64
+#define OP_OpenTemp 65
+#define OP_RenameCursor 66
+#define OP_Close 67
+#define OP_MoveLt 68
+#define OP_MoveTo 69
+#define OP_Distinct 70
+#define OP_NotFound 71
+#define OP_Found 72
+#define OP_IsUnique 73
+#define OP_NotExists 74
+#define OP_NewRecno 75
+#define OP_PutIntKey 76
+#define OP_PutStrKey 77
+#define OP_Delete 78
+#define OP_KeyAsData 79
+#define OP_Column 80
+#define OP_Recno 81
+#define OP_FullKey 82
+#define OP_NullRow 83
+#define OP_Last 84
+#define OP_Rewind 85
+#define OP_Prev 86
+#define OP_Next 87
+#define OP_IdxPut 88
+#define OP_IdxDelete 89
+#define OP_IdxRecno 90
+#define OP_IdxLT 91
+#define OP_IdxGT 92
+#define OP_IdxGE 93
+#define OP_Destroy 94
+#define OP_Clear 95
+#define OP_CreateIndex 96
+#define OP_CreateTable 97
+#define OP_IntegrityCk 98
+#define OP_ListWrite 99
+#define OP_ListRewind 100
+#define OP_ListRead 101
+#define OP_ListReset 102
+#define OP_ListPush 103
+#define OP_ListPop 104
+#define OP_SortPut 105
+#define OP_SortMakeRec 106
+#define OP_SortMakeKey 107
+#define OP_Sort 108
+#define OP_SortNext 109
+#define OP_SortCallback 110
+#define OP_SortReset 111
+#define OP_FileOpen 112
+#define OP_FileRead 113
+#define OP_FileColumn 114
+#define OP_MemStore 115
+#define OP_MemLoad 116
+#define OP_MemIncr 117
+#define OP_AggReset 118
+#define OP_AggInit 119
+#define OP_AggFunc 120
+#define OP_AggFocus 121
+#define OP_AggSet 122
+#define OP_AggGet 123
+#define OP_AggNext 124
+#define OP_SetInsert 125
+#define OP_SetFound 126
+#define OP_SetNotFound 127
+#define OP_SetFirst 128
+#define OP_SetNext 129
--- /dev/null
+/*
+** 2001 September 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This file contains code that is specific to particular operating
+** systems. The purpose of this file is to provide a uniform abstraction
+** on which the rest of SQLite can operate.
+*/
+#include "os.h" /* Must be first to enable large file support */
+#include "sqliteInt.h"
+
+#if OS_UNIX
+# include <time.h>
+# include <errno.h>
+# include <unistd.h>
+# ifndef O_LARGEFILE
+# define O_LARGEFILE 0
+# endif
+# ifdef SQLITE_DISABLE_LFS
+# undef O_LARGEFILE
+# define O_LARGEFILE 0
+# endif
+# ifndef O_NOFOLLOW
+# define O_NOFOLLOW 0
+# endif
+#endif
+
+#if OS_WIN
+# include <winbase.h>
+#endif
+
+#if OS_MAC
+# include <extras.h>
+# include <path2fss.h>
+# include <TextUtils.h>
+# include <FinderRegistry.h>
+# include <Folders.h>
+# include <Timer.h>
+# include <OSUtils.h>
+#endif
+
+/*
+** Macros for performance tracing. Normally turned off
+*/
+#if 0
+static int last_page = 0;
+__inline__ unsigned long long int hwtime(void){
+ unsigned long long int x;
+ __asm__("rdtsc\n\t"
+ "mov %%edx, %%ecx\n\t"
+ :"=A" (x));
+ return x;
+}
+static unsigned long long int g_start;
+static unsigned int elapse;
+#define TIMER_START g_start=hwtime()
+#define TIMER_END elapse=hwtime()-g_start
+#define SEEK(X) last_page=(X)
+#define TRACE1(X) fprintf(stderr,X)
+#define TRACE2(X,Y) fprintf(stderr,X,Y)
+#define TRACE3(X,Y,Z) fprintf(stderr,X,Y,Z)
+#define TRACE4(X,Y,Z,A) fprintf(stderr,X,Y,Z,A)
+#define TRACE5(X,Y,Z,A,B) fprintf(stderr,X,Y,Z,A,B)
+#else
+#define TIMER_START
+#define TIMER_END
+#define SEEK(X)
+#define TRACE1(X)
+#define TRACE2(X,Y)
+#define TRACE3(X,Y,Z)
+#define TRACE4(X,Y,Z,A)
+#define TRACE5(X,Y,Z,A,B)
+#endif
+
+
+#if OS_UNIX
+/*
+** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
+** section 6.5.2.2 lines 483 through 490 specify that when a process
+** sets or clears a lock, that operation overrides any prior locks set
+** by the same process. It does not explicitly say so, but this implies
+** that it overrides locks set by the same process using a different
+** file descriptor. Consider this test case:
+**
+** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
+** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
+**
+** Suppose ./file1 and ./file2 are really be the same file (because
+** one is a hard or symbolic link to the other) then if you set
+** an exclusive lock on fd1, then try to get an exclusive lock
+** on fd2, it works. I would have expected the second lock to
+** fail since there was already a lock on the file due to fd1.
+** But not so. Since both locks came from the same process, the
+** second overrides the first, even though they were on different
+** file descriptors opened on different file names.
+**
+** Bummer. If you ask me, this is broken. Badly broken. It means
+** that we cannot use POSIX locks to synchronize file access among
+** competing threads of the same process. POSIX locks will work fine
+** to synchronize access for threads in separate processes, but not
+** threads within the same process.
+**
+** To work around the problem, SQLite has to manage file locks internally
+** on its own. Whenever a new database is opened, we have to find the
+** specific inode of the database file (the inode is determined by the
+** st_dev and st_ino fields of the stat structure that fstat() fills in)
+** and check for locks already existing on that inode. When locks are
+** created or removed, we have to look at our own internal record of the
+** locks to see if another thread has previously set a lock on that same
+** inode.
+**
+** The OsFile structure for POSIX is no longer just an integer file
+** descriptor. It is now a structure that holds the integer file
+** descriptor and a pointer to a structure that describes the internal
+** locks on the corresponding inode. There is one locking structure
+** per inode, so if the same inode is opened twice, both OsFile structures
+** point to the same locking structure. The locking structure keeps
+** a reference count (so we will know when to delete it) and a "cnt"
+** field that tells us its internal lock status. cnt==0 means the
+** file is unlocked. cnt==-1 means the file has an exclusive lock.
+** cnt>0 means there are cnt shared locks on the file.
+**
+** Any attempt to lock or unlock a file first checks the locking
+** structure. The fcntl() system call is only invoked to set a
+** POSIX lock if the internal lock structure transitions between
+** a locked and an unlocked state.
+*/
+
+/*
+** An instance of the following structure serves as the key used
+** to locate a particular lockInfo structure given its inode.
+*/
+struct inodeKey {
+ dev_t dev; /* Device number */
+ ino_t ino; /* Inode number */
+};
+
+/*
+** An instance of the following structure is allocated for each inode.
+** A single inode can have multiple file descriptors, so each OsFile
+** structure contains a pointer to an instance of this object and this
+** object keeps a count of the number of OsFiles pointing to it.
+*/
+struct lockInfo {
+ struct inodeKey key; /* The lookup key */
+ int cnt; /* 0: unlocked. -1: write lock. 1...: read lock. */
+ int nRef; /* Number of pointers to this structure */
+};
+
+/*
+** This hash table maps inodes (in the form of inodeKey structures) into
+** pointers to lockInfo structures.
+*/
+static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
+
+/*
+** Given a file descriptor, locate a lockInfo structure that describes
+** that file descriptor. Create a new one if necessary. NULL might
+** be returned if malloc() fails.
+*/
+static struct lockInfo *findLockInfo(int fd){
+ int rc;
+ struct inodeKey key;
+ struct stat statbuf;
+ struct lockInfo *pInfo;
+ rc = fstat(fd, &statbuf);
+ if( rc!=0 ) return 0;
+ memset(&key, 0, sizeof(key));
+ key.dev = statbuf.st_dev;
+ key.ino = statbuf.st_ino;
+ pInfo = (struct lockInfo*)sqliteHashFind(&lockHash, &key, sizeof(key));
+ if( pInfo==0 ){
+ struct lockInfo *pOld;
+ pInfo = sqliteMalloc( sizeof(*pInfo) );
+ if( pInfo==0 ) return 0;
+ pInfo->key = key;
+ pInfo->nRef = 1;
+ pInfo->cnt = 0;
+ pOld = sqliteHashInsert(&lockHash, &pInfo->key, sizeof(key), pInfo);
+ if( pOld!=0 ){
+ assert( pOld==pInfo );
+ sqliteFree(pInfo);
+ pInfo = 0;
+ }
+ }else{
+ pInfo->nRef++;
+ }
+ return pInfo;
+}
+
+/*
+** Release a lockInfo structure previously allocated by findLockInfo().
+*/
+static void releaseLockInfo(struct lockInfo *pInfo){
+ pInfo->nRef--;
+ if( pInfo->nRef==0 ){
+ sqliteHashInsert(&lockHash, &pInfo->key, sizeof(pInfo->key), 0);
+ sqliteFree(pInfo);
+ }
+}
+#endif /** POSIX advisory lock work-around **/
+
+/*
+** If we compile with the SQLITE_TEST macro set, then the following block
+** of code will give us the ability to simulate a disk I/O error. This
+** is used for testing the I/O recovery logic.
+*/
+#ifdef SQLITE_TEST
+int sqlite_io_error_pending = 0;
+#define SimulateIOError(A) \
+ if( sqlite_io_error_pending ) \
+ if( sqlite_io_error_pending-- == 1 ){ local_ioerr(); return A; }
+static void local_ioerr(){
+ sqlite_io_error_pending = 0; /* Really just a place to set a breakpoint */
+}
+#else
+#define SimulateIOError(A)
+#endif
+
+/*
+** When testing, keep a count of the number of open files.
+*/
+#ifdef SQLITE_TEST
+int sqlite_open_file_count = 0;
+#define OpenCounter(X) sqlite_open_file_count+=(X)
+#else
+#define OpenCounter(X)
+#endif
+
+
+/*
+** Delete the named file
+*/
+int sqliteOsDelete(const char *zFilename){
+#if OS_UNIX
+ unlink(zFilename);
+#endif
+#if OS_WIN
+ DeleteFile(zFilename);
+#endif
+#if OS_MAC
+ unlink(zFilename);
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Return TRUE if the named file exists.
+*/
+int sqliteOsFileExists(const char *zFilename){
+#if OS_UNIX
+ return access(zFilename, 0)==0;
+#endif
+#if OS_WIN
+ return GetFileAttributes(zFilename) != 0xffffffff;
+#endif
+#if OS_MAC
+ return access(zFilename, 0)==0;
+#endif
+}
+
+
+/*
+** Attempt to open a file for both reading and writing. If that
+** fails, try opening it read-only. If the file does not exist,
+** try to create it.
+**
+** On success, a handle for the open file is written to *id
+** and *pReadonly is set to 0 if the file was opened for reading and
+** writing or 1 if the file was opened read-only. The function returns
+** SQLITE_OK.
+**
+** On failure, the function returns SQLITE_CANTOPEN and leaves
+** *id and *pReadonly unchanged.
+*/
+int sqliteOsOpenReadWrite(
+ const char *zFilename,
+ OsFile *id,
+ int *pReadonly
+){
+#if OS_UNIX
+ id->fd = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE, 0644);
+ if( id->fd<0 ){
+ id->fd = open(zFilename, O_RDONLY|O_LARGEFILE);
+ if( id->fd<0 ){
+ return SQLITE_CANTOPEN;
+ }
+ *pReadonly = 1;
+ }else{
+ *pReadonly = 0;
+ }
+ sqliteOsEnterMutex();
+ id->pLock = findLockInfo(id->fd);
+ sqliteOsLeaveMutex();
+ if( id->pLock==0 ){
+ close(id->fd);
+ return SQLITE_NOMEM;
+ }
+ id->locked = 0;
+ TRACE3("OPEN %-3d %s\n", id->fd, zFilename);
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ HANDLE h = CreateFile(zFilename,
+ GENERIC_READ | GENERIC_WRITE,
+ FILE_SHARE_READ | FILE_SHARE_WRITE,
+ NULL,
+ OPEN_ALWAYS,
+ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
+ NULL
+ );
+ if( h==INVALID_HANDLE_VALUE ){
+ h = CreateFile(zFilename,
+ GENERIC_READ,
+ FILE_SHARE_READ,
+ NULL,
+ OPEN_ALWAYS,
+ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
+ NULL
+ );
+ if( h==INVALID_HANDLE_VALUE ){
+ return SQLITE_CANTOPEN;
+ }
+ *pReadonly = 1;
+ }else{
+ *pReadonly = 0;
+ }
+ id->h = h;
+ id->locked = 0;
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ FSSpec fsSpec;
+# ifdef _LARGE_FILE
+ HFSUniStr255 dfName;
+ FSRef fsRef;
+ if( __path2fss(zFilename, &fsSpec) != noErr ){
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
+ return SQLITE_CANTOPEN;
+ }
+ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
+ return SQLITE_CANTOPEN;
+ FSGetDataForkName(&dfName);
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
+ fsRdWrShPerm, &(id->refNum)) != noErr ){
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
+ fsRdWrPerm, &(id->refNum)) != noErr ){
+ if (FSOpenFork(&fsRef, dfName.length, dfName.unicode,
+ fsRdPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+ else
+ *pReadonly = 1;
+ } else
+ *pReadonly = 0;
+ } else
+ *pReadonly = 0;
+# else
+ __path2fss(zFilename, &fsSpec);
+ if( !sqliteOsFileExists(zFilename) ){
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
+ return SQLITE_CANTOPEN;
+ }
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNum)) != noErr ){
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr ){
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+ else
+ *pReadonly = 1;
+ } else
+ *pReadonly = 0;
+ } else
+ *pReadonly = 0;
+# endif
+ if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
+ id->refNumRF = -1;
+ }
+ id->locked = 0;
+ id->delOnClose = 0;
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+}
+
+
+/*
+** Attempt to open a new file for exclusive access by this process.
+** The file will be opened for both reading and writing. To avoid
+** a potential security problem, we do not allow the file to have
+** previously existed. Nor do we allow the file to be a symbolic
+** link.
+**
+** If delFlag is true, then make arrangements to automatically delete
+** the file when it is closed.
+**
+** On success, write the file handle into *id and return SQLITE_OK.
+**
+** On failure, return SQLITE_CANTOPEN.
+*/
+int sqliteOsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
+#if OS_UNIX
+ if( access(zFilename, 0)==0 ){
+ return SQLITE_CANTOPEN;
+ }
+ id->fd = open(zFilename, O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE, 0600);
+ if( id->fd<0 ){
+ return SQLITE_CANTOPEN;
+ }
+ sqliteOsEnterMutex();
+ id->pLock = findLockInfo(id->fd);
+ sqliteOsLeaveMutex();
+ if( id->pLock==0 ){
+ close(id->fd);
+ unlink(zFilename);
+ return SQLITE_NOMEM;
+ }
+ id->locked = 0;
+ if( delFlag ){
+ unlink(zFilename);
+ }
+ TRACE3("OPEN-EX %-3d %s\n", id->fd, zFilename);
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ HANDLE h;
+ int fileflags;
+ if( delFlag ){
+ fileflags = FILE_ATTRIBUTE_TEMPORARY | FILE_FLAG_RANDOM_ACCESS
+ | FILE_FLAG_DELETE_ON_CLOSE;
+ }else{
+ fileflags = FILE_FLAG_RANDOM_ACCESS;
+ }
+ h = CreateFile(zFilename,
+ GENERIC_READ | GENERIC_WRITE,
+ 0,
+ NULL,
+ CREATE_ALWAYS,
+ fileflags,
+ NULL
+ );
+ if( h==INVALID_HANDLE_VALUE ){
+ return SQLITE_CANTOPEN;
+ }
+ id->h = h;
+ id->locked = 0;
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ FSSpec fsSpec;
+# ifdef _LARGE_FILE
+ HFSUniStr255 dfName;
+ FSRef fsRef;
+ __path2fss(zFilename, &fsSpec);
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
+ return SQLITE_CANTOPEN;
+ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
+ return SQLITE_CANTOPEN;
+ FSGetDataForkName(&dfName);
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
+ fsRdWrPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+# else
+ __path2fss(zFilename, &fsSpec);
+ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
+ return SQLITE_CANTOPEN;
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+# endif
+ id->refNumRF = -1;
+ id->locked = 0;
+ id->delOnClose = delFlag;
+ if (delFlag)
+ id->pathToDel = sqliteOsFullPathname(zFilename);
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+}
+
+/*
+** Attempt to open a new file for read-only access.
+**
+** On success, write the file handle into *id and return SQLITE_OK.
+**
+** On failure, return SQLITE_CANTOPEN.
+*/
+int sqliteOsOpenReadOnly(const char *zFilename, OsFile *id){
+#if OS_UNIX
+ id->fd = open(zFilename, O_RDONLY|O_LARGEFILE);
+ if( id->fd<0 ){
+ return SQLITE_CANTOPEN;
+ }
+ sqliteOsEnterMutex();
+ id->pLock = findLockInfo(id->fd);
+ sqliteOsLeaveMutex();
+ if( id->pLock==0 ){
+ close(id->fd);
+ return SQLITE_NOMEM;
+ }
+ id->locked = 0;
+ TRACE3("OPEN-RO %-3d %s\n", id->fd, zFilename);
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ HANDLE h = CreateFile(zFilename,
+ GENERIC_READ,
+ 0,
+ NULL,
+ OPEN_EXISTING,
+ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
+ NULL
+ );
+ if( h==INVALID_HANDLE_VALUE ){
+ return SQLITE_CANTOPEN;
+ }
+ id->h = h;
+ id->locked = 0;
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ FSSpec fsSpec;
+# ifdef _LARGE_FILE
+ HFSUniStr255 dfName;
+ FSRef fsRef;
+ if( __path2fss(zFilename, &fsSpec) != noErr )
+ return SQLITE_CANTOPEN;
+ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
+ return SQLITE_CANTOPEN;
+ FSGetDataForkName(&dfName);
+ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
+ fsRdPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+# else
+ __path2fss(zFilename, &fsSpec);
+ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
+ return SQLITE_CANTOPEN;
+# endif
+ if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
+ id->refNumRF = -1;
+ }
+ id->locked = 0;
+ id->delOnClose = 0;
+ OpenCounter(+1);
+ return SQLITE_OK;
+#endif
+}
+
+/*
+** Create a temporary file name in zBuf. zBuf must be big enough to
+** hold at least SQLITE_TEMPNAME_SIZE characters.
+*/
+int sqliteOsTempFileName(char *zBuf){
+#if OS_UNIX
+ static const char *azDirs[] = {
+ "/var/tmp",
+ "/usr/tmp",
+ "/tmp",
+ ".",
+ };
+ static char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ struct stat buf;
+ const char *zDir = ".";
+ for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
+ if( stat(azDirs[i], &buf) ) continue;
+ if( !S_ISDIR(buf.st_mode) ) continue;
+ if( access(azDirs[i], 07) ) continue;
+ zDir = azDirs[i];
+ break;
+ }
+ do{
+ sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir);
+ j = strlen(zBuf);
+ for(i=0; i<15; i++){
+ int n = sqliteRandomByte() % (sizeof(zChars)-1);
+ zBuf[j++] = zChars[n];
+ }
+ zBuf[j] = 0;
+ }while( access(zBuf,0)==0 );
+#endif
+#if OS_WIN
+ static char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ char zTempPath[SQLITE_TEMPNAME_SIZE];
+ GetTempPath(SQLITE_TEMPNAME_SIZE-30, zTempPath);
+ for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
+ zTempPath[i] = 0;
+ for(;;){
+ sprintf(zBuf, "%s\\"TEMP_FILE_PREFIX, zTempPath);
+ j = strlen(zBuf);
+ for(i=0; i<15; i++){
+ int n = sqliteRandomByte() % sizeof(zChars);
+ zBuf[j++] = zChars[n];
+ }
+ zBuf[j] = 0;
+ if( !sqliteOsFileExists(zBuf) ) break;
+ }
+#endif
+#if OS_MAC
+ static char zChars[] =
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "0123456789";
+ int i, j;
+ char zTempPath[SQLITE_TEMPNAME_SIZE];
+ char zdirName[32];
+ CInfoPBRec infoRec;
+ Str31 dirName;
+ memset(&infoRec, 0, sizeof(infoRec));
+ memset(zTempPath, 0, SQLITE_TEMPNAME_SIZE);
+ if( FindFolder(kOnSystemDisk, kTemporaryFolderType, kCreateFolder,
+ &(infoRec.dirInfo.ioVRefNum), &(infoRec.dirInfo.ioDrParID)) == noErr ){
+ infoRec.dirInfo.ioNamePtr = dirName;
+ do{
+ infoRec.dirInfo.ioFDirIndex = -1;
+ infoRec.dirInfo.ioDrDirID = infoRec.dirInfo.ioDrParID;
+ if( PBGetCatInfoSync(&infoRec) == noErr ){
+ CopyPascalStringToC(dirName, zdirName);
+ i = strlen(zdirName);
+ memmove(&(zTempPath[i+1]), zTempPath, strlen(zTempPath));
+ strcpy(zTempPath, zdirName);
+ zTempPath[i] = ':';
+ }else{
+ *zTempPath = 0;
+ break;
+ }
+ } while( infoRec.dirInfo.ioDrDirID != fsRtDirID );
+ }
+ if( *zTempPath == 0 )
+ getcwd(zTempPath, SQLITE_TEMPNAME_SIZE-24);
+ for(;;){
+ sprintf(zBuf, "%s"TEMP_FILE_PREFIX, zTempPath);
+ j = strlen(zBuf);
+ for(i=0; i<15; i++){
+ int n = sqliteRandomByte() % sizeof(zChars);
+ zBuf[j++] = zChars[n];
+ }
+ zBuf[j] = 0;
+ if( !sqliteOsFileExists(zBuf) ) break;
+ }
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Close a file
+*/
+int sqliteOsClose(OsFile *id){
+#if OS_UNIX
+ close(id->fd);
+ sqliteOsEnterMutex();
+ releaseLockInfo(id->pLock);
+ sqliteOsLeaveMutex();
+ TRACE2("CLOSE %-3d\n", id->fd);
+ OpenCounter(-1);
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ CloseHandle(id->h);
+ OpenCounter(-1);
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ if( id->refNumRF!=-1 )
+ FSClose(id->refNumRF);
+# ifdef _LARGE_FILE
+ FSCloseFork(id->refNum);
+# else
+ FSClose(id->refNum);
+# endif
+ if( id->delOnClose ){
+ unlink(id->pathToDel);
+ sqliteFree(id->pathToDel);
+ }
+ OpenCounter(-1);
+ return SQLITE_OK;
+#endif
+}
+
+/*
+** Read data from a file into a buffer. Return SQLITE_OK if all
+** bytes were read successfully and SQLITE_IOERR if anything goes
+** wrong.
+*/
+int sqliteOsRead(OsFile *id, void *pBuf, int amt){
+#if OS_UNIX
+ int got;
+ SimulateIOError(SQLITE_IOERR);
+ TIMER_START;
+ got = read(id->fd, pBuf, amt);
+ TIMER_END;
+ TRACE4("READ %-3d %7d %d\n", id->fd, last_page, elapse);
+ SEEK(0);
+ /* if( got<0 ) got = 0; */
+ if( got==amt ){
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR;
+ }
+#endif
+#if OS_WIN
+ DWORD got;
+ SimulateIOError(SQLITE_IOERR);
+ TRACE2("READ %d\n", last_page);
+ if( !ReadFile(id->h, pBuf, amt, &got, 0) ){
+ got = 0;
+ }
+ if( got==(DWORD)amt ){
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR;
+ }
+#endif
+#if OS_MAC
+ int got;
+ SimulateIOError(SQLITE_IOERR);
+ TRACE2("READ %d\n", last_page);
+# ifdef _LARGE_FILE
+ FSReadFork(id->refNum, fsAtMark, 0, (ByteCount)amt, pBuf, (ByteCount*)&got);
+# else
+ got = amt;
+ FSRead(id->refNum, &got, pBuf);
+# endif
+ if( got==amt ){
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR;
+ }
+#endif
+}
+
+/*
+** Write data from a buffer into a file. Return SQLITE_OK on success
+** or some other error code on failure.
+*/
+int sqliteOsWrite(OsFile *id, const void *pBuf, int amt){
+#if OS_UNIX
+ int wrote = 0;
+ SimulateIOError(SQLITE_IOERR);
+ TIMER_START;
+ while( amt>0 && (wrote = write(id->fd, pBuf, amt))>0 ){
+ amt -= wrote;
+ pBuf = &((char*)pBuf)[wrote];
+ }
+ TIMER_END;
+ TRACE4("WRITE %-3d %7d %d\n", id->fd, last_page, elapse);
+ SEEK(0);
+ if( amt>0 ){
+ return SQLITE_FULL;
+ }
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ int rc;
+ DWORD wrote;
+ SimulateIOError(SQLITE_IOERR);
+ TRACE2("WRITE %d\n", last_page);
+ while( amt>0 && (rc = WriteFile(id->h, pBuf, amt, &wrote, 0))!=0 && wrote>0 ){
+ amt -= wrote;
+ pBuf = &((char*)pBuf)[wrote];
+ }
+ if( !rc || amt>(int)wrote ){
+ return SQLITE_FULL;
+ }
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ OSErr oserr;
+ int wrote = 0;
+ SimulateIOError(SQLITE_IOERR);
+ TRACE2("WRITE %d\n", last_page);
+ while( amt>0 ){
+# ifdef _LARGE_FILE
+ oserr = FSWriteFork(id->refNum, fsAtMark, 0,
+ (ByteCount)amt, pBuf, (ByteCount*)&wrote);
+# else
+ wrote = amt;
+ oserr = FSWrite(id->refNum, &wrote, pBuf);
+# endif
+ if( wrote == 0 || oserr != noErr)
+ break;
+ amt -= wrote;
+ pBuf = &((char*)pBuf)[wrote];
+ }
+ if( oserr != noErr || amt>wrote ){
+ return SQLITE_FULL;
+ }
+ return SQLITE_OK;
+#endif
+}
+
+/*
+** Move the read/write pointer in a file.
+*/
+int sqliteOsSeek(OsFile *id, off_t offset){
+ SEEK(offset/1024 + 1);
+#if OS_UNIX
+ lseek(id->fd, offset, SEEK_SET);
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ {
+ LONG upperBits = offset>>32;
+ LONG lowerBits = offset & 0xffffffff;
+ DWORD rc;
+ rc = SetFilePointer(id->h, lowerBits, &upperBits, FILE_BEGIN);
+ /* TRACE3("SEEK rc=0x%x upper=0x%x\n", rc, upperBits); */
+ }
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+ {
+ off_t curSize;
+ if( sqliteOsFileSize(id, &curSize) != SQLITE_OK ){
+ return SQLITE_IOERR;
+ }
+ if( offset >= curSize ){
+ if( sqliteOsTruncate(id, offset+1) != SQLITE_OK ){
+ return SQLITE_IOERR;
+ }
+ }
+# ifdef _LARGE_FILE
+ if( FSSetForkPosition(id->refNum, fsFromStart, offset) != noErr ){
+# else
+ if( SetFPos(id->refNum, fsFromStart, offset) != noErr ){
+# endif
+ return SQLITE_IOERR;
+ }else{
+ return SQLITE_OK;
+ }
+ }
+#endif
+}
+
+/*
+** Make sure all writes to a particular file are committed to disk.
+*/
+int sqliteOsSync(OsFile *id){
+#if OS_UNIX
+ SimulateIOError(SQLITE_IOERR);
+ TRACE2("SYNC %-3d\n", id->fd);
+ if( fsync(id->fd) ){
+ return SQLITE_IOERR;
+ }else{
+ return SQLITE_OK;
+ }
+#endif
+#if OS_WIN
+ if( FlushFileBuffers(id->h) ){
+ return SQLITE_OK;
+ }else{
+ return SQLITE_IOERR;
+ }
+#endif
+#if OS_MAC
+# ifdef _LARGE_FILE
+ if( FSFlushFork(id->refNum) != noErr ){
+# else
+ ParamBlockRec params;
+ memset(¶ms, 0, sizeof(ParamBlockRec));
+ params.ioParam.ioRefNum = id->refNum;
+ if( PBFlushFileSync(¶ms) != noErr ){
+# endif
+ return SQLITE_IOERR;
+ }else{
+ return SQLITE_OK;
+ }
+#endif
+}
+
+/*
+** Truncate an open file to a specified size
+*/
+int sqliteOsTruncate(OsFile *id, off_t nByte){
+ SimulateIOError(SQLITE_IOERR);
+#if OS_UNIX
+ return ftruncate(id->fd, nByte)==0 ? SQLITE_OK : SQLITE_IOERR;
+#endif
+#if OS_WIN
+ {
+ LONG upperBits = nByte>>32;
+ SetFilePointer(id->h, nByte, &upperBits, FILE_BEGIN);
+ SetEndOfFile(id->h);
+ }
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+# ifdef _LARGE_FILE
+ if( FSSetForkSize(id->refNum, fsFromStart, nByte) != noErr){
+# else
+ if( SetEOF(id->refNum, nByte) != noErr ){
+# endif
+ return SQLITE_IOERR;
+ }else{
+ return SQLITE_OK;
+ }
+#endif
+}
+
+/*
+** Determine the current size of a file in bytes
+*/
+int sqliteOsFileSize(OsFile *id, off_t *pSize){
+#if OS_UNIX
+ struct stat buf;
+ SimulateIOError(SQLITE_IOERR);
+ if( fstat(id->fd, &buf)!=0 ){
+ return SQLITE_IOERR;
+ }
+ *pSize = buf.st_size;
+ return SQLITE_OK;
+#endif
+#if OS_WIN
+ DWORD upperBits, lowerBits;
+ SimulateIOError(SQLITE_IOERR);
+ lowerBits = GetFileSize(id->h, &upperBits);
+ *pSize = (((off_t)upperBits)<<32) + lowerBits;
+ return SQLITE_OK;
+#endif
+#if OS_MAC
+# ifdef _LARGE_FILE
+ if( FSGetForkSize(id->refNum, pSize) != noErr){
+# else
+ if( GetEOF(id->refNum, pSize) != noErr ){
+# endif
+ return SQLITE_IOERR;
+ }else{
+ return SQLITE_OK;
+ }
+#endif
+}
+
+#if OS_WIN
+/*
+** Return true (non-zero) if we are running under WinNT, Win2K or WinXP.
+** Return false (zero) for Win95, Win98, or WinME.
+*/
+int isNT(void){
+ static osType = 0; /* 0=unknown 1=win95 2=winNT */
+ if( osType==0 ){
+ OSVERSIONINFO sInfo;
+ sInfo.dwOSVersionInfoSize = sizeof(sInfo);
+ GetVersionEx(&sInfo);
+ osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
+ }
+ return osType==2;
+}
+#endif
+
+/*
+** Windows file locking notes: [the same/equivalent applies to MacOS]
+**
+** We cannot use LockFileEx() or UnlockFileEx() because those functions
+** are not available under Win95/98/ME. So we use only LockFile() and
+** UnlockFile().
+**
+** LockFile() prevents not just writing but also reading by other processes.
+** (This is a design error on the part of Windows, but there is nothing
+** we can do about that.) So the region used for locking is at the
+** end of the file where it is unlikely to ever interfere with an
+** actual read attempt.
+**
+** A database read lock is obtained by locking a single randomly-chosen
+** byte out of a specific range of bytes. The lock byte is obtained at
+** random so two separate readers can probably access the file at the
+** same time, unless they are unlucky and choose the same lock byte.
+** A database write lock is obtained by locking all bytes in the range.
+** There can only be one writer.
+**
+** A lock is obtained on the first byte of the lock range before acquiring
+** either a read lock or a write lock. This prevents two processes from
+** attempting to get a lock at a same time. The semantics of
+** sqliteOsReadLock() require that if there is already a write lock, that
+** lock is converted into a read lock atomically. The lock on the first
+** byte allows us to drop the old write lock and get the read lock without
+** another process jumping into the middle and messing us up. The same
+** argument applies to sqliteOsWriteLock().
+**
+** Note: On MacOS we use the resource fork for locking.
+**
+** The following #defines specify the range of bytes used for locking.
+** N_LOCKBYTE is the number of bytes available for doing the locking.
+** The first byte used to hold the lock while the lock is changing does
+** not count toward this number. FIRST_LOCKBYTE is the address of
+** the first byte in the range of bytes used for locking.
+*/
+#define N_LOCKBYTE 10239
+#if OS_MAC
+# define FIRST_LOCKBYTE (0x000fffff - N_LOCKBYTE)
+#else
+# define FIRST_LOCKBYTE (0xffffffff - N_LOCKBYTE)
+#endif
+
+/*
+** Change the status of the lock on the file "id" to be a readlock.
+** If the file was write locked, then this reduces the lock to a read.
+** If the file was read locked, then this acquires a new read lock.
+**
+** Return SQLITE_OK on success and SQLITE_BUSY on failure. If this
+** library was compiled with large file support (LFS) but LFS is not
+** available on the host, then an SQLITE_NOLFS is returned.
+*/
+int sqliteOsReadLock(OsFile *id){
+#if OS_UNIX
+ int rc;
+ sqliteOsEnterMutex();
+ if( id->pLock->cnt>0 ){
+ if( !id->locked ){
+ id->pLock->cnt++;
+ id->locked = 1;
+ }
+ rc = SQLITE_OK;
+ }else if( id->locked || id->pLock->cnt==0 ){
+ struct flock lock;
+ int s;
+ lock.l_type = F_RDLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = lock.l_len = 0L;
+ s = fcntl(id->fd, F_SETLK, &lock);
+ if( s!=0 ){
+ rc = (s==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ }else{
+ rc = SQLITE_OK;
+ id->pLock->cnt = 1;
+ id->locked = 1;
+ }
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ sqliteOsLeaveMutex();
+ return rc;
+#endif
+#if OS_WIN
+ int rc;
+ if( id->locked>0 ){
+ rc = SQLITE_OK;
+ }else{
+ int lk = (sqliteRandomInteger() & 0x7ffffff)%N_LOCKBYTE+1;
+ int res;
+ int cnt = 100;
+ int page = isNT() ? 0xffffffff : 0;
+ while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, page, 1, 0))==0 ){
+ Sleep(1);
+ }
+ if( res ){
+ UnlockFile(id->h, FIRST_LOCKBYTE+1, page, N_LOCKBYTE, 0);
+ res = LockFile(id->h, FIRST_LOCKBYTE+lk, page, 1, 0);
+ UnlockFile(id->h, FIRST_LOCKBYTE, page, 1, 0);
+ }
+ if( res ){
+ id->locked = lk;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+ return rc;
+#endif
+#if OS_MAC
+ int rc;
+ if( id->locked>0 || id->refNumRF == -1 ){
+ rc = SQLITE_OK;
+ }else{
+ int lk = (sqliteRandomInteger() & 0x7ffffff)%N_LOCKBYTE+1;
+ OSErr res;
+ int cnt = 5;
+ ParamBlockRec params;
+ memset(¶ms, 0, sizeof(params));
+ params.ioParam.ioRefNum = id->refNumRF;
+ params.ioParam.ioPosMode = fsFromStart;
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
+ params.ioParam.ioReqCount = 1;
+ while( cnt-->0 && (res = PBLockRangeSync(¶ms))!=noErr ){
+ UInt32 finalTicks;
+ Delay(1, &finalTicks); /* 1/60 sec */
+ }
+ if( res == noErr ){
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
+ params.ioParam.ioReqCount = N_LOCKBYTE;
+ PBUnlockRangeSync(¶ms);
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+lk;
+ params.ioParam.ioReqCount = 1;
+ res = PBLockRangeSync(¶ms);
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
+ params.ioParam.ioReqCount = 1;
+ PBUnlockRangeSync(¶ms);
+ }
+ if( res == noErr ){
+ id->locked = lk;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+ return rc;
+#endif
+}
+
+/*
+** Change the lock status to be an exclusive or write lock. Return
+** SQLITE_OK on success and SQLITE_BUSY on a failure. If this
+** library was compiled with large file support (LFS) but LFS is not
+** available on the host, then an SQLITE_NOLFS is returned.
+*/
+int sqliteOsWriteLock(OsFile *id){
+#if OS_UNIX
+ int rc;
+ sqliteOsEnterMutex();
+ if( id->pLock->cnt==0 || (id->pLock->cnt==1 && id->locked==1) ){
+ struct flock lock;
+ int s;
+ lock.l_type = F_WRLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = lock.l_len = 0L;
+ s = fcntl(id->fd, F_SETLK, &lock);
+ if( s!=0 ){
+ rc = (s==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ }else{
+ rc = SQLITE_OK;
+ id->pLock->cnt = -1;
+ id->locked = 1;
+ }
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ sqliteOsLeaveMutex();
+ return rc;
+#endif
+#if OS_WIN
+ int rc;
+ if( id->locked<0 ){
+ rc = SQLITE_OK;
+ }else{
+ int res;
+ int cnt = 100;
+ int page = isNT() ? 0xffffffff : 0;
+ while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, page, 1, 0))==0 ){
+ Sleep(1);
+ }
+ if( res ){
+ if( id->locked==0
+ || UnlockFile(id->h, FIRST_LOCKBYTE + id->locked, page, 1, 0) ){
+ res = LockFile(id->h, FIRST_LOCKBYTE+1, page, N_LOCKBYTE, 0);
+ }else{
+ res = 0;
+ }
+ UnlockFile(id->h, FIRST_LOCKBYTE, page, 1, 0);
+ }
+ if( res ){
+ id->locked = -1;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+ return rc;
+#endif
+#if OS_MAC
+ int rc;
+ if( id->locked<0 || id->refNumRF == -1 ){
+ rc = SQLITE_OK;
+ }else{
+ OSErr res;
+ int cnt = 5;
+ ParamBlockRec params;
+ memset(¶ms, 0, sizeof(params));
+ params.ioParam.ioRefNum = id->refNumRF;
+ params.ioParam.ioPosMode = fsFromStart;
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
+ params.ioParam.ioReqCount = 1;
+ while( cnt-->0 && (res = PBLockRangeSync(¶ms))!=noErr ){
+ UInt32 finalTicks;
+ Delay(1, &finalTicks); /* 1/60 sec */
+ }
+ if( res == noErr ){
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE + id->locked;
+ params.ioParam.ioReqCount = 1;
+ if( id->locked==0
+ || PBUnlockRangeSync(¶ms)==noErr ){
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
+ params.ioParam.ioReqCount = N_LOCKBYTE;
+ res = PBLockRangeSync(¶ms);
+ }else{
+ res = afpRangeNotLocked;
+ }
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
+ params.ioParam.ioReqCount = 1;
+ PBUnlockRangeSync(¶ms);
+ }
+ if( res == noErr ){
+ id->locked = -1;
+ rc = SQLITE_OK;
+ }else{
+ rc = SQLITE_BUSY;
+ }
+ }
+ return rc;
+#endif
+}
+
+/*
+** Unlock the given file descriptor. If the file descriptor was
+** not previously locked, then this routine is a no-op. If this
+** library was compiled with large file support (LFS) but LFS is not
+** available on the host, then an SQLITE_NOLFS is returned.
+*/
+int sqliteOsUnlock(OsFile *id){
+#if OS_UNIX
+ int rc;
+ if( !id->locked ) return SQLITE_OK;
+ sqliteOsEnterMutex();
+ assert( id->pLock->cnt!=0 );
+ if( id->pLock->cnt>1 ){
+ id->pLock->cnt--;
+ rc = SQLITE_OK;
+ }else{
+ struct flock lock;
+ int s;
+ lock.l_type = F_UNLCK;
+ lock.l_whence = SEEK_SET;
+ lock.l_start = lock.l_len = 0L;
+ s = fcntl(id->fd, F_SETLK, &lock);
+ if( s!=0 ){
+ rc = (s==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
+ }else{
+ rc = SQLITE_OK;
+ id->pLock->cnt = 0;
+ }
+ }
+ sqliteOsLeaveMutex();
+ id->locked = 0;
+ return rc;
+#endif
+#if OS_WIN
+ int rc;
+ int page = isNT() ? 0xffffffff : 0;
+ if( id->locked==0 ){
+ rc = SQLITE_OK;
+ }else if( id->locked<0 ){
+ UnlockFile(id->h, FIRST_LOCKBYTE+1, page, N_LOCKBYTE, 0);
+ rc = SQLITE_OK;
+ id->locked = 0;
+ }else{
+ UnlockFile(id->h, FIRST_LOCKBYTE+id->locked, page, 1, 0);
+ rc = SQLITE_OK;
+ id->locked = 0;
+ }
+ return rc;
+#endif
+#if OS_MAC
+ int rc;
+ ParamBlockRec params;
+ memset(¶ms, 0, sizeof(params));
+ params.ioParam.ioRefNum = id->refNumRF;
+ params.ioParam.ioPosMode = fsFromStart;
+ if( id->locked==0 || id->refNumRF == -1 ){
+ rc = SQLITE_OK;
+ }else if( id->locked<0 ){
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
+ params.ioParam.ioReqCount = N_LOCKBYTE;
+ PBUnlockRangeSync(¶ms);
+ rc = SQLITE_OK;
+ id->locked = 0;
+ }else{
+ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+id->locked;
+ params.ioParam.ioReqCount = 1;
+ PBUnlockRangeSync(¶ms);
+ rc = SQLITE_OK;
+ id->locked = 0;
+ }
+ return rc;
+#endif
+}
+
+/*
+** Get information to seed the random number generator. The seed
+** is written into the buffer zBuf[256]. The calling function must
+** supply a sufficiently large buffer.
+*/
+int sqliteOsRandomSeed(char *zBuf){
+#ifdef SQLITE_TEST
+ /* When testing, always use the same random number sequence.
+ ** This makes the tests repeatable.
+ */
+ memset(zBuf, 0, 256);
+#endif
+#if OS_UNIX && !defined(SQLITE_TEST)
+ int pid;
+ time((time_t*)zBuf);
+ pid = getpid();
+ memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
+#endif
+#if OS_WIN && !defined(SQLITE_TEST)
+ GetSystemTime((LPSYSTEMTIME)zBuf);
+#endif
+#if OS_MAC
+ int pid;
+ Microseconds((UnsignedWide*)zBuf);
+ pid = getpid();
+ memcpy(&zBuf[sizeof(UnsignedWide)], &pid, sizeof(pid));
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** Sleep for a little while. Return the amount of time slept.
+*/
+int sqliteOsSleep(int ms){
+#if OS_UNIX
+#if defined(HAVE_USLEEP) && HAVE_USLEEP
+ usleep(ms*1000);
+ return ms;
+#else
+ sleep((ms+999)/1000);
+ return 1000*((ms+999)/1000);
+#endif
+#endif
+#if OS_WIN
+ Sleep(ms);
+ return ms;
+#endif
+#if OS_MAC
+ UInt32 finalTicks;
+ UInt32 ticks = (((UInt32)ms+16)*3)/50; /* 1/60 sec per tick */
+ Delay(ticks, &finalTicks);
+ return (int)((ticks*50)/3);
+#endif
+}
+
+/*
+** Macros used to determine whether or not to use threads. The
+** SQLITE_UNIX_THREADS macro is defined if we are synchronizing for
+** Posix threads and SQLITE_W32_THREADS is defined if we are
+** synchronizing using Win32 threads.
+*/
+#if OS_UNIX && defined(THREADSAFE) && THREADSAFE
+# include <pthread.h>
+# define SQLITE_UNIX_THREADS 1
+#endif
+#if OS_WIN && defined(THREADSAFE) && THREADSAFE
+# define SQLITE_W32_THREADS 1
+#endif
+#if OS_MAC && defined(THREADSAFE) && THREADSAFE
+# include <Multiprocessing.h>
+# define SQLITE_MACOS_MULTITASKING 1
+#endif
+
+/*
+** Static variables used for thread synchronization
+*/
+static int inMutex = 0;
+#ifdef SQLITE_UNIX_THREADS
+ static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
+#endif
+#ifdef SQLITE_W32_THREADS
+ static CRITICAL_SECTION cs;
+#endif
+#ifdef SQLITE_MACOS_MULTITASKING
+ static MPCriticalRegionID criticalRegion;
+#endif
+
+/*
+** The following pair of routine implement mutual exclusion for
+** multi-threaded processes. Only a single thread is allowed to
+** executed code that is surrounded by EnterMutex() and LeaveMutex().
+**
+** SQLite uses only a single Mutex. There is not much critical
+** code and what little there is executes quickly and without blocking.
+*/
+void sqliteOsEnterMutex(){
+#ifdef SQLITE_UNIX_THREADS
+ pthread_mutex_lock(&mutex);
+#endif
+#ifdef SQLITE_W32_THREADS
+ static int isInit = 0;
+ while( !isInit ){
+ static long lock = 0;
+ if( InterlockedIncrement(&lock)==1 ){
+ InitializeCriticalSection(&cs);
+ isInit = 1;
+ }else{
+ Sleep(1);
+ }
+ }
+ EnterCriticalSection(&cs);
+#endif
+#ifdef SQLITE_MACOS_MULTITASKING
+ static volatile int notInit = 1;
+ if( notInit ){
+ if( notInit == 2 ) /* as close as you can get to thread safe init */
+ MPYield();
+ else{
+ notInit = 2;
+ MPCreateCriticalRegion(&criticalRegion);
+ notInit = 0;
+ }
+ }
+ MPEnterCriticalRegion(criticalRegion, kDurationForever);
+#endif
+ assert( !inMutex );
+ inMutex = 1;
+}
+void sqliteOsLeaveMutex(){
+ assert( inMutex );
+ inMutex = 0;
+#ifdef SQLITE_UNIX_THREADS
+ pthread_mutex_unlock(&mutex);
+#endif
+#ifdef SQLITE_W32_THREADS
+ LeaveCriticalSection(&cs);
+#endif
+#ifdef SQLITE_MACOS_MULTITASKING
+ MPExitCriticalRegion(criticalRegion);
+#endif
+}
+
+/*
+** Turn a relative pathname into a full pathname. Return a pointer
+** to the full pathname stored in space obtained from sqliteMalloc().
+** The calling function is responsible for freeing this space once it
+** is no longer needed.
+*/
+char *sqliteOsFullPathname(const char *zRelative){
+#if OS_UNIX
+ char *zFull = 0;
+ if( zRelative[0]=='/' ){
+ sqliteSetString(&zFull, zRelative, 0);
+ }else{
+ char zBuf[5000];
+ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), "/", zRelative, 0);
+ }
+ return zFull;
+#endif
+#if OS_WIN
+ char *zNotUsed;
+ char *zFull;
+ int nByte;
+ nByte = GetFullPathName(zRelative, 0, 0, &zNotUsed) + 1;
+ zFull = sqliteMalloc( nByte );
+ if( zFull==0 ) return 0;
+ GetFullPathName(zRelative, nByte, zFull, &zNotUsed);
+ return zFull;
+#endif
+#if OS_MAC
+ char *zFull = 0;
+ if( zRelative[0]==':' ){
+ char zBuf[_MAX_PATH+1];
+ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), &(zRelative[1]), 0);
+ }else{
+ if( strchr(zRelative, ':') ){
+ sqliteSetString(&zFull, zRelative, 0);
+ }else{
+ char zBuf[_MAX_PATH+1];
+ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), zRelative, 0);
+ }
+ }
+ return zFull;
+#endif
+}
--- /dev/null
+/*
+** 2001 September 16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This header file (together with is companion C source-code file
+** "os.c") attempt to abstract the underlying operating system so that
+** the SQLite library will work on both POSIX and windows systems.
+*/
+#ifndef _SQLITE_OS_H_
+#define _SQLITE_OS_H_
+
+/*
+** These #defines should enable >2GB file support on Posix if the
+** underlying operating system supports it. If the OS lacks
+** large file support, or if the OS is windows, these should be no-ops.
+**
+** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
+** on the compiler command line. This is necessary if you are compiling
+** on a recent machine (ex: RedHat 7.2) but you want your code to work
+** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
+** without this option, LFS is enable. But LFS does not exist in the kernel
+** in RedHat 6.0, so the code won't work. Hence, for maximum binary
+** portability you should omit LFS.
+**
+** Similar is true for MacOS. LFS is only supported on MacOS 9 and later.
+*/
+#ifndef SQLITE_DISABLE_LFS
+# define _LARGE_FILE 1
+# define _FILE_OFFSET_BITS 64
+# define _LARGEFILE_SOURCE 1
+#endif
+
+/*
+** Temporary files are named starting with this prefix followed by 16 random
+** alphanumeric characters, and no file extension. They are stored in the
+** OS's standard temporary file directory, and are deleted prior to exit.
+** If sqlite is being embedded in another program, you may wish to change the
+** prefix to reflect your program's name, so that if your program exits
+** prematurely, old temporary files can be easily identified. This can be done
+** using -DTEMP_FILE_PREFIX=myprefix_ on the compiler command line.
+*/
+#ifndef TEMP_FILE_PREFIX
+# define TEMP_FILE_PREFIX "sqlite_"
+#endif
+
+/*
+** Figure out if we are dealing with Unix, Windows or MacOS.
+**
+** N.B. MacOS means Mac Classic (or Carbon). Treat Darwin (OS X) as Unix.
+** The MacOS build is designed to use CodeWarrior (tested with v8)
+*/
+#ifndef OS_UNIX
+# ifndef OS_WIN
+# ifndef OS_MAC
+# if defined(__MACOS__)
+# define OS_MAC 1
+# define OS_WIN 0
+# define OS_UNIX 0
+# elif defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
+# define OS_MAC 0
+# define OS_WIN 1
+# define OS_UNIX 0
+# else
+# define OS_MAC 0
+# define OS_WIN 0
+# define OS_UNIX 1
+# endif
+# else
+# define OS_WIN 0
+# define OS_UNIX 0
+# endif
+# else
+# define OS_MAC 0
+# define OS_UNIX 0
+# endif
+#else
+# define OS_MAC 0
+# define OS_WIN 0
+#endif
+
+/*
+** A handle for an open file is stored in an OsFile object.
+*/
+#if OS_UNIX
+# include <sys/types.h>
+# include <sys/stat.h>
+# include <fcntl.h>
+# include <unistd.h>
+ typedef struct OsFile OsFile;
+ struct OsFile {
+ struct lockInfo *pLock; /* Information about locks on this inode */
+ int fd; /* The file descriptor */
+ int locked; /* True if this user holds the lock */
+ };
+# define SQLITE_TEMPNAME_SIZE 200
+# if defined(HAVE_USLEEP) && HAVE_USLEEP
+# define SQLITE_MIN_SLEEP_MS 1
+# else
+# define SQLITE_MIN_SLEEP_MS 1000
+# endif
+#endif
+
+#if OS_WIN
+#include <windows.h>
+#include <winbase.h>
+ typedef struct OsFile OsFile;
+ struct OsFile {
+ HANDLE h; /* Handle for accessing the file */
+ int locked; /* 0: unlocked, <0: write lock, >0: read lock */
+ };
+# if defined(_MSC_VER) || defined(__BORLANDC__)
+ typedef __int64 off_t;
+# else
+ typedef long long off_t;
+# endif
+# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
+# define SQLITE_MIN_SLEEP_MS 1
+#endif
+
+#if OS_MAC
+# include <unistd.h>
+# include <Files.h>
+ typedef struct OsFile OsFile;
+ struct OsFile {
+ SInt16 refNum; /* Data fork/file reference number */
+ SInt16 refNumRF; /* Resource fork reference number (for locking) */
+ int locked; /* 0: unlocked, <0: write lock, >0: read lock */
+ int delOnClose; /* True if file is to be deleted on close */
+ char *pathToDel; /* Name of file to delete on close */
+ };
+# ifdef _LARGE_FILE
+ typedef SInt64 off_t;
+# else
+ typedef SInt32 off_t;
+# endif
+# define SQLITE_TEMPNAME_SIZE _MAX_PATH
+# define SQLITE_MIN_SLEEP_MS 17
+#endif
+
+int sqliteOsDelete(const char*);
+int sqliteOsFileExists(const char*);
+int sqliteOsOpenReadWrite(const char*, OsFile*, int*);
+int sqliteOsOpenExclusive(const char*, OsFile*, int);
+int sqliteOsOpenReadOnly(const char*, OsFile*);
+int sqliteOsTempFileName(char*);
+int sqliteOsClose(OsFile*);
+int sqliteOsRead(OsFile*, void*, int amt);
+int sqliteOsWrite(OsFile*, const void*, int amt);
+int sqliteOsSeek(OsFile*, off_t offset);
+int sqliteOsSync(OsFile*);
+int sqliteOsTruncate(OsFile*, off_t size);
+int sqliteOsFileSize(OsFile*, off_t *pSize);
+int sqliteOsReadLock(OsFile*);
+int sqliteOsWriteLock(OsFile*);
+int sqliteOsUnlock(OsFile*);
+int sqliteOsRandomSeed(char*);
+int sqliteOsSleep(int ms);
+void sqliteOsEnterMutex(void);
+void sqliteOsLeaveMutex(void);
+char *sqliteOsFullPathname(const char*);
+
+
+
+#endif /* _SQLITE_OS_H_ */
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of the page cache subsystem or "pager".
+**
+** The pager is used to access a database disk file. It implements
+** atomic commit and rollback through the use of a journal file that
+** is separate from the database file. The pager also implements file
+** locking to prevent two processes from writing the same database
+** file simultaneously, or one process from reading the database while
+** another is writing.
+**
+** @(#) $Id$
+*/
+#include "os.h" /* Must be first to enable large file support */
+#include "sqliteInt.h"
+#include "pager.h"
+#include <assert.h>
+#include <string.h>
+
+/*
+** Macros for troubleshooting. Normally turned off
+*/
+#if 0
+static Pager *mainPager = 0;
+#define SET_PAGER(X) if( mainPager==0 ) mainPager = (X)
+#define CLR_PAGER(X) if( mainPager==(X) ) mainPager = 0
+#define TRACE1(X) if( pPager==mainPager ) fprintf(stderr,X)
+#define TRACE2(X,Y) if( pPager==mainPager ) fprintf(stderr,X,Y)
+#define TRACE3(X,Y,Z) if( pPager==mainPager ) fprintf(stderr,X,Y,Z)
+#else
+#define SET_PAGER(X)
+#define CLR_PAGER(X)
+#define TRACE1(X)
+#define TRACE2(X,Y)
+#define TRACE3(X,Y,Z)
+#endif
+
+
+/*
+** The page cache as a whole is always in one of the following
+** states:
+**
+** SQLITE_UNLOCK The page cache is not currently reading or
+** writing the database file. There is no
+** data held in memory. This is the initial
+** state.
+**
+** SQLITE_READLOCK The page cache is reading the database.
+** Writing is not permitted. There can be
+** multiple readers accessing the same database
+** file at the same time.
+**
+** SQLITE_WRITELOCK The page cache is writing the database.
+** Access is exclusive. No other processes or
+** threads can be reading or writing while one
+** process is writing.
+**
+** The page cache comes up in SQLITE_UNLOCK. The first time a
+** sqlite_page_get() occurs, the state transitions to SQLITE_READLOCK.
+** After all pages have been released using sqlite_page_unref(),
+** the state transitions back to SQLITE_UNLOCK. The first time
+** that sqlite_page_write() is called, the state transitions to
+** SQLITE_WRITELOCK. (Note that sqlite_page_write() can only be
+** called on an outstanding page which means that the pager must
+** be in SQLITE_READLOCK before it transitions to SQLITE_WRITELOCK.)
+** The sqlite_page_rollback() and sqlite_page_commit() functions
+** transition the state from SQLITE_WRITELOCK back to SQLITE_READLOCK.
+*/
+#define SQLITE_UNLOCK 0
+#define SQLITE_READLOCK 1
+#define SQLITE_WRITELOCK 2
+
+
+/*
+** Each in-memory image of a page begins with the following header.
+** This header is only visible to this pager module. The client
+** code that calls pager sees only the data that follows the header.
+*/
+typedef struct PgHdr PgHdr;
+struct PgHdr {
+ Pager *pPager; /* The pager to which this page belongs */
+ Pgno pgno; /* The page number for this page */
+ PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
+ int nRef; /* Number of users of this page */
+ PgHdr *pNextFree, *pPrevFree; /* Freelist of pages where nRef==0 */
+ PgHdr *pNextAll, *pPrevAll; /* A list of all pages */
+ PgHdr *pNextCkpt, *pPrevCkpt; /* List of pages in the checkpoint journal */
+ u8 inJournal; /* TRUE if has been written to journal */
+ u8 inCkpt; /* TRUE if written to the checkpoint journal */
+ u8 dirty; /* TRUE if we need to write back changes */
+ u8 needSync; /* Sync journal before writing this page */
+ u8 alwaysRollback; /* Disable dont_rollback() for this page */
+ PgHdr *pDirty; /* Dirty pages sorted by PgHdr.pgno */
+ /* SQLITE_PAGE_SIZE bytes of page data follow this header */
+ /* Pager.nExtra bytes of local data follow the page data */
+};
+
+/*
+** Convert a pointer to a PgHdr into a pointer to its data
+** and back again.
+*/
+#define PGHDR_TO_DATA(P) ((void*)(&(P)[1]))
+#define DATA_TO_PGHDR(D) (&((PgHdr*)(D))[-1])
+#define PGHDR_TO_EXTRA(P) ((void*)&((char*)(&(P)[1]))[SQLITE_PAGE_SIZE])
+
+/*
+** How big to make the hash table used for locating in-memory pages
+** by page number.
+*/
+#define N_PG_HASH 2048
+
+/*
+** Hash a page number
+*/
+#define pager_hash(PN) ((PN)&(N_PG_HASH-1))
+
+/*
+** A open page cache is an instance of the following structure.
+*/
+struct Pager {
+ char *zFilename; /* Name of the database file */
+ char *zJournal; /* Name of the journal file */
+ OsFile fd, jfd; /* File descriptors for database and journal */
+ OsFile cpfd; /* File descriptor for the checkpoint journal */
+ int dbSize; /* Number of pages in the file */
+ int origDbSize; /* dbSize before the current change */
+ int ckptSize; /* Size of database (in pages) at ckpt_begin() */
+ off_t ckptJSize; /* Size of journal at ckpt_begin() */
+ int nRec; /* Number of pages written to the journal */
+ u32 cksumInit; /* Quasi-random value added to every checksum */
+ int ckptNRec; /* Number of records in the checkpoint journal */
+ int nExtra; /* Add this many bytes to each in-memory page */
+ void (*xDestructor)(void*); /* Call this routine when freeing pages */
+ int nPage; /* Total number of in-memory pages */
+ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
+ int mxPage; /* Maximum number of pages to hold in cache */
+ int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */
+ u8 journalOpen; /* True if journal file descriptors is valid */
+ u8 journalStarted; /* True if initial magic of journal is synced */
+ u8 useJournal; /* Do not use a rollback journal on this file */
+ u8 ckptOpen; /* True if the checkpoint journal is open */
+ u8 ckptInUse; /* True we are in a checkpoint */
+ u8 ckptAutoopen; /* Open ckpt journal when main journal is opened*/
+ u8 noSync; /* Do not sync the journal if true */
+ u8 fullSync; /* Do extra syncs of the journal for robustness */
+ u8 state; /* SQLITE_UNLOCK, _READLOCK or _WRITELOCK */
+ u8 errMask; /* One of several kinds of errors */
+ u8 tempFile; /* zFilename is a temporary file */
+ u8 readOnly; /* True for a read-only database */
+ u8 needSync; /* True if an fsync() is needed on the journal */
+ u8 dirtyFile; /* True if database file has changed in any way */
+ u8 alwaysRollback; /* Disable dont_rollback() for all pages */
+ u8 *aInJournal; /* One bit for each page in the database file */
+ u8 *aInCkpt; /* One bit for each page in the database */
+ PgHdr *pFirst, *pLast; /* List of free pages */
+ PgHdr *pFirstSynced; /* First free page with PgHdr.needSync==0 */
+ PgHdr *pAll; /* List of all pages */
+ PgHdr *pCkpt; /* List of pages in the checkpoint journal */
+ PgHdr *aHash[N_PG_HASH]; /* Hash table to map page number of PgHdr */
+};
+
+/*
+** These are bits that can be set in Pager.errMask.
+*/
+#define PAGER_ERR_FULL 0x01 /* a write() failed */
+#define PAGER_ERR_MEM 0x02 /* malloc() failed */
+#define PAGER_ERR_LOCK 0x04 /* error in the locking protocol */
+#define PAGER_ERR_CORRUPT 0x08 /* database or journal corruption */
+#define PAGER_ERR_DISK 0x10 /* general disk I/O error - bad hard drive? */
+
+/*
+** The journal file contains page records in the following
+** format.
+**
+** Actually, this structure is the complete page record for pager
+** formats less than 3. Beginning with format 3, this record is surrounded
+** by two checksums.
+*/
+typedef struct PageRecord PageRecord;
+struct PageRecord {
+ Pgno pgno; /* The page number */
+ char aData[SQLITE_PAGE_SIZE]; /* Original data for page pgno */
+};
+
+/*
+** Journal files begin with the following magic string. The data
+** was obtained from /dev/random. It is used only as a sanity check.
+**
+** There are three journal formats (so far). The 1st journal format writes
+** 32-bit integers in the byte-order of the host machine. New
+** formats writes integers as big-endian. All new journals use the
+** new format, but we have to be able to read an older journal in order
+** to rollback journals created by older versions of the library.
+**
+** The 3rd journal format (added for 2.8.0) adds additional sanity
+** checking information to the journal. If the power fails while the
+** journal is being written, semi-random garbage data might appear in
+** the journal file after power is restored. If an attempt is then made
+** to roll the journal back, the database could be corrupted. The additional
+** sanity checking data is an attempt to discover the garbage in the
+** journal and ignore it.
+**
+** The sanity checking information for the 3rd journal format consists
+** of a 32-bit checksum on each page of data. The checksum covers both
+** the page number and the SQLITE_PAGE_SIZE bytes of data for the page.
+** This cksum is initialized to a 32-bit random value that appears in the
+** journal file right after the header. The random initializer is important,
+** because garbage data that appears at the end of a journal is likely
+** data that was once in other files that have now been deleted. If the
+** garbage data came from an obsolete journal file, the checksums might
+** be correct. But by initializing the checksum to random value which
+** is different for every journal, we minimize that risk.
+*/
+static const unsigned char aJournalMagic1[] = {
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd4,
+};
+static const unsigned char aJournalMagic2[] = {
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd5,
+};
+static const unsigned char aJournalMagic3[] = {
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd6,
+};
+#define JOURNAL_FORMAT_1 1
+#define JOURNAL_FORMAT_2 2
+#define JOURNAL_FORMAT_3 3
+
+/*
+** The following integer determines what format to use when creating
+** new primary journal files. By default we always use format 3.
+** When testing, we can set this value to older journal formats in order to
+** make sure that newer versions of the library are able to rollback older
+** journal files.
+**
+** Note that checkpoint journals always use format 2 and omit the header.
+*/
+#ifdef SQLITE_TEST
+int journal_format = 3;
+#else
+# define journal_format 3
+#endif
+
+/*
+** The size of the header and of each page in the journal varies according
+** to which journal format is being used. The following macros figure out
+** the sizes based on format numbers.
+*/
+#define JOURNAL_HDR_SZ(X) \
+ (sizeof(aJournalMagic1) + sizeof(Pgno) + ((X)>=3)*2*sizeof(u32))
+#define JOURNAL_PG_SZ(X) \
+ (SQLITE_PAGE_SIZE + sizeof(Pgno) + ((X)>=3)*sizeof(u32))
+
+/*
+** Enable reference count tracking here:
+*/
+#ifdef SQLITE_TEST
+ int pager_refinfo_enable = 0;
+ static void pager_refinfo(PgHdr *p){
+ static int cnt = 0;
+ if( !pager_refinfo_enable ) return;
+ printf(
+ "REFCNT: %4d addr=0x%08x nRef=%d\n",
+ p->pgno, (int)PGHDR_TO_DATA(p), p->nRef
+ );
+ cnt++; /* Something to set a breakpoint on */
+ }
+# define REFINFO(X) pager_refinfo(X)
+#else
+# define REFINFO(X)
+#endif
+
+/*
+** Read a 32-bit integer from the given file descriptor
+*/
+static int read32bits(int format, OsFile *fd, u32 *pRes){
+ u32 res;
+ int rc;
+ rc = sqliteOsRead(fd, &res, sizeof(res));
+ if( rc==SQLITE_OK && format>JOURNAL_FORMAT_1 ){
+ unsigned char ac[4];
+ memcpy(ac, &res, 4);
+ res = (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
+ }
+ *pRes = res;
+ return rc;
+}
+
+/*
+** Write a 32-bit integer into the given file descriptor. Writing
+** is always done using the new journal format.
+*/
+static int write32bits(OsFile *fd, u32 val){
+ unsigned char ac[4];
+ if( journal_format<=1 ){
+ return sqliteOsWrite(fd, &val, 4);
+ }
+ ac[0] = (val>>24) & 0xff;
+ ac[1] = (val>>16) & 0xff;
+ ac[2] = (val>>8) & 0xff;
+ ac[3] = val & 0xff;
+ return sqliteOsWrite(fd, ac, 4);
+}
+
+/*
+** Write a 32-bit integer into a page header right before the
+** page data. This will overwrite the PgHdr.pDirty pointer.
+*/
+static void store32bits(u32 val, PgHdr *p, int offset){
+ unsigned char *ac;
+ ac = &((char*)PGHDR_TO_DATA(p))[offset];
+ if( journal_format<=1 ){
+ memcpy(ac, &val, 4);
+ }else{
+ ac[0] = (val>>24) & 0xff;
+ ac[1] = (val>>16) & 0xff;
+ ac[2] = (val>>8) & 0xff;
+ ac[3] = val & 0xff;
+ }
+}
+
+
+/*
+** Convert the bits in the pPager->errMask into an approprate
+** return code.
+*/
+static int pager_errcode(Pager *pPager){
+ int rc = SQLITE_OK;
+ if( pPager->errMask & PAGER_ERR_LOCK ) rc = SQLITE_PROTOCOL;
+ if( pPager->errMask & PAGER_ERR_DISK ) rc = SQLITE_IOERR;
+ if( pPager->errMask & PAGER_ERR_FULL ) rc = SQLITE_FULL;
+ if( pPager->errMask & PAGER_ERR_MEM ) rc = SQLITE_NOMEM;
+ if( pPager->errMask & PAGER_ERR_CORRUPT ) rc = SQLITE_CORRUPT;
+ return rc;
+}
+
+/*
+** Add or remove a page from the list of all pages that are in the
+** checkpoint journal.
+**
+** The Pager keeps a separate list of pages that are currently in
+** the checkpoint journal. This helps the sqlitepager_ckpt_commit()
+** routine run MUCH faster for the common case where there are many
+** pages in memory but only a few are in the checkpoint journal.
+*/
+static void page_add_to_ckpt_list(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ if( pPg->inCkpt ) return;
+ assert( pPg->pPrevCkpt==0 && pPg->pNextCkpt==0 );
+ pPg->pPrevCkpt = 0;
+ if( pPager->pCkpt ){
+ pPager->pCkpt->pPrevCkpt = pPg;
+ }
+ pPg->pNextCkpt = pPager->pCkpt;
+ pPager->pCkpt = pPg;
+ pPg->inCkpt = 1;
+}
+static void page_remove_from_ckpt_list(PgHdr *pPg){
+ if( !pPg->inCkpt ) return;
+ if( pPg->pPrevCkpt ){
+ assert( pPg->pPrevCkpt->pNextCkpt==pPg );
+ pPg->pPrevCkpt->pNextCkpt = pPg->pNextCkpt;
+ }else{
+ assert( pPg->pPager->pCkpt==pPg );
+ pPg->pPager->pCkpt = pPg->pNextCkpt;
+ }
+ if( pPg->pNextCkpt ){
+ assert( pPg->pNextCkpt->pPrevCkpt==pPg );
+ pPg->pNextCkpt->pPrevCkpt = pPg->pPrevCkpt;
+ }
+ pPg->pNextCkpt = 0;
+ pPg->pPrevCkpt = 0;
+ pPg->inCkpt = 0;
+}
+
+/*
+** Find a page in the hash table given its page number. Return
+** a pointer to the page or NULL if not found.
+*/
+static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
+ PgHdr *p = pPager->aHash[pager_hash(pgno)];
+ while( p && p->pgno!=pgno ){
+ p = p->pNextHash;
+ }
+ return p;
+}
+
+/*
+** Unlock the database and clear the in-memory cache. This routine
+** sets the state of the pager back to what it was when it was first
+** opened. Any outstanding pages are invalidated and subsequent attempts
+** to access those pages will likely result in a coredump.
+*/
+static void pager_reset(Pager *pPager){
+ PgHdr *pPg, *pNext;
+ for(pPg=pPager->pAll; pPg; pPg=pNext){
+ pNext = pPg->pNextAll;
+ sqliteFree(pPg);
+ }
+ pPager->pFirst = 0;
+ pPager->pFirstSynced = 0;
+ pPager->pLast = 0;
+ pPager->pAll = 0;
+ memset(pPager->aHash, 0, sizeof(pPager->aHash));
+ pPager->nPage = 0;
+ if( pPager->state>=SQLITE_WRITELOCK ){
+ sqlitepager_rollback(pPager);
+ }
+ sqliteOsUnlock(&pPager->fd);
+ pPager->state = SQLITE_UNLOCK;
+ pPager->dbSize = -1;
+ pPager->nRef = 0;
+ assert( pPager->journalOpen==0 );
+}
+
+/*
+** When this routine is called, the pager has the journal file open and
+** a write lock on the database. This routine releases the database
+** write lock and acquires a read lock in its place. The journal file
+** is deleted and closed.
+*/
+static int pager_unwritelock(Pager *pPager){
+ int rc;
+ PgHdr *pPg;
+ if( pPager->state<SQLITE_WRITELOCK ) return SQLITE_OK;
+ sqlitepager_ckpt_commit(pPager);
+ if( pPager->ckptOpen ){
+ sqliteOsClose(&pPager->cpfd);
+ pPager->ckptOpen = 0;
+ }
+ if( pPager->journalOpen ){
+ sqliteOsClose(&pPager->jfd);
+ pPager->journalOpen = 0;
+ sqliteOsDelete(pPager->zJournal);
+ sqliteFree( pPager->aInJournal );
+ pPager->aInJournal = 0;
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ pPg->inJournal = 0;
+ pPg->dirty = 0;
+ pPg->needSync = 0;
+ }
+ }else{
+ assert( pPager->dirtyFile==0 || pPager->useJournal==0 );
+ }
+ rc = sqliteOsReadLock(&pPager->fd);
+ if( rc==SQLITE_OK ){
+ pPager->state = SQLITE_READLOCK;
+ }else{
+ /* This can only happen if a process does a BEGIN, then forks and the
+ ** child process does the COMMIT. Because of the semantics of unix
+ ** file locking, the unlock will fail.
+ */
+ pPager->state = SQLITE_UNLOCK;
+ }
+ return rc;
+}
+
+/*
+** Compute and return a checksum for the page of data.
+*/
+static u32 pager_cksum(Pager *pPager, Pgno pgno, const char *aData){
+ u32 cksum = pPager->cksumInit + pgno;
+ return cksum;
+}
+
+/*
+** Read a single page from the journal file opened on file descriptor
+** jfd. Playback this one page.
+**
+** There are three different journal formats. The format parameter determines
+** which format is used by the journal that is played back.
+*/
+static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int format){
+ int rc;
+ PgHdr *pPg; /* An existing page in the cache */
+ PageRecord pgRec;
+ u32 cksum;
+
+ rc = read32bits(format, jfd, &pgRec.pgno);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = sqliteOsRead(jfd, &pgRec.aData, sizeof(pgRec.aData));
+ if( rc!=SQLITE_OK ) return rc;
+
+ /* Sanity checking on the page. This is more important that I originally
+ ** thought. If a power failure occurs while the journal is being written,
+ ** it could cause invalid data to be written into the journal. We need to
+ ** detect this invalid data (with high probability) and ignore it.
+ */
+ if( pgRec.pgno==0 ){
+ return SQLITE_DONE;
+ }
+ if( pgRec.pgno>pPager->dbSize ){
+ return SQLITE_OK;
+ }
+ if( format>=JOURNAL_FORMAT_3 ){
+ rc = read32bits(format, jfd, &cksum);
+ if( rc ) return rc;
+ if( pager_cksum(pPager, pgRec.pgno, pgRec.aData)!=cksum ){
+ return SQLITE_DONE;
+ }
+ }
+
+ /* Playback the page. Update the in-memory copy of the page
+ ** at the same time, if there is one.
+ */
+ pPg = pager_lookup(pPager, pgRec.pgno);
+ TRACE2("PLAYBACK %d\n", pgRec.pgno);
+ sqliteOsSeek(&pPager->fd, (pgRec.pgno-1)*(off_t)SQLITE_PAGE_SIZE);
+ rc = sqliteOsWrite(&pPager->fd, pgRec.aData, SQLITE_PAGE_SIZE);
+ if( pPg ){
+ if( pPg->nRef==0 ||
+ memcmp(PGHDR_TO_DATA(pPg), pgRec.aData, SQLITE_PAGE_SIZE)==0
+ ){
+ /* Do not update the data on this page if the page is in use
+ ** and the page has never been modified. This avoids resetting
+ ** the "extra" data. That in turn avoids invalidating BTree cursors
+ ** in trees that have never been modified. The end result is that
+ ** you can have a SELECT going on in one table and ROLLBACK changes
+ ** to a different table and the SELECT is unaffected by the ROLLBACK.
+ */
+ memcpy(PGHDR_TO_DATA(pPg), pgRec.aData, SQLITE_PAGE_SIZE);
+ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
+ }
+ pPg->dirty = 0;
+ pPg->needSync = 0;
+ }
+ return rc;
+}
+
+/*
+** Playback the journal and thus restore the database file to
+** the state it was in before we started making changes.
+**
+** The journal file format is as follows: There is an initial
+** file-type string for sanity checking. Then there is a single
+** Pgno number which is the number of pages in the database before
+** changes were made. The database is truncated to this size.
+** Next come zero or more page records where each page record
+** consists of a Pgno and SQLITE_PAGE_SIZE bytes of data. See
+** the PageRecord structure for details.
+**
+** If the file opened as the journal file is not a well-formed
+** journal file (as determined by looking at the magic number
+** at the beginning) then this routine returns SQLITE_PROTOCOL.
+** If any other errors occur during playback, the database will
+** likely be corrupted, so the PAGER_ERR_CORRUPT bit is set in
+** pPager->errMask and SQLITE_CORRUPT is returned. If it all
+** works, then this routine returns SQLITE_OK.
+*/
+static int pager_playback(Pager *pPager, int useJournalSize){
+ off_t szJ; /* Size of the journal file in bytes */
+ int nRec; /* Number of Records in the journal */
+ int i; /* Loop counter */
+ Pgno mxPg = 0; /* Size of the original file in pages */
+ int format; /* Format of the journal file. */
+ unsigned char aMagic[sizeof(aJournalMagic1)];
+ int rc;
+
+ /* Figure out how many records are in the journal. Abort early if
+ ** the journal is empty.
+ */
+ assert( pPager->journalOpen );
+ sqliteOsSeek(&pPager->jfd, 0);
+ rc = sqliteOsFileSize(&pPager->jfd, &szJ);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+ if( szJ < sizeof(aMagic)+sizeof(Pgno) ){
+ goto end_playback;
+ }
+
+ /* Read the beginning of the journal and truncate the
+ ** database file back to its original size.
+ */
+ rc = sqliteOsRead(&pPager->jfd, aMagic, sizeof(aMagic));
+ if( rc!=SQLITE_OK ){
+ rc = SQLITE_PROTOCOL;
+ goto end_playback;
+ }
+ if( memcmp(aMagic, aJournalMagic3, sizeof(aMagic))==0 ){
+ format = JOURNAL_FORMAT_3;
+ }else if( memcmp(aMagic, aJournalMagic2, sizeof(aMagic))==0 ){
+ format = JOURNAL_FORMAT_2;
+ }else if( memcmp(aMagic, aJournalMagic1, sizeof(aMagic))==0 ){
+ format = JOURNAL_FORMAT_1;
+ }else{
+ rc = SQLITE_PROTOCOL;
+ goto end_playback;
+ }
+ if( format>=JOURNAL_FORMAT_3 ){
+ rc = read32bits(format, &pPager->jfd, &nRec);
+ if( rc ) goto end_playback;
+ rc = read32bits(format, &pPager->jfd, &pPager->cksumInit);
+ if( rc ) goto end_playback;
+ if( nRec==0xffffffff || useJournalSize ){
+ nRec = (szJ - JOURNAL_HDR_SZ(3))/JOURNAL_PG_SZ(3);
+ }
+ }else{
+ nRec = (szJ - JOURNAL_HDR_SZ(2))/JOURNAL_PG_SZ(2);
+ assert( nRec*JOURNAL_PG_SZ(2)+JOURNAL_HDR_SZ(2)==szJ );
+ }
+ rc = read32bits(format, &pPager->jfd, &mxPg);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+ assert( pPager->origDbSize==0 || pPager->origDbSize==mxPg );
+ rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)mxPg);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+ pPager->dbSize = mxPg;
+
+ /* Copy original pages out of the journal and back into the database file.
+ */
+ for(i=0; i<nRec; i++){
+ rc = pager_playback_one_page(pPager, &pPager->jfd, format);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ }
+ break;
+ }
+ }
+
+ /* Pages that have been written to the journal but never synced
+ ** where not restored by the loop above. We have to restore those
+ ** pages by reading the back from the original database.
+ */
+ if( rc==SQLITE_OK ){
+ PgHdr *pPg;
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ char zBuf[SQLITE_PAGE_SIZE];
+ if( !pPg->dirty ) continue;
+ if( (int)pPg->pgno <= pPager->origDbSize ){
+ sqliteOsSeek(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)(pPg->pgno-1));
+ rc = sqliteOsRead(&pPager->fd, zBuf, SQLITE_PAGE_SIZE);
+ if( rc ) break;
+ }else{
+ memset(zBuf, 0, SQLITE_PAGE_SIZE);
+ }
+ if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE) ){
+ memcpy(PGHDR_TO_DATA(pPg), zBuf, SQLITE_PAGE_SIZE);
+ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
+ }
+ pPg->needSync = 0;
+ pPg->dirty = 0;
+ }
+ }
+
+end_playback:
+ if( rc!=SQLITE_OK ){
+ pager_unwritelock(pPager);
+ pPager->errMask |= PAGER_ERR_CORRUPT;
+ rc = SQLITE_CORRUPT;
+ }else{
+ rc = pager_unwritelock(pPager);
+ }
+ return rc;
+}
+
+/*
+** Playback the checkpoint journal.
+**
+** This is similar to playing back the transaction journal but with
+** a few extra twists.
+**
+** (1) The number of pages in the database file at the start of
+** the checkpoint is stored in pPager->ckptSize, not in the
+** journal file itself.
+**
+** (2) In addition to playing back the checkpoint journal, also
+** playback all pages of the transaction journal beginning
+** at offset pPager->ckptJSize.
+*/
+static int pager_ckpt_playback(Pager *pPager){
+ off_t szJ; /* Size of the full journal */
+ int nRec; /* Number of Records */
+ int i; /* Loop counter */
+ int rc;
+
+ /* Truncate the database back to its original size.
+ */
+ rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)pPager->ckptSize);
+ pPager->dbSize = pPager->ckptSize;
+
+ /* Figure out how many records are in the checkpoint journal.
+ */
+ assert( pPager->ckptInUse && pPager->journalOpen );
+ sqliteOsSeek(&pPager->cpfd, 0);
+ nRec = pPager->ckptNRec;
+
+ /* Copy original pages out of the checkpoint journal and back into the
+ ** database file. Note that the checkpoint journal always uses format
+ ** 2 instead of format 3 since it does not need to be concerned with
+ ** power failures corrupting the journal and can thus omit the checksums.
+ */
+ for(i=nRec-1; i>=0; i--){
+ rc = pager_playback_one_page(pPager, &pPager->cpfd, 2);
+ assert( rc!=SQLITE_DONE );
+ if( rc!=SQLITE_OK ) goto end_ckpt_playback;
+ }
+
+ /* Figure out how many pages need to be copied out of the transaction
+ ** journal.
+ */
+ rc = sqliteOsSeek(&pPager->jfd, pPager->ckptJSize);
+ if( rc!=SQLITE_OK ){
+ goto end_ckpt_playback;
+ }
+ rc = sqliteOsFileSize(&pPager->jfd, &szJ);
+ if( rc!=SQLITE_OK ){
+ goto end_ckpt_playback;
+ }
+ nRec = (szJ - pPager->ckptJSize)/JOURNAL_PG_SZ(journal_format);
+ for(i=nRec-1; i>=0; i--){
+ rc = pager_playback_one_page(pPager, &pPager->jfd, journal_format);
+ if( rc!=SQLITE_OK ){
+ assert( rc!=SQLITE_DONE );
+ goto end_ckpt_playback;
+ }
+ }
+
+end_ckpt_playback:
+ if( rc!=SQLITE_OK ){
+ pPager->errMask |= PAGER_ERR_CORRUPT;
+ rc = SQLITE_CORRUPT;
+ }
+ return rc;
+}
+
+/*
+** Change the maximum number of in-memory pages that are allowed.
+**
+** The maximum number is the absolute value of the mxPage parameter.
+** If mxPage is negative, the noSync flag is also set. noSync bypasses
+** calls to sqliteOsSync(). The pager runs much faster with noSync on,
+** but if the operating system crashes or there is an abrupt power
+** failure, the database file might be left in an inconsistent and
+** unrepairable state.
+*/
+void sqlitepager_set_cachesize(Pager *pPager, int mxPage){
+ if( mxPage>=0 ){
+ pPager->noSync = pPager->tempFile;
+ }else{
+ pPager->noSync = 1;
+ mxPage = -mxPage;
+ }
+ if( mxPage>10 ){
+ pPager->mxPage = mxPage;
+ }
+}
+
+/*
+** Adjust the robustness of the database to damage due to OS crashes
+** or power failures by changing the number of syncs()s when writing
+** the rollback journal. There are three levels:
+**
+** OFF sqliteOsSync() is never called. This is the default
+** for temporary and transient files.
+**
+** NORMAL The journal is synced once before writes begin on the
+** database. This is normally adequate protection, but
+** it is theoretically possible, though very unlikely,
+** that an inopertune power failure could leave the journal
+** in a state which would cause damage to the database
+** when it is rolled back.
+**
+** FULL The journal is synced twice before writes begin on the
+** database (with some additional information being written
+** in between the two syncs. If we assume that writing a
+** single disk sector is atomic, then this mode provides
+** assurance that the journal will not be corrupted to the
+** point of causing damage to the database during rollback.
+**
+** Numeric values associated with these states are OFF==1, NORMAL=2,
+** and FULL=3.
+*/
+void sqlitepager_set_safety_level(Pager *pPager, int level){
+ pPager->noSync = level==1 || pPager->tempFile;
+ pPager->fullSync = level==3 && !pPager->tempFile;
+}
+
+/*
+** Open a temporary file. Write the name of the file into zName
+** (zName must be at least SQLITE_TEMPNAME_SIZE bytes long.) Write
+** the file descriptor into *fd. Return SQLITE_OK on success or some
+** other error code if we fail.
+**
+** The OS will automatically delete the temporary file when it is
+** closed.
+*/
+static int sqlitepager_opentemp(char *zFile, OsFile *fd){
+ int cnt = 8;
+ int rc;
+ do{
+ cnt--;
+ sqliteOsTempFileName(zFile);
+ rc = sqliteOsOpenExclusive(zFile, fd, 1);
+ }while( cnt>0 && rc!=SQLITE_OK );
+ return rc;
+}
+
+/*
+** Create a new page cache and put a pointer to the page cache in *ppPager.
+** The file to be cached need not exist. The file is not locked until
+** the first call to sqlitepager_get() and is only held open until the
+** last page is released using sqlitepager_unref().
+**
+** If zFilename is NULL then a randomly-named temporary file is created
+** and used as the file to be cached. The file will be deleted
+** automatically when it is closed.
+*/
+int sqlitepager_open(
+ Pager **ppPager, /* Return the Pager structure here */
+ const char *zFilename, /* Name of the database file to open */
+ int mxPage, /* Max number of in-memory cache pages */
+ int nExtra, /* Extra bytes append to each in-memory page */
+ int useJournal /* TRUE to use a rollback journal on this file */
+){
+ Pager *pPager;
+ char *zFullPathname;
+ int nameLen;
+ OsFile fd;
+ int rc;
+ int tempFile;
+ int readOnly = 0;
+ char zTemp[SQLITE_TEMPNAME_SIZE];
+
+ *ppPager = 0;
+ if( sqlite_malloc_failed ){
+ return SQLITE_NOMEM;
+ }
+ if( zFilename ){
+ zFullPathname = sqliteOsFullPathname(zFilename);
+ rc = sqliteOsOpenReadWrite(zFullPathname, &fd, &readOnly);
+ tempFile = 0;
+ }else{
+ rc = sqlitepager_opentemp(zTemp, &fd);
+ zFilename = zTemp;
+ zFullPathname = sqliteOsFullPathname(zFilename);
+ tempFile = 1;
+ }
+ if( sqlite_malloc_failed ){
+ return SQLITE_NOMEM;
+ }
+ if( rc!=SQLITE_OK ){
+ sqliteFree(zFullPathname);
+ return SQLITE_CANTOPEN;
+ }
+ nameLen = strlen(zFullPathname);
+ pPager = sqliteMalloc( sizeof(*pPager) + nameLen*2 + 30 );
+ if( pPager==0 ){
+ sqliteOsClose(&fd);
+ sqliteFree(zFullPathname);
+ return SQLITE_NOMEM;
+ }
+ SET_PAGER(pPager);
+ pPager->zFilename = (char*)&pPager[1];
+ pPager->zJournal = &pPager->zFilename[nameLen+1];
+ strcpy(pPager->zFilename, zFullPathname);
+ strcpy(pPager->zJournal, zFullPathname);
+ sqliteFree(zFullPathname);
+ strcpy(&pPager->zJournal[nameLen], "-journal");
+ pPager->fd = fd;
+ pPager->journalOpen = 0;
+ pPager->useJournal = useJournal;
+ pPager->ckptOpen = 0;
+ pPager->ckptInUse = 0;
+ pPager->nRef = 0;
+ pPager->dbSize = -1;
+ pPager->ckptSize = 0;
+ pPager->ckptJSize = 0;
+ pPager->nPage = 0;
+ pPager->mxPage = mxPage>5 ? mxPage : 10;
+ pPager->state = SQLITE_UNLOCK;
+ pPager->errMask = 0;
+ pPager->tempFile = tempFile;
+ pPager->readOnly = readOnly;
+ pPager->needSync = 0;
+ pPager->noSync = pPager->tempFile || !useJournal;
+ pPager->pFirst = 0;
+ pPager->pFirstSynced = 0;
+ pPager->pLast = 0;
+ pPager->nExtra = nExtra;
+ memset(pPager->aHash, 0, sizeof(pPager->aHash));
+ *ppPager = pPager;
+ return SQLITE_OK;
+}
+
+/*
+** Set the destructor for this pager. If not NULL, the destructor is called
+** when the reference count on each page reaches zero. The destructor can
+** be used to clean up information in the extra segment appended to each page.
+**
+** The destructor is not called as a result sqlitepager_close().
+** Destructors are only called by sqlitepager_unref().
+*/
+void sqlitepager_set_destructor(Pager *pPager, void (*xDesc)(void*)){
+ pPager->xDestructor = xDesc;
+}
+
+/*
+** Return the total number of pages in the disk file associated with
+** pPager.
+*/
+int sqlitepager_pagecount(Pager *pPager){
+ off_t n;
+ assert( pPager!=0 );
+ if( pPager->dbSize>=0 ){
+ return pPager->dbSize;
+ }
+ if( sqliteOsFileSize(&pPager->fd, &n)!=SQLITE_OK ){
+ pPager->errMask |= PAGER_ERR_DISK;
+ return 0;
+ }
+ n /= SQLITE_PAGE_SIZE;
+ if( pPager->state!=SQLITE_UNLOCK ){
+ pPager->dbSize = n;
+ }
+ return n;
+}
+
+/*
+** Shutdown the page cache. Free all memory and close all files.
+**
+** If a transaction was in progress when this routine is called, that
+** transaction is rolled back. All outstanding pages are invalidated
+** and their memory is freed. Any attempt to use a page associated
+** with this page cache after this function returns will likely
+** result in a coredump.
+*/
+int sqlitepager_close(Pager *pPager){
+ PgHdr *pPg, *pNext;
+ switch( pPager->state ){
+ case SQLITE_WRITELOCK: {
+ sqlitepager_rollback(pPager);
+ sqliteOsUnlock(&pPager->fd);
+ assert( pPager->journalOpen==0 );
+ break;
+ }
+ case SQLITE_READLOCK: {
+ sqliteOsUnlock(&pPager->fd);
+ break;
+ }
+ default: {
+ /* Do nothing */
+ break;
+ }
+ }
+ for(pPg=pPager->pAll; pPg; pPg=pNext){
+ pNext = pPg->pNextAll;
+ sqliteFree(pPg);
+ }
+ sqliteOsClose(&pPager->fd);
+ assert( pPager->journalOpen==0 );
+ /* Temp files are automatically deleted by the OS
+ ** if( pPager->tempFile ){
+ ** sqliteOsDelete(pPager->zFilename);
+ ** }
+ */
+ CLR_PAGER(pPager);
+ sqliteFree(pPager);
+ return SQLITE_OK;
+}
+
+/*
+** Return the page number for the given page data.
+*/
+Pgno sqlitepager_pagenumber(void *pData){
+ PgHdr *p = DATA_TO_PGHDR(pData);
+ return p->pgno;
+}
+
+/*
+** Increment the reference count for a page. If the page is
+** currently on the freelist (the reference count is zero) then
+** remove it from the freelist.
+*/
+#define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
+static void _page_ref(PgHdr *pPg){
+ if( pPg->nRef==0 ){
+ /* The page is currently on the freelist. Remove it. */
+ if( pPg==pPg->pPager->pFirstSynced ){
+ PgHdr *p = pPg->pNextFree;
+ while( p && p->needSync ){ p = p->pNextFree; }
+ pPg->pPager->pFirstSynced = p;
+ }
+ if( pPg->pPrevFree ){
+ pPg->pPrevFree->pNextFree = pPg->pNextFree;
+ }else{
+ pPg->pPager->pFirst = pPg->pNextFree;
+ }
+ if( pPg->pNextFree ){
+ pPg->pNextFree->pPrevFree = pPg->pPrevFree;
+ }else{
+ pPg->pPager->pLast = pPg->pPrevFree;
+ }
+ pPg->pPager->nRef++;
+ }
+ pPg->nRef++;
+ REFINFO(pPg);
+}
+
+/*
+** Increment the reference count for a page. The input pointer is
+** a reference to the page data.
+*/
+int sqlitepager_ref(void *pData){
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
+ page_ref(pPg);
+ return SQLITE_OK;
+}
+
+/*
+** Sync the journal and then write all free dirty pages to the database
+** file.
+**
+** Writing all free dirty pages to the database after the sync is a
+** non-obvious optimization. fsync() is an expensive operation so we
+** want to minimize the number ot times it is called. After an fsync() call,
+** we are free to write dirty pages back to the database. It is best
+** to go ahead and write as many dirty pages as possible to minimize
+** the risk of having to do another fsync() later on. Writing dirty
+** free pages in this way was observed to make database operations go
+** up to 10 times faster.
+**
+** If we are writing to temporary database, there is no need to preserve
+** the integrity of the journal file, so we can save time and skip the
+** fsync().
+*/
+static int syncAllPages(Pager *pPager){
+ PgHdr *pPg;
+ int rc = SQLITE_OK;
+
+ /* Sync the journal before modifying the main database
+ ** (assuming there is a journal and it needs to be synced.)
+ */
+ if( pPager->needSync ){
+ if( !pPager->tempFile ){
+ assert( pPager->journalOpen );
+ assert( !pPager->noSync );
+#ifndef NDEBUG
+ {
+ off_t hdrSz, pgSz, jSz;
+ hdrSz = JOURNAL_HDR_SZ(journal_format);
+ pgSz = JOURNAL_PG_SZ(journal_format);
+ rc = sqliteOsFileSize(&pPager->jfd, &jSz);
+ if( rc!=0 ) return rc;
+ assert( pPager->nRec*pgSz+hdrSz==jSz );
+ }
+#endif
+ if( journal_format>=3 ){
+ off_t szJ;
+ if( pPager->fullSync ){
+ TRACE1("SYNC\n");
+ rc = sqliteOsSync(&pPager->jfd);
+ if( rc!=0 ) return rc;
+ }
+ sqliteOsSeek(&pPager->jfd, sizeof(aJournalMagic1));
+ rc = write32bits(&pPager->jfd, pPager->nRec);
+ if( rc ) return rc;
+ szJ = JOURNAL_HDR_SZ(journal_format) +
+ pPager->nRec*JOURNAL_PG_SZ(journal_format);
+ sqliteOsSeek(&pPager->jfd, szJ);
+ }
+ TRACE1("SYNC\n");
+ rc = sqliteOsSync(&pPager->jfd);
+ if( rc!=0 ) return rc;
+ pPager->journalStarted = 1;
+ }
+ pPager->needSync = 0;
+
+ /* Erase the needSync flag from every page.
+ */
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ pPg->needSync = 0;
+ }
+ pPager->pFirstSynced = pPager->pFirst;
+ }
+
+#ifndef NDEBUG
+ /* If the Pager.needSync flag is clear then the PgHdr.needSync
+ ** flag must also be clear for all pages. Verify that this
+ ** invariant is true.
+ */
+ else{
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ assert( pPg->needSync==0 );
+ }
+ assert( pPager->pFirstSynced==pPager->pFirst );
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Given a list of pages (connected by the PgHdr.pDirty pointer) write
+** every one of those pages out to the database file and mark them all
+** as clean.
+*/
+static int pager_write_pagelist(PgHdr *pList){
+ Pager *pPager;
+ int rc;
+
+ if( pList==0 ) return SQLITE_OK;
+ pPager = pList->pPager;
+ while( pList ){
+ assert( pList->dirty );
+ sqliteOsSeek(&pPager->fd, (pList->pgno-1)*(off_t)SQLITE_PAGE_SIZE);
+ rc = sqliteOsWrite(&pPager->fd, PGHDR_TO_DATA(pList), SQLITE_PAGE_SIZE);
+ if( rc ) return rc;
+ pList->dirty = 0;
+ pList = pList->pDirty;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Collect every dirty page into a dirty list and
+** return a pointer to the head of that list. All pages are
+** collected even if they are still in use.
+*/
+static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
+ PgHdr *p, *pList;
+ pList = 0;
+ for(p=pPager->pAll; p; p=p->pNextAll){
+ if( p->dirty ){
+ p->pDirty = pList;
+ pList = p;
+ }
+ }
+ return pList;
+}
+
+/*
+** Acquire a page.
+**
+** A read lock on the disk file is obtained when the first page is acquired.
+** This read lock is dropped when the last page is released.
+**
+** A _get works for any page number greater than 0. If the database
+** file is smaller than the requested page, then no actual disk
+** read occurs and the memory image of the page is initialized to
+** all zeros. The extra data appended to a page is always initialized
+** to zeros the first time a page is loaded into memory.
+**
+** The acquisition might fail for several reasons. In all cases,
+** an appropriate error code is returned and *ppPage is set to NULL.
+**
+** See also sqlitepager_lookup(). Both this routine and _lookup() attempt
+** to find a page in the in-memory cache first. If the page is not already
+** in memory, this routine goes to disk to read it in whereas _lookup()
+** just returns 0. This routine acquires a read-lock the first time it
+** has to go to disk, and could also playback an old journal if necessary.
+** Since _lookup() never goes to disk, it never has to deal with locks
+** or journal files.
+*/
+int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage){
+ PgHdr *pPg;
+ int rc;
+
+ /* Make sure we have not hit any critical errors.
+ */
+ assert( pPager!=0 );
+ assert( pgno!=0 );
+ if( pPager->errMask & ~(PAGER_ERR_FULL) ){
+ return pager_errcode(pPager);
+ }
+
+ /* If this is the first page accessed, then get a read lock
+ ** on the database file.
+ */
+ if( pPager->nRef==0 ){
+ rc = sqliteOsReadLock(&pPager->fd);
+ if( rc!=SQLITE_OK ){
+ *ppPage = 0;
+ return rc;
+ }
+ pPager->state = SQLITE_READLOCK;
+
+ /* If a journal file exists, try to play it back.
+ */
+ if( pPager->useJournal && sqliteOsFileExists(pPager->zJournal) ){
+ int rc, dummy;
+
+ /* Get a write lock on the database
+ */
+ rc = sqliteOsWriteLock(&pPager->fd);
+ if( rc!=SQLITE_OK ){
+ if( sqliteOsUnlock(&pPager->fd)!=SQLITE_OK ){
+ /* This should never happen! */
+ rc = SQLITE_INTERNAL;
+ }
+ *ppPage = 0;
+ return rc;
+ }
+ pPager->state = SQLITE_WRITELOCK;
+
+ /* Open the journal for exclusive access. Return SQLITE_BUSY if
+ ** we cannot get exclusive access to the journal file.
+ **
+ ** Even though we will only be reading from the journal, not writing,
+ ** we have to open the journal for writing in order to obtain an
+ ** exclusive access lock.
+ */
+ rc = sqliteOsOpenReadWrite(pPager->zJournal, &pPager->jfd, &dummy);
+ if( rc!=SQLITE_OK ){
+ rc = sqliteOsUnlock(&pPager->fd);
+ assert( rc==SQLITE_OK );
+ *ppPage = 0;
+ return SQLITE_BUSY;
+ }
+ pPager->journalOpen = 1;
+ pPager->journalStarted = 0;
+
+ /* Playback and delete the journal. Drop the database write
+ ** lock and reacquire the read lock.
+ */
+ rc = pager_playback(pPager, 0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+ pPg = 0;
+ }else{
+ /* Search for page in cache */
+ pPg = pager_lookup(pPager, pgno);
+ }
+ if( pPg==0 ){
+ /* The requested page is not in the page cache. */
+ int h;
+ pPager->nMiss++;
+ if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 ){
+ /* Create a new page */
+ pPg = sqliteMallocRaw( sizeof(*pPg) + SQLITE_PAGE_SIZE
+ + sizeof(u32) + pPager->nExtra );
+ if( pPg==0 ){
+ *ppPage = 0;
+ pager_unwritelock(pPager);
+ pPager->errMask |= PAGER_ERR_MEM;
+ return SQLITE_NOMEM;
+ }
+ memset(pPg, 0, sizeof(*pPg));
+ pPg->pPager = pPager;
+ pPg->pNextAll = pPager->pAll;
+ if( pPager->pAll ){
+ pPager->pAll->pPrevAll = pPg;
+ }
+ pPg->pPrevAll = 0;
+ pPager->pAll = pPg;
+ pPager->nPage++;
+ }else{
+ /* Find a page to recycle. Try to locate a page that does not
+ ** require us to do an fsync() on the journal.
+ */
+ pPg = pPager->pFirstSynced;
+
+ /* If we could not find a page that does not require an fsync()
+ ** on the journal file then fsync the journal file. This is a
+ ** very slow operation, so we work hard to avoid it. But sometimes
+ ** it can't be helped.
+ */
+ if( pPg==0 ){
+ int rc = syncAllPages(pPager);
+ if( rc!=0 ){
+ sqlitepager_rollback(pPager);
+ *ppPage = 0;
+ return SQLITE_IOERR;
+ }
+ pPg = pPager->pFirst;
+ }
+ assert( pPg->nRef==0 );
+
+ /* Write the page to the database file if it is dirty.
+ */
+ if( pPg->dirty ){
+ assert( pPg->needSync==0 );
+ pPg->pDirty = 0;
+ rc = pager_write_pagelist( pPg );
+ if( rc!=SQLITE_OK ){
+ sqlitepager_rollback(pPager);
+ *ppPage = 0;
+ return SQLITE_IOERR;
+ }
+ }
+ assert( pPg->dirty==0 );
+
+ /* If the page we are recycling is marked as alwaysRollback, then
+ ** set the global alwaysRollback flag, thus disabling the
+ ** sqlite_dont_rollback() optimization for the rest of this transaction.
+ ** It is necessary to do this because the page marked alwaysRollback
+ ** might be reloaded at a later time but at that point we won't remember
+ ** that is was marked alwaysRollback. This means that all pages must
+ ** be marked as alwaysRollback from here on out.
+ */
+ if( pPg->alwaysRollback ){
+ pPager->alwaysRollback = 1;
+ }
+
+ /* Unlink the old page from the free list and the hash table
+ */
+ if( pPg==pPager->pFirstSynced ){
+ PgHdr *p = pPg->pNextFree;
+ while( p && p->needSync ){ p = p->pNextFree; }
+ pPager->pFirstSynced = p;
+ }
+ if( pPg->pPrevFree ){
+ pPg->pPrevFree->pNextFree = pPg->pNextFree;
+ }else{
+ assert( pPager->pFirst==pPg );
+ pPager->pFirst = pPg->pNextFree;
+ }
+ if( pPg->pNextFree ){
+ pPg->pNextFree->pPrevFree = pPg->pPrevFree;
+ }else{
+ assert( pPager->pLast==pPg );
+ pPager->pLast = pPg->pPrevFree;
+ }
+ pPg->pNextFree = pPg->pPrevFree = 0;
+ if( pPg->pNextHash ){
+ pPg->pNextHash->pPrevHash = pPg->pPrevHash;
+ }
+ if( pPg->pPrevHash ){
+ pPg->pPrevHash->pNextHash = pPg->pNextHash;
+ }else{
+ h = pager_hash(pPg->pgno);
+ assert( pPager->aHash[h]==pPg );
+ pPager->aHash[h] = pPg->pNextHash;
+ }
+ pPg->pNextHash = pPg->pPrevHash = 0;
+ pPager->nOvfl++;
+ }
+ pPg->pgno = pgno;
+ if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
+ sqliteCheckMemory(pPager->aInJournal, pgno/8);
+ assert( pPager->journalOpen );
+ pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
+ pPg->needSync = 0;
+ }else{
+ pPg->inJournal = 0;
+ pPg->needSync = 0;
+ }
+ if( pPager->aInCkpt && (int)pgno<=pPager->ckptSize
+ && (pPager->aInCkpt[pgno/8] & (1<<(pgno&7)))!=0 ){
+ page_add_to_ckpt_list(pPg);
+ }else{
+ page_remove_from_ckpt_list(pPg);
+ }
+ pPg->dirty = 0;
+ pPg->nRef = 1;
+ REFINFO(pPg);
+ pPager->nRef++;
+ h = pager_hash(pgno);
+ pPg->pNextHash = pPager->aHash[h];
+ pPager->aHash[h] = pPg;
+ if( pPg->pNextHash ){
+ assert( pPg->pNextHash->pPrevHash==0 );
+ pPg->pNextHash->pPrevHash = pPg;
+ }
+ if( pPager->dbSize<0 ) sqlitepager_pagecount(pPager);
+ if( pPager->dbSize<(int)pgno ){
+ memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
+ }else{
+ int rc;
+ sqliteOsSeek(&pPager->fd, (pgno-1)*(off_t)SQLITE_PAGE_SIZE);
+ rc = sqliteOsRead(&pPager->fd, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE);
+ if( rc!=SQLITE_OK ){
+ off_t fileSize;
+ if( sqliteOsFileSize(&pPager->fd,&fileSize)!=SQLITE_OK
+ || fileSize>=pgno*SQLITE_PAGE_SIZE ){
+ return rc;
+ }else{
+ memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
+ }
+ }
+ }
+ if( pPager->nExtra>0 ){
+ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
+ }
+ }else{
+ /* The requested page is in the page cache. */
+ pPager->nHit++;
+ page_ref(pPg);
+ }
+ *ppPage = PGHDR_TO_DATA(pPg);
+ return SQLITE_OK;
+}
+
+/*
+** Acquire a page if it is already in the in-memory cache. Do
+** not read the page from disk. Return a pointer to the page,
+** or 0 if the page is not in cache.
+**
+** See also sqlitepager_get(). The difference between this routine
+** and sqlitepager_get() is that _get() will go to the disk and read
+** in the page if the page is not already in cache. This routine
+** returns NULL if the page is not in cache or if a disk I/O error
+** has ever happened.
+*/
+void *sqlitepager_lookup(Pager *pPager, Pgno pgno){
+ PgHdr *pPg;
+
+ assert( pPager!=0 );
+ assert( pgno!=0 );
+ if( pPager->errMask & ~(PAGER_ERR_FULL) ){
+ return 0;
+ }
+ /* if( pPager->nRef==0 ){
+ ** return 0;
+ ** }
+ */
+ pPg = pager_lookup(pPager, pgno);
+ if( pPg==0 ) return 0;
+ page_ref(pPg);
+ return PGHDR_TO_DATA(pPg);
+}
+
+/*
+** Release a page.
+**
+** If the number of references to the page drop to zero, then the
+** page is added to the LRU list. When all references to all pages
+** are released, a rollback occurs and the lock on the database is
+** removed.
+*/
+int sqlitepager_unref(void *pData){
+ PgHdr *pPg;
+
+ /* Decrement the reference count for this page
+ */
+ pPg = DATA_TO_PGHDR(pData);
+ assert( pPg->nRef>0 );
+ pPg->nRef--;
+ REFINFO(pPg);
+
+ /* When the number of references to a page reach 0, call the
+ ** destructor and add the page to the freelist.
+ */
+ if( pPg->nRef==0 ){
+ Pager *pPager;
+ pPager = pPg->pPager;
+ pPg->pNextFree = 0;
+ pPg->pPrevFree = pPager->pLast;
+ pPager->pLast = pPg;
+ if( pPg->pPrevFree ){
+ pPg->pPrevFree->pNextFree = pPg;
+ }else{
+ pPager->pFirst = pPg;
+ }
+ if( pPg->needSync==0 && pPager->pFirstSynced==0 ){
+ pPager->pFirstSynced = pPg;
+ }
+ if( pPager->xDestructor ){
+ pPager->xDestructor(pData);
+ }
+
+ /* When all pages reach the freelist, drop the read lock from
+ ** the database file.
+ */
+ pPager->nRef--;
+ assert( pPager->nRef>=0 );
+ if( pPager->nRef==0 ){
+ pager_reset(pPager);
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Create a journal file for pPager. There should already be a write
+** lock on the database file when this routine is called.
+**
+** Return SQLITE_OK if everything. Return an error code and release the
+** write lock if anything goes wrong.
+*/
+static int pager_open_journal(Pager *pPager){
+ int rc;
+ assert( pPager->state==SQLITE_WRITELOCK );
+ assert( pPager->journalOpen==0 );
+ assert( pPager->useJournal );
+ pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
+ if( pPager->aInJournal==0 ){
+ sqliteOsReadLock(&pPager->fd);
+ pPager->state = SQLITE_READLOCK;
+ return SQLITE_NOMEM;
+ }
+ rc = sqliteOsOpenExclusive(pPager->zJournal, &pPager->jfd,pPager->tempFile);
+ if( rc!=SQLITE_OK ){
+ sqliteFree(pPager->aInJournal);
+ pPager->aInJournal = 0;
+ sqliteOsReadLock(&pPager->fd);
+ pPager->state = SQLITE_READLOCK;
+ return SQLITE_CANTOPEN;
+ }
+ pPager->journalOpen = 1;
+ pPager->journalStarted = 0;
+ pPager->needSync = 0;
+ pPager->alwaysRollback = 0;
+ pPager->nRec = 0;
+ sqlitepager_pagecount(pPager);
+ pPager->origDbSize = pPager->dbSize;
+ if( journal_format==JOURNAL_FORMAT_3 ){
+ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic3, sizeof(aJournalMagic3));
+ if( rc==SQLITE_OK ){
+ rc = write32bits(&pPager->jfd, pPager->noSync ? 0xffffffff : 0);
+ }
+ if( rc==SQLITE_OK ){
+ pPager->cksumInit = (u32)sqliteRandomInteger();
+ rc = write32bits(&pPager->jfd, pPager->cksumInit);
+ }
+ }else if( journal_format==JOURNAL_FORMAT_2 ){
+ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic2, sizeof(aJournalMagic2));
+ }else{
+ assert( journal_format==JOURNAL_FORMAT_1 );
+ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic1, sizeof(aJournalMagic1));
+ }
+ if( rc==SQLITE_OK ){
+ rc = write32bits(&pPager->jfd, pPager->dbSize);
+ }
+ if( pPager->ckptAutoopen && rc==SQLITE_OK ){
+ rc = sqlitepager_ckpt_begin(pPager);
+ }
+ if( rc!=SQLITE_OK ){
+ rc = pager_unwritelock(pPager);
+ if( rc==SQLITE_OK ){
+ rc = SQLITE_FULL;
+ }
+ }
+ return rc;
+}
+
+/*
+** Acquire a write-lock on the database. The lock is removed when
+** the any of the following happen:
+**
+** * sqlitepager_commit() is called.
+** * sqlitepager_rollback() is called.
+** * sqlitepager_close() is called.
+** * sqlitepager_unref() is called to on every outstanding page.
+**
+** The parameter to this routine is a pointer to any open page of the
+** database file. Nothing changes about the page - it is used merely
+** to acquire a pointer to the Pager structure and as proof that there
+** is already a read-lock on the database.
+**
+** A journal file is opened if this is not a temporary file. For
+** temporary files, the opening of the journal file is deferred until
+** there is an actual need to write to the journal.
+**
+** If the database is already write-locked, this routine is a no-op.
+*/
+int sqlitepager_begin(void *pData){
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
+ Pager *pPager = pPg->pPager;
+ int rc = SQLITE_OK;
+ assert( pPg->nRef>0 );
+ assert( pPager->state!=SQLITE_UNLOCK );
+ if( pPager->state==SQLITE_READLOCK ){
+ assert( pPager->aInJournal==0 );
+ rc = sqliteOsWriteLock(&pPager->fd);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ pPager->state = SQLITE_WRITELOCK;
+ pPager->dirtyFile = 0;
+ TRACE1("TRANSACTION\n");
+ if( pPager->useJournal && !pPager->tempFile ){
+ rc = pager_open_journal(pPager);
+ }
+ }
+ return rc;
+}
+
+/*
+** Mark a data page as writeable. The page is written into the journal
+** if it is not there already. This routine must be called before making
+** changes to a page.
+**
+** The first time this routine is called, the pager creates a new
+** journal and acquires a write lock on the database. If the write
+** lock could not be acquired, this routine returns SQLITE_BUSY. The
+** calling routine must check for that return value and be careful not to
+** change any page data until this routine returns SQLITE_OK.
+**
+** If the journal file could not be written because the disk is full,
+** then this routine returns SQLITE_FULL and does an immediate rollback.
+** All subsequent write attempts also return SQLITE_FULL until there
+** is a call to sqlitepager_commit() or sqlitepager_rollback() to
+** reset.
+*/
+int sqlitepager_write(void *pData){
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
+ Pager *pPager = pPg->pPager;
+ int rc = SQLITE_OK;
+
+ /* Check for errors
+ */
+ if( pPager->errMask ){
+ return pager_errcode(pPager);
+ }
+ if( pPager->readOnly ){
+ return SQLITE_PERM;
+ }
+
+ /* Mark the page as dirty. If the page has already been written
+ ** to the journal then we can return right away.
+ */
+ pPg->dirty = 1;
+ if( pPg->inJournal && (pPg->inCkpt || pPager->ckptInUse==0) ){
+ pPager->dirtyFile = 1;
+ return SQLITE_OK;
+ }
+
+ /* If we get this far, it means that the page needs to be
+ ** written to the transaction journal or the ckeckpoint journal
+ ** or both.
+ **
+ ** First check to see that the transaction journal exists and
+ ** create it if it does not.
+ */
+ assert( pPager->state!=SQLITE_UNLOCK );
+ rc = sqlitepager_begin(pData);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( pPager->state==SQLITE_WRITELOCK );
+ if( !pPager->journalOpen && pPager->useJournal ){
+ rc = pager_open_journal(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ assert( pPager->journalOpen || !pPager->useJournal );
+ pPager->dirtyFile = 1;
+
+ /* The transaction journal now exists and we have a write lock on the
+ ** main database file. Write the current page to the transaction
+ ** journal if it is not there already.
+ */
+ if( !pPg->inJournal && pPager->useJournal ){
+ if( (int)pPg->pgno <= pPager->origDbSize ){
+ int szPg;
+ u32 saved;
+ if( journal_format>=JOURNAL_FORMAT_3 ){
+ u32 cksum = pager_cksum(pPager, pPg->pgno, pData);
+ saved = *(u32*)PGHDR_TO_EXTRA(pPg);
+ store32bits(cksum, pPg, SQLITE_PAGE_SIZE);
+ szPg = SQLITE_PAGE_SIZE+8;
+ }else{
+ szPg = SQLITE_PAGE_SIZE+4;
+ }
+ store32bits(pPg->pgno, pPg, -4);
+ rc = sqliteOsWrite(&pPager->jfd, &((char*)pData)[-4], szPg);
+ if( journal_format>=JOURNAL_FORMAT_3 ){
+ *(u32*)PGHDR_TO_EXTRA(pPg) = saved;
+ }
+ if( rc!=SQLITE_OK ){
+ sqlitepager_rollback(pPager);
+ pPager->errMask |= PAGER_ERR_FULL;
+ return rc;
+ }
+ pPager->nRec++;
+ assert( pPager->aInJournal!=0 );
+ pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ pPg->needSync = !pPager->noSync;
+ pPg->inJournal = 1;
+ if( pPager->ckptInUse ){
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ page_add_to_ckpt_list(pPg);
+ }
+ TRACE3("JOURNAL %d %d\n", pPg->pgno, pPg->needSync);
+ }else{
+ pPg->needSync = !pPager->journalStarted && !pPager->noSync;
+ TRACE3("APPEND %d %d\n", pPg->pgno, pPg->needSync);
+ }
+ if( pPg->needSync ){
+ pPager->needSync = 1;
+ }
+ }
+
+ /* If the checkpoint journal is open and the page is not in it,
+ ** then write the current page to the checkpoint journal. Note that
+ ** the checkpoint journal always uses the simplier format 2 that lacks
+ ** checksums. The header is also omitted from the checkpoint journal.
+ */
+ if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
+ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
+ store32bits(pPg->pgno, pPg, -4);
+ rc = sqliteOsWrite(&pPager->cpfd, &((char*)pData)[-4], SQLITE_PAGE_SIZE+4);
+ if( rc!=SQLITE_OK ){
+ sqlitepager_rollback(pPager);
+ pPager->errMask |= PAGER_ERR_FULL;
+ return rc;
+ }
+ pPager->ckptNRec++;
+ assert( pPager->aInCkpt!=0 );
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ page_add_to_ckpt_list(pPg);
+ }
+
+ /* Update the database size and return.
+ */
+ if( pPager->dbSize<(int)pPg->pgno ){
+ pPager->dbSize = pPg->pgno;
+ }
+ return rc;
+}
+
+/*
+** Return TRUE if the page given in the argument was previously passed
+** to sqlitepager_write(). In other words, return TRUE if it is ok
+** to change the content of the page.
+*/
+int sqlitepager_iswriteable(void *pData){
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
+ return pPg->dirty;
+}
+
+/*
+** A call to this routine tells the pager that it is not necessary to
+** write the information on page "pgno" back to the disk, even though
+** that page might be marked as dirty.
+**
+** The overlying software layer calls this routine when all of the data
+** on the given page is unused. The pager marks the page as clean so
+** that it does not get written to disk.
+**
+** Tests show that this optimization, together with the
+** sqlitepager_dont_rollback() below, more than double the speed
+** of large INSERT operations and quadruple the speed of large DELETEs.
+**
+** When this routine is called, set the alwaysRollback flag to true.
+** Subsequent calls to sqlitepager_dont_rollback() for the same page
+** will thereafter be ignored. This is necessary to avoid a problem
+** where a page with data is added to the freelist during one part of
+** a transaction then removed from the freelist during a later part
+** of the same transaction and reused for some other purpose. When it
+** is first added to the freelist, this routine is called. When reused,
+** the dont_rollback() routine is called. But because the page contains
+** critical data, we still need to be sure it gets rolled back in spite
+** of the dont_rollback() call.
+*/
+void sqlitepager_dont_write(Pager *pPager, Pgno pgno){
+ PgHdr *pPg;
+
+ pPg = pager_lookup(pPager, pgno);
+ pPg->alwaysRollback = 1;
+ if( pPg && pPg->dirty ){
+ if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
+ /* If this pages is the last page in the file and the file has grown
+ ** during the current transaction, then do NOT mark the page as clean.
+ ** When the database file grows, we must make sure that the last page
+ ** gets written at least once so that the disk file will be the correct
+ ** size. If you do not write this page and the size of the file
+ ** on the disk ends up being too small, that can lead to database
+ ** corruption during the next transaction.
+ */
+ }else{
+ TRACE2("DONT_WRITE %d\n", pgno);
+ pPg->dirty = 0;
+ }
+ }
+}
+
+/*
+** A call to this routine tells the pager that if a rollback occurs,
+** it is not necessary to restore the data on the given page. This
+** means that the pager does not have to record the given page in the
+** rollback journal.
+*/
+void sqlitepager_dont_rollback(void *pData){
+ PgHdr *pPg = DATA_TO_PGHDR(pData);
+ Pager *pPager = pPg->pPager;
+
+ if( pPager->state!=SQLITE_WRITELOCK || pPager->journalOpen==0 ) return;
+ if( pPg->alwaysRollback || pPager->alwaysRollback ) return;
+ if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
+ assert( pPager->aInJournal!=0 );
+ pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ pPg->inJournal = 1;
+ if( pPager->ckptInUse ){
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ page_add_to_ckpt_list(pPg);
+ }
+ TRACE2("DONT_ROLLBACK %d\n", pPg->pgno);
+ }
+ if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
+ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
+ assert( pPager->aInCkpt!=0 );
+ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
+ page_add_to_ckpt_list(pPg);
+ }
+}
+
+/*
+** Commit all changes to the database and release the write lock.
+**
+** If the commit fails for any reason, a rollback attempt is made
+** and an error code is returned. If the commit worked, SQLITE_OK
+** is returned.
+*/
+int sqlitepager_commit(Pager *pPager){
+ int rc;
+ PgHdr *pPg;
+
+ if( pPager->errMask==PAGER_ERR_FULL ){
+ rc = sqlitepager_rollback(pPager);
+ if( rc==SQLITE_OK ){
+ rc = SQLITE_FULL;
+ }
+ return rc;
+ }
+ if( pPager->errMask!=0 ){
+ rc = pager_errcode(pPager);
+ return rc;
+ }
+ if( pPager->state!=SQLITE_WRITELOCK ){
+ return SQLITE_ERROR;
+ }
+ TRACE1("COMMIT\n");
+ if( pPager->dirtyFile==0 ){
+ /* Exit early (without doing the time-consuming sqliteOsSync() calls)
+ ** if there have been no changes to the database file. */
+ assert( pPager->needSync==0 );
+ rc = pager_unwritelock(pPager);
+ pPager->dbSize = -1;
+ return rc;
+ }
+ assert( pPager->journalOpen );
+ if( pPager->needSync && sqliteOsSync(&pPager->jfd)!=SQLITE_OK ){
+ goto commit_abort;
+ }
+ pPg = pager_get_all_dirty_pages(pPager);
+ if( pPg ){
+ rc = pager_write_pagelist(pPg);
+ if( rc || (!pPager->noSync && sqliteOsSync(&pPager->fd)!=SQLITE_OK) ){
+ goto commit_abort;
+ }
+ }
+ rc = pager_unwritelock(pPager);
+ pPager->dbSize = -1;
+ return rc;
+
+ /* Jump here if anything goes wrong during the commit process.
+ */
+commit_abort:
+ rc = sqlitepager_rollback(pPager);
+ if( rc==SQLITE_OK ){
+ rc = SQLITE_FULL;
+ }
+ return rc;
+}
+
+/*
+** Rollback all changes. The database falls back to read-only mode.
+** All in-memory cache pages revert to their original data contents.
+** The journal is deleted.
+**
+** This routine cannot fail unless some other process is not following
+** the correct locking protocol (SQLITE_PROTOCOL) or unless some other
+** process is writing trash into the journal file (SQLITE_CORRUPT) or
+** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
+** codes are returned for all these occasions. Otherwise,
+** SQLITE_OK is returned.
+*/
+int sqlitepager_rollback(Pager *pPager){
+ int rc;
+ TRACE1("ROLLBACK\n");
+ if( !pPager->dirtyFile || !pPager->journalOpen ){
+ rc = pager_unwritelock(pPager);
+ pPager->dbSize = -1;
+ return rc;
+ }
+
+ if( pPager->errMask!=0 && pPager->errMask!=PAGER_ERR_FULL ){
+ if( pPager->state>=SQLITE_WRITELOCK ){
+ pager_playback(pPager, 1);
+ }
+ return pager_errcode(pPager);
+ }
+ if( pPager->state!=SQLITE_WRITELOCK ){
+ return SQLITE_OK;
+ }
+ rc = pager_playback(pPager, 1);
+ if( rc!=SQLITE_OK ){
+ rc = SQLITE_CORRUPT;
+ pPager->errMask |= PAGER_ERR_CORRUPT;
+ }
+ pPager->dbSize = -1;
+ return rc;
+}
+
+/*
+** Return TRUE if the database file is opened read-only. Return FALSE
+** if the database is (in theory) writable.
+*/
+int sqlitepager_isreadonly(Pager *pPager){
+ return pPager->readOnly;
+}
+
+/*
+** This routine is used for testing and analysis only.
+*/
+int *sqlitepager_stats(Pager *pPager){
+ static int a[9];
+ a[0] = pPager->nRef;
+ a[1] = pPager->nPage;
+ a[2] = pPager->mxPage;
+ a[3] = pPager->dbSize;
+ a[4] = pPager->state;
+ a[5] = pPager->errMask;
+ a[6] = pPager->nHit;
+ a[7] = pPager->nMiss;
+ a[8] = pPager->nOvfl;
+ return a;
+}
+
+/*
+** Set the checkpoint.
+**
+** This routine should be called with the transaction journal already
+** open. A new checkpoint journal is created that can be used to rollback
+** changes of a single SQL command within a larger transaction.
+*/
+int sqlitepager_ckpt_begin(Pager *pPager){
+ int rc;
+ char zTemp[SQLITE_TEMPNAME_SIZE];
+ if( !pPager->journalOpen ){
+ pPager->ckptAutoopen = 1;
+ return SQLITE_OK;
+ }
+ assert( pPager->journalOpen );
+ assert( !pPager->ckptInUse );
+ pPager->aInCkpt = sqliteMalloc( pPager->dbSize/8 + 1 );
+ if( pPager->aInCkpt==0 ){
+ sqliteOsReadLock(&pPager->fd);
+ return SQLITE_NOMEM;
+ }
+#ifndef NDEBUG
+ rc = sqliteOsFileSize(&pPager->jfd, &pPager->ckptJSize);
+ if( rc ) goto ckpt_begin_failed;
+ assert( pPager->ckptJSize ==
+ pPager->nRec*JOURNAL_PG_SZ(journal_format)+JOURNAL_HDR_SZ(journal_format) );
+#endif
+ pPager->ckptJSize = pPager->nRec*JOURNAL_PG_SZ(journal_format)
+ + JOURNAL_HDR_SZ(journal_format);
+ pPager->ckptSize = pPager->dbSize;
+ if( !pPager->ckptOpen ){
+ rc = sqlitepager_opentemp(zTemp, &pPager->cpfd);
+ if( rc ) goto ckpt_begin_failed;
+ pPager->ckptOpen = 1;
+ pPager->ckptNRec = 0;
+ }
+ pPager->ckptInUse = 1;
+ return SQLITE_OK;
+
+ckpt_begin_failed:
+ if( pPager->aInCkpt ){
+ sqliteFree(pPager->aInCkpt);
+ pPager->aInCkpt = 0;
+ }
+ return rc;
+}
+
+/*
+** Commit a checkpoint.
+*/
+int sqlitepager_ckpt_commit(Pager *pPager){
+ if( pPager->ckptInUse ){
+ PgHdr *pPg, *pNext;
+ sqliteOsSeek(&pPager->cpfd, 0);
+ /* sqliteOsTruncate(&pPager->cpfd, 0); */
+ pPager->ckptNRec = 0;
+ pPager->ckptInUse = 0;
+ sqliteFree( pPager->aInCkpt );
+ pPager->aInCkpt = 0;
+ for(pPg=pPager->pCkpt; pPg; pPg=pNext){
+ pNext = pPg->pNextCkpt;
+ assert( pPg->inCkpt );
+ pPg->inCkpt = 0;
+ pPg->pPrevCkpt = pPg->pNextCkpt = 0;
+ }
+ pPager->pCkpt = 0;
+ }
+ pPager->ckptAutoopen = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Rollback a checkpoint.
+*/
+int sqlitepager_ckpt_rollback(Pager *pPager){
+ int rc;
+ if( pPager->ckptInUse ){
+ rc = pager_ckpt_playback(pPager);
+ sqlitepager_ckpt_commit(pPager);
+ }else{
+ rc = SQLITE_OK;
+ }
+ pPager->ckptAutoopen = 0;
+ return rc;
+}
+
+#ifdef SQLITE_TEST
+/*
+** Print a listing of all referenced pages and their ref count.
+*/
+void sqlitepager_refdump(Pager *pPager){
+ PgHdr *pPg;
+ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
+ if( pPg->nRef<=0 ) continue;
+ printf("PAGE %3d addr=0x%08x nRef=%d\n",
+ pPg->pgno, (int)PGHDR_TO_DATA(pPg), pPg->nRef);
+ }
+}
+#endif
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the sqlite page cache
+** subsystem. The page cache subsystem reads and writes a file a page
+** at a time and provides a journal for rollback.
+**
+** @(#) $Id$
+*/
+
+/*
+** The size of one page
+**
+** You can change this value to another (reasonable) power of two
+** such as 512, 2048, 4096, or 8192 and things will still work. But
+** experiments show that a page size of 1024 gives the best speed.
+** (The speed differences are minimal.)
+*/
+#define SQLITE_PAGE_SIZE 1024
+
+/*
+** Maximum number of pages in one database. (This is a limitation of
+** imposed by 4GB files size limits.)
+*/
+#define SQLITE_MAX_PAGE 1073741823
+
+/*
+** The type used to represent a page number. The first page in a file
+** is called page 1. 0 is used to represent "not a page".
+*/
+typedef unsigned int Pgno;
+
+/*
+** Each open file is managed by a separate instance of the "Pager" structure.
+*/
+typedef struct Pager Pager;
+
+/*
+** See source code comments for a detailed description of the following
+** routines:
+*/
+int sqlitepager_open(Pager **ppPager, const char *zFilename,
+ int nPage, int nExtra, int useJournal);
+void sqlitepager_set_destructor(Pager*, void(*)(void*));
+void sqlitepager_set_cachesize(Pager*, int);
+int sqlitepager_close(Pager *pPager);
+int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage);
+void *sqlitepager_lookup(Pager *pPager, Pgno pgno);
+int sqlitepager_ref(void*);
+int sqlitepager_unref(void*);
+Pgno sqlitepager_pagenumber(void*);
+int sqlitepager_write(void*);
+int sqlitepager_iswriteable(void*);
+int sqlitepager_pagecount(Pager*);
+int sqlitepager_begin(void*);
+int sqlitepager_commit(Pager*);
+int sqlitepager_rollback(Pager*);
+int sqlitepager_isreadonly(Pager*);
+int sqlitepager_ckpt_begin(Pager*);
+int sqlitepager_ckpt_commit(Pager*);
+int sqlitepager_ckpt_rollback(Pager*);
+void sqlitepager_dont_rollback(void*);
+void sqlitepager_dont_write(Pager*, Pgno);
+int *sqlitepager_stats(Pager*);
+void sqlitepager_set_safety_level(Pager*,int);
+
+#ifdef SQLITE_TEST
+void sqlitepager_refdump(Pager*);
+int pager_refinfo_enable;
+int journal_format;
+#endif
--- /dev/null
+/* Driver template for the LEMON parser generator.
+** The author disclaims copyright to this source code.
+*/
+/* First off, code is include which follows the "include" declaration
+** in the input file. */
+#include <stdio.h>
+#line 35 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+
+#include "sqliteInt.h"
+#include "parse.h"
+
+/*
+** An instance of this structure holds information about the
+** LIMIT clause of a SELECT statement.
+*/
+struct LimitVal {
+ int limit; /* The LIMIT value. -1 if there is no limit */
+ int offset; /* The OFFSET. 0 if there is none */
+};
+
+/*
+** An instance of the following structure describes the event of a
+** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
+** TK_DELETE, or TK_INSTEAD. If the event is of the form
+**
+** UPDATE ON (a,b,c)
+**
+** Then the "b" IdList records the list "a,b,c".
+*/
+struct TrigEvent { int a; IdList * b; };
+
+
+#line 34 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+/* Next is all token values, in a form suitable for use by makeheaders.
+** This section will be null unless lemon is run with the -m switch.
+*/
+/*
+** These constants (all generated automatically by the parser generator)
+** specify the various kinds of tokens (terminals) that the parser
+** understands.
+**
+** Each symbol here is a terminal symbol in the grammar.
+*/
+/* Make sure the INTERFACE macro is defined.
+*/
+#ifndef INTERFACE
+# define INTERFACE 1
+#endif
+/* The next thing included is series of defines which control
+** various aspects of the generated parser.
+** YYCODETYPE is the data type used for storing terminal
+** and nonterminal numbers. "unsigned char" is
+** used if there are fewer than 250 terminals
+** and nonterminals. "int" is used otherwise.
+** YYNOCODE is a number of type YYCODETYPE which corresponds
+** to no legal terminal or nonterminal number. This
+** number is used to fill in empty slots of the hash
+** table.
+** YYFALLBACK If defined, this indicates that one or more tokens
+** have fall-back values which should be used if the
+** original value of the token will not parse.
+** YYACTIONTYPE is the data type used for storing terminal
+** and nonterminal numbers. "unsigned char" is
+** used if there are fewer than 250 rules and
+** states combined. "int" is used otherwise.
+** sqliteParserTOKENTYPE is the data type used for minor tokens given
+** directly to the parser from the tokenizer.
+** YYMINORTYPE is the data type used for all minor tokens.
+** This is typically a union of many types, one of
+** which is sqliteParserTOKENTYPE. The entry in the union
+** for base tokens is called "yy0".
+** YYSTACKDEPTH is the maximum depth of the parser's stack.
+** sqliteParserARG_SDECL A static variable declaration for the %extra_argument
+** sqliteParserARG_PDECL A parameter declaration for the %extra_argument
+** sqliteParserARG_STORE Code to store %extra_argument into yypParser
+** sqliteParserARG_FETCH Code to extract %extra_argument from yypParser
+** YYNSTATE the combined number of states.
+** YYNRULE the number of rules in the grammar
+** YYERRORSYMBOL is the code number of the error symbol. If not
+** defined, then do no error processing.
+*/
+/* \ 1 */
+#define YYCODETYPE unsigned char
+#define YYNOCODE 214
+#define YYACTIONTYPE unsigned short int
+#define sqliteParserTOKENTYPE Token
+typedef union {
+ sqliteParserTOKENTYPE yy0;
+ struct TrigEvent yy72;
+ struct {int value; int mask;} yy83;
+ int yy136;
+ ExprList* yy168;
+ Expr * yy176;
+ Select* yy207;
+ TriggerStep * yy209;
+ IdList* yy268;
+ Expr* yy272;
+ SrcList* yy289;
+ Token yy324;
+ struct LimitVal yy336;
+ int yy427;
+} YYMINORTYPE;
+#define YYSTACKDEPTH 100
+#define sqliteParserARG_SDECL Parse *pParse;
+#define sqliteParserARG_PDECL ,Parse *pParse
+#define sqliteParserARG_FETCH Parse *pParse = yypParser->pParse
+#define sqliteParserARG_STORE yypParser->pParse = pParse
+#define YYNSTATE 531
+#define YYNRULE 280
+#define YYERRORSYMBOL 150
+#define YYERRSYMDT yy427
+#define YYFALLBACK 1
+#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
+#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
+#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
+/* Next is the action table. Each entry in this table contains
+**
+** + An integer which is the number representing the look-ahead
+** token
+**
+** + An integer indicating what action to take. Number (N) between
+** 0 and YYNSTATE-1 mean shift the look-ahead and go to state N.
+** Numbers between YYNSTATE and YYNSTATE+YYNRULE-1 mean reduce by
+** rule N-YYNSTATE. Number YYNSTATE+YYNRULE means that a syntax
+** error has occurred. Number YYNSTATE+YYNRULE+1 means the parser
+** accepts its input.
+**
+** + A pointer to the next entry with the same hash value.
+**
+** The action table is really a series of hash tables. Each hash
+** table contains a number of entries which is a power of two. The
+** "state" table (which follows) contains information about the starting
+** point and size of each hash table.
+*/
+struct yyActionEntry {
+ YYCODETYPE lookahead; /* The value of the look-ahead token */
+ YYCODETYPE next; /* Next entry + 1. Zero at end of collision chain */
+ YYACTIONTYPE action; /* Action to take for this look-ahead */
+};
+typedef struct yyActionEntry yyActionEntry;
+static const yyActionEntry yyActionTable[] = {
+/* State 0 */
+ { 44, 0, 529}, /* 1: EXPLAIN shift 529 */
+ { 151, 0, 3}, /* 2: explain shift 3 */
+ { 104, 1, 528}, /* 3: SEMI shift 528 */
+ { 165, 0, 812}, /* 4: input accept */
+ { 136, 0, 1}, /* 5: cmdlist shift 1 */
+ { 149, 0, 530}, /* 6: ecmd shift 530 */
+/* State 1 */
+ { 0, 0, 531}, /* 1: $ reduce 0 */
+ { 151, 0, 3}, /* 2: explain shift 3 */
+ { 104, 4, 528}, /* 3: SEMI shift 528 */
+ { 44, 0, 529}, /* 4: EXPLAIN shift 529 */
+ { 149, 3, 2}, /* 5: ecmd shift 2 */
+/* State 3 */
+ { 120, 3, 483}, /* 1: UPDATE shift 483 */
+ { 181, 0, 69}, /* 2: oneselect shift 69 */
+ { 40, 0, 25}, /* 3: END shift 25 */
+ { 123, 6, 509}, /* 4: VACUUM shift 509 */
+ { 144, 0, 29}, /* 5: create_table shift 29 */
+ { 103, 7, 73}, /* 6: SELECT shift 73 */
+ { 63, 11, 498}, /* 7: INSERT shift 498 */
+ { 27, 0, 501}, /* 8: COPY shift 501 */
+ { 168, 12, 489}, /* 9: insert_cmd shift 489 */
+ { 9, 0, 7}, /* 10: BEGIN shift 7 */
+ { 23, 0, 23}, /* 11: COMMIT shift 23 */
+ { 28, 0, 382}, /* 12: CREATE shift 382 */
+ { 192, 14, 478}, /* 13: select shift 478 */
+ { 92, 15, 511}, /* 14: PRAGMA shift 511 */
+ { 32, 0, 479}, /* 15: DELETE shift 479 */
+ { 135, 0, 6}, /* 16: cmd shift 6 */
+ { 97, 19, 500}, /* 17: REPLACE shift 500 */
+ { 137, 17, 4}, /* 18: cmdx shift 4 */
+ { 37, 0, 469}, /* 19: DROP shift 469 */
+ { 99, 0, 27}, /* 20: ROLLBACK shift 27 */
+/* State 4 */
+ { 104, 0, 5}, /* 1: SEMI shift 5 */
+/* State 6 */
+ { 104, 0, 536}, /* 1: SEMI reduce 5 */
+/* State 7 */
+ { 202, 2, 8}, /* 1: trans_opt shift 8 */
+ { 114, 0, 18}, /* 2: TRANSACTION shift 18 */
+/* State 8 */
+ { 180, 2, 9}, /* 1: onconf shift 9 */
+ { 87, 0, 10}, /* 2: ON shift 10 */
+ { 104, 0, 619}, /* 3: SEMI reduce 88 */
+/* State 9 */
+ { 104, 0, 539}, /* 1: SEMI reduce 8 */
+/* State 10 */
+ { 25, 0, 11}, /* 1: CONFLICT shift 11 */
+/* State 11 */
+ { 1, 0, 14}, /* 1: ABORT shift 14 */
+ { 97, 1, 17}, /* 2: REPLACE shift 17 */
+ { 99, 5, 13}, /* 3: ROLLBACK shift 13 */
+ { 189, 3, 12}, /* 4: resolvetype shift 12 */
+ { 57, 6, 16}, /* 5: IGNORE shift 16 */
+ { 45, 0, 15}, /* 6: FAIL shift 15 */
+/* State 18 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 19}, /* 2: nm shift 19 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 23 */
+ { 114, 0, 18}, /* 1: TRANSACTION shift 18 */
+ { 202, 0, 24}, /* 2: trans_opt shift 24 */
+ { 104, 0, 540}, /* 3: SEMI reduce 9 */
+/* State 24 */
+ { 104, 0, 543}, /* 1: SEMI reduce 12 */
+/* State 25 */
+ { 114, 0, 18}, /* 1: TRANSACTION shift 18 */
+ { 202, 0, 26}, /* 2: trans_opt shift 26 */
+ { 104, 0, 540}, /* 3: SEMI reduce 9 */
+/* State 26 */
+ { 104, 0, 544}, /* 1: SEMI reduce 13 */
+/* State 27 */
+ { 114, 0, 18}, /* 1: TRANSACTION shift 18 */
+ { 202, 0, 28}, /* 2: trans_opt shift 28 */
+ { 104, 0, 540}, /* 3: SEMI reduce 9 */
+/* State 28 */
+ { 104, 0, 545}, /* 1: SEMI reduce 14 */
+/* State 29 */
+ { 6, 0, 380}, /* 1: AS shift 380 */
+ { 145, 3, 30}, /* 2: create_table_args shift 30 */
+ { 76, 0, 31}, /* 3: LP shift 31 */
+/* State 30 */
+ { 104, 0, 546}, /* 1: SEMI reduce 15 */
+/* State 31 */
+ { 140, 4, 37}, /* 1: columnid shift 37 */
+ { 141, 5, 32}, /* 2: columnlist shift 32 */
+ { 177, 0, 345}, /* 3: nm shift 345 */
+ { 56, 0, 20}, /* 4: ID shift 20 */
+ { 71, 0, 22}, /* 5: JOIN_KW shift 22 */
+ { 110, 0, 21}, /* 6: STRING shift 21 */
+ { 139, 0, 379}, /* 7: column shift 379 */
+/* State 32 */
+ { 21, 0, 35}, /* 1: COMMA shift 35 */
+ { 101, 0, 607}, /* 2: RP reduce 76 */
+ { 143, 2, 33}, /* 3: conslist_opt shift 33 */
+/* State 33 */
+ { 101, 0, 34}, /* 1: RP shift 34 */
+/* State 34 */
+ { 104, 0, 550}, /* 1: SEMI reduce 19 */
+/* State 35 */
+ { 26, 0, 349}, /* 1: CONSTRAINT shift 349 */
+ { 93, 0, 351}, /* 2: PRIMARY shift 351 */
+ { 119, 2, 357}, /* 3: UNIQUE shift 357 */
+ { 17, 0, 362}, /* 4: CHECK shift 362 */
+ { 56, 4, 20}, /* 5: ID shift 20 */
+ { 200, 0, 378}, /* 6: tcons shift 378 */
+ { 110, 8, 21}, /* 7: STRING shift 21 */
+ { 71, 0, 22}, /* 8: JOIN_KW shift 22 */
+ { 177, 0, 345}, /* 9: nm shift 345 */
+ { 139, 12, 36}, /* 10: column shift 36 */
+ { 140, 0, 37}, /* 11: columnid shift 37 */
+ { 48, 0, 365}, /* 12: FOREIGN shift 365 */
+ { 142, 0, 346}, /* 13: conslist shift 346 */
+/* State 37 */
+ { 160, 5, 344}, /* 1: ids shift 344 */
+ { 56, 0, 248}, /* 2: ID shift 248 */
+ { 207, 0, 38}, /* 3: type shift 38 */
+ { 208, 0, 331}, /* 4: typename shift 331 */
+ { 110, 0, 249}, /* 5: STRING shift 249 */
+/* State 38 */
+ { 130, 0, 39}, /* 1: carglist shift 39 */
+/* State 39 */
+ { 26, 0, 41}, /* 1: CONSTRAINT shift 41 */
+ { 93, 0, 54}, /* 2: PRIMARY shift 54 */
+ { 119, 2, 60}, /* 3: UNIQUE shift 60 */
+ { 146, 6, 313}, /* 4: defer_subclause shift 313 */
+ { 134, 8, 318}, /* 5: ccons shift 318 */
+ { 29, 0, 319}, /* 6: DEFAULT shift 319 */
+ { 84, 9, 44}, /* 7: NULL shift 44 */
+ { 95, 10, 291}, /* 8: REFERENCES shift 291 */
+ { 19, 0, 314}, /* 9: COLLATE shift 314 */
+ { 82, 11, 46}, /* 10: NOT shift 46 */
+ { 30, 12, 316}, /* 11: DEFERRABLE shift 316 */
+ { 17, 0, 62}, /* 12: CHECK shift 62 */
+ { 129, 0, 40}, /* 13: carg shift 40 */
+/* State 41 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 42}, /* 2: nm shift 42 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 42 */
+ { 30, 0, 316}, /* 1: DEFERRABLE shift 316 */
+ { 84, 0, 44}, /* 2: NULL shift 44 */
+ { 82, 0, 46}, /* 3: NOT shift 46 */
+ { 93, 0, 54}, /* 4: PRIMARY shift 54 */
+ { 134, 2, 43}, /* 5: ccons shift 43 */
+ { 95, 0, 291}, /* 6: REFERENCES shift 291 */
+ { 146, 0, 313}, /* 7: defer_subclause shift 313 */
+ { 17, 0, 62}, /* 8: CHECK shift 62 */
+ { 19, 0, 314}, /* 9: COLLATE shift 314 */
+ { 119, 9, 60}, /* 10: UNIQUE shift 60 */
+/* State 44 */
+ { 180, 0, 45}, /* 1: onconf shift 45 */
+ { 87, 0, 10}, /* 2: ON shift 10 */
+/* State 46 */
+ { 84, 2, 47}, /* 1: NULL shift 47 */
+ { 30, 0, 49}, /* 2: DEFERRABLE shift 49 */
+/* State 47 */
+ { 180, 0, 48}, /* 1: onconf shift 48 */
+ { 87, 0, 10}, /* 2: ON shift 10 */
+/* State 49 */
+ { 164, 2, 50}, /* 1: init_deferred_pred_opt shift 50 */
+ { 62, 0, 51}, /* 2: INITIALLY shift 51 */
+/* State 51 */
+ { 31, 0, 52}, /* 1: DEFERRED shift 52 */
+ { 59, 1, 53}, /* 2: IMMEDIATE shift 53 */
+/* State 54 */
+ { 72, 0, 55}, /* 1: KEY shift 55 */
+/* State 55 */
+ { 198, 0, 56}, /* 1: sortorder shift 56 */
+ { 34, 3, 59}, /* 2: DESC shift 59 */
+ { 7, 0, 58}, /* 3: ASC shift 58 */
+/* State 56 */
+ { 180, 0, 57}, /* 1: onconf shift 57 */
+ { 87, 0, 10}, /* 2: ON shift 10 */
+/* State 60 */
+ { 180, 0, 61}, /* 1: onconf shift 61 */
+ { 87, 0, 10}, /* 2: ON shift 10 */
+/* State 62 */
+ { 76, 0, 63}, /* 1: LP shift 63 */
+/* State 63 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 288}, /* 3: expr shift 288 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 64 */
+ { 76, 2, 65}, /* 1: LP shift 65 */
+ { 36, 0, 559}, /* 2: DOT reduce 28 */
+/* State 65 */
+ { 108, 0, 286}, /* 1: STAR shift 286 */
+ { 91, 0, 174}, /* 2: PLUS shift 174 */
+ { 110, 4, 66}, /* 3: STRING shift 66 */
+ { 56, 0, 64}, /* 4: ID shift 64 */
+ { 94, 6, 186}, /* 5: RAISE shift 186 */
+ { 76, 0, 68}, /* 6: LP shift 68 */
+ { 80, 0, 172}, /* 7: MINUS shift 172 */
+ { 82, 14, 168}, /* 8: NOT shift 168 */
+ { 152, 7, 165}, /* 9: expr shift 165 */
+ { 153, 0, 212}, /* 10: expritem shift 212 */
+ { 154, 8, 284}, /* 11: exprlist shift 284 */
+ { 65, 0, 166}, /* 12: INTEGER shift 166 */
+ { 84, 15, 101}, /* 13: NULL shift 101 */
+ { 46, 0, 167}, /* 14: FLOAT shift 167 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+ { 177, 0, 102}, /* 16: nm shift 102 */
+ { 16, 0, 176}, /* 17: CASE shift 176 */
+ { 71, 0, 67}, /* 18: JOIN_KW shift 67 */
+/* State 66 */
+ { 36, 0, 560}, /* 1: DOT reduce 29 */
+/* State 67 */
+ { 36, 0, 561}, /* 1: DOT reduce 30 */
+/* State 68 */
+ { 91, 0, 174}, /* 1: PLUS shift 174 */
+ { 181, 1, 69}, /* 2: oneselect shift 69 */
+ { 110, 4, 66}, /* 3: STRING shift 66 */
+ { 56, 0, 64}, /* 4: ID shift 64 */
+ { 94, 6, 186}, /* 5: RAISE shift 186 */
+ { 76, 0, 68}, /* 6: LP shift 68 */
+ { 80, 0, 172}, /* 7: MINUS shift 172 */
+ { 46, 0, 167}, /* 8: FLOAT shift 167 */
+ { 152, 7, 282}, /* 9: expr shift 282 */
+ { 84, 15, 101}, /* 10: NULL shift 101 */
+ { 82, 8, 168}, /* 11: NOT shift 168 */
+ { 65, 0, 166}, /* 12: INTEGER shift 166 */
+ { 192, 10, 70}, /* 13: select shift 70 */
+ { 103, 0, 73}, /* 14: SELECT shift 73 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+ { 177, 0, 102}, /* 16: nm shift 102 */
+ { 16, 0, 176}, /* 17: CASE shift 176 */
+ { 71, 0, 67}, /* 18: JOIN_KW shift 67 */
+/* State 70 */
+ { 101, 3, 281}, /* 1: RP shift 281 */
+ { 176, 1, 71}, /* 2: multiselect_op shift 71 */
+ { 66, 0, 162}, /* 3: INTERSECT shift 162 */
+ { 118, 5, 160}, /* 4: UNION shift 160 */
+ { 43, 0, 163}, /* 5: EXCEPT shift 163 */
+/* State 71 */
+ { 103, 0, 73}, /* 1: SELECT shift 73 */
+ { 181, 1, 72}, /* 2: oneselect shift 72 */
+/* State 73 */
+ { 4, 0, 280}, /* 1: ALL shift 280 */
+ { 148, 1, 74}, /* 2: distinct shift 74 */
+ { 35, 0, 279}, /* 3: DISTINCT shift 279 */
+/* State 74 */
+ { 190, 0, 272}, /* 1: sclp shift 272 */
+ { 191, 0, 75}, /* 2: selcollist shift 75 */
+/* State 75 */
+ { 156, 3, 76}, /* 1: from shift 76 */
+ { 49, 0, 235}, /* 2: FROM shift 235 */
+ { 21, 0, 234}, /* 3: COMMA shift 234 */
+/* State 76 */
+ { 212, 0, 77}, /* 1: where_opt shift 77 */
+ { 127, 0, 232}, /* 2: WHERE shift 232 */
+/* State 77 */
+ { 53, 0, 229}, /* 1: GROUP shift 229 */
+ { 157, 1, 78}, /* 2: groupby_opt shift 78 */
+/* State 78 */
+ { 158, 0, 79}, /* 1: having_opt shift 79 */
+ { 55, 0, 227}, /* 2: HAVING shift 227 */
+/* State 79 */
+ { 90, 0, 88}, /* 1: ORDER shift 88 */
+ { 183, 0, 80}, /* 2: orderby_opt shift 80 */
+/* State 80 */
+ { 75, 0, 82}, /* 1: LIMIT shift 82 */
+ { 173, 1, 81}, /* 2: limit_opt shift 81 */
+/* State 82 */
+ { 65, 0, 83}, /* 1: INTEGER shift 83 */
+/* State 83 */
+ { 174, 2, 84}, /* 1: limit_sep shift 84 */
+ { 21, 0, 87}, /* 2: COMMA shift 87 */
+ { 86, 0, 86}, /* 3: OFFSET shift 86 */
+/* State 84 */
+ { 65, 0, 85}, /* 1: INTEGER shift 85 */
+/* State 86 */
+ { 65, 0, 682}, /* 1: INTEGER reduce 151 */
+/* State 87 */
+ { 65, 0, 683}, /* 1: INTEGER reduce 152 */
+/* State 88 */
+ { 14, 0, 89}, /* 1: BY shift 89 */
+/* State 89 */
+ { 76, 0, 68}, /* 1: LP shift 68 */
+ { 94, 0, 186}, /* 2: RAISE shift 186 */
+ { 46, 5, 167}, /* 3: FLOAT shift 167 */
+ { 71, 0, 67}, /* 4: JOIN_KW shift 67 */
+ { 12, 0, 170}, /* 5: BITNOT shift 170 */
+ { 56, 0, 64}, /* 6: ID shift 64 */
+ { 91, 0, 174}, /* 7: PLUS shift 174 */
+ { 177, 0, 102}, /* 8: nm shift 102 */
+ { 110, 1, 66}, /* 9: STRING shift 66 */
+ { 196, 2, 224}, /* 10: sortitem shift 224 */
+ { 197, 0, 90}, /* 11: sortlist shift 90 */
+ { 65, 0, 166}, /* 12: INTEGER shift 166 */
+ { 80, 3, 172}, /* 13: MINUS shift 172 */
+ { 84, 16, 101}, /* 14: NULL shift 101 */
+ { 82, 12, 168}, /* 15: NOT shift 168 */
+ { 16, 0, 176}, /* 16: CASE shift 176 */
+ { 152, 14, 98}, /* 17: expr shift 98 */
+/* State 90 */
+ { 21, 0, 91}, /* 1: COMMA shift 91 */
+/* State 91 */
+ { 80, 4, 172}, /* 1: MINUS shift 172 */
+ { 177, 6, 102}, /* 2: nm shift 102 */
+ { 82, 0, 168}, /* 3: NOT shift 168 */
+ { 16, 0, 176}, /* 4: CASE shift 176 */
+ { 196, 7, 92}, /* 5: sortitem shift 92 */
+ { 65, 0, 166}, /* 6: INTEGER shift 166 */
+ { 84, 0, 101}, /* 7: NULL shift 101 */
+ { 71, 0, 67}, /* 8: JOIN_KW shift 67 */
+ { 152, 10, 98}, /* 9: expr shift 98 */
+ { 56, 0, 64}, /* 10: ID shift 64 */
+ { 12, 0, 170}, /* 11: BITNOT shift 170 */
+ { 91, 0, 174}, /* 12: PLUS shift 174 */
+ { 76, 11, 68}, /* 13: LP shift 68 */
+ { 94, 16, 186}, /* 14: RAISE shift 186 */
+ { 110, 14, 66}, /* 15: STRING shift 66 */
+ { 46, 0, 167}, /* 16: FLOAT shift 167 */
+/* State 92 */
+ { 138, 0, 93}, /* 1: collate shift 93 */
+ { 19, 0, 95}, /* 2: COLLATE shift 95 */
+/* State 93 */
+ { 198, 0, 94}, /* 1: sortorder shift 94 */
+ { 34, 3, 59}, /* 2: DESC shift 59 */
+ { 7, 0, 58}, /* 3: ASC shift 58 */
+/* State 95 */
+ { 56, 0, 96}, /* 1: ID shift 96 */
+ { 159, 0, 97}, /* 2: id shift 97 */
+/* State 98 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 100}, /* 3: AND shift 100 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 100 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 105}, /* 3: expr shift 105 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 102 */
+ { 36, 0, 103}, /* 1: DOT shift 103 */
+/* State 103 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 104}, /* 2: nm shift 104 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 105 */
+ { 78, 2, 108}, /* 1: LT shift 108 */
+ { 52, 0, 134}, /* 2: GLOB shift 134 */
+ { 106, 7, 141}, /* 3: SLASH shift 141 */
+ { 81, 0, 116}, /* 4: NE shift 116 */
+ { 108, 8, 139}, /* 5: STAR shift 139 */
+ { 83, 0, 152}, /* 6: NOTNULL shift 152 */
+ { 80, 10, 137}, /* 7: MINUS shift 137 */
+ { 82, 0, 130}, /* 8: NOT shift 130 */
+ { 60, 0, 157}, /* 9: IN shift 157 */
+ { 54, 0, 110}, /* 10: GT shift 110 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 89, 13, 99}, /* 12: ORACLE_OUTER_JOIN shift 99 */
+ { 11, 0, 120}, /* 13: BITAND shift 120 */
+ { 91, 15, 135}, /* 14: PLUS shift 135 */
+ { 13, 0, 122}, /* 15: BITOR shift 122 */
+ { 68, 20, 148}, /* 16: IS shift 148 */
+ { 172, 16, 128}, /* 17: likeop shift 128 */
+ { 69, 0, 147}, /* 18: ISNULL shift 147 */
+ { 96, 0, 143}, /* 19: REM shift 143 */
+ { 42, 0, 118}, /* 20: EQ shift 118 */
+ { 24, 0, 145}, /* 21: CONCAT shift 145 */
+ { 73, 0, 112}, /* 22: LE shift 112 */
+ { 74, 0, 133}, /* 23: LIKE shift 133 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 102, 21, 126}, /* 25: RSHIFT shift 126 */
+ { 77, 24, 124}, /* 26: LSHIFT shift 124 */
+/* State 106 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 107}, /* 3: expr shift 107 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 107 */
+ { 108, 4, 139}, /* 1: STAR shift 139 */
+ { 82, 0, 130}, /* 2: NOT shift 130 */
+ { 83, 0, 152}, /* 3: NOTNULL shift 152 */
+ { 81, 5, 116}, /* 4: NE shift 116 */
+ { 54, 0, 110}, /* 5: GT shift 110 */
+ { 5, 0, 100}, /* 6: AND shift 100 */
+ { 60, 0, 157}, /* 7: IN shift 157 */
+ { 91, 10, 135}, /* 8: PLUS shift 135 */
+ { 89, 0, 99}, /* 9: ORACLE_OUTER_JOIN shift 99 */
+ { 10, 0, 153}, /* 10: BETWEEN shift 153 */
+ { 172, 8, 128}, /* 11: likeop shift 128 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 69, 17, 147}, /* 13: ISNULL shift 147 */
+ { 13, 0, 122}, /* 14: BITOR shift 122 */
+ { 68, 0, 148}, /* 15: IS shift 148 */
+ { 96, 13, 143}, /* 16: REM shift 143 */
+ { 42, 0, 118}, /* 17: EQ shift 118 */
+ { 51, 19, 114}, /* 18: GE shift 114 */
+ { 24, 0, 145}, /* 19: CONCAT shift 145 */
+ { 73, 0, 112}, /* 20: LE shift 112 */
+ { 74, 0, 133}, /* 21: LIKE shift 133 */
+ { 102, 0, 126}, /* 22: RSHIFT shift 126 */
+ { 52, 0, 134}, /* 23: GLOB shift 134 */
+ { 77, 0, 124}, /* 24: LSHIFT shift 124 */
+ { 78, 18, 108}, /* 25: LT shift 108 */
+ { 106, 23, 141}, /* 26: SLASH shift 141 */
+ { 80, 0, 137}, /* 27: MINUS shift 137 */
+/* State 108 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 109}, /* 3: expr shift 109 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 109 */
+ { 108, 3, 139}, /* 1: STAR shift 139 */
+ { 13, 0, 122}, /* 2: BITOR shift 122 */
+ { 96, 4, 143}, /* 3: REM shift 143 */
+ { 24, 0, 145}, /* 4: CONCAT shift 145 */
+ { 172, 0, 128}, /* 5: likeop shift 128 */
+ { 89, 10, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 102, 0, 126}, /* 7: RSHIFT shift 126 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 80, 0, 137}, /* 9: MINUS shift 137 */
+ { 77, 0, 124}, /* 10: LSHIFT shift 124 */
+ { 106, 0, 141}, /* 11: SLASH shift 141 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+/* State 110 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 111}, /* 3: expr shift 111 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 111 */
+ { 108, 3, 139}, /* 1: STAR shift 139 */
+ { 13, 0, 122}, /* 2: BITOR shift 122 */
+ { 96, 4, 143}, /* 3: REM shift 143 */
+ { 24, 0, 145}, /* 4: CONCAT shift 145 */
+ { 172, 0, 128}, /* 5: likeop shift 128 */
+ { 89, 10, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 102, 0, 126}, /* 7: RSHIFT shift 126 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 80, 0, 137}, /* 9: MINUS shift 137 */
+ { 77, 0, 124}, /* 10: LSHIFT shift 124 */
+ { 106, 0, 141}, /* 11: SLASH shift 141 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+/* State 112 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 113}, /* 3: expr shift 113 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 113 */
+ { 108, 3, 139}, /* 1: STAR shift 139 */
+ { 13, 0, 122}, /* 2: BITOR shift 122 */
+ { 96, 4, 143}, /* 3: REM shift 143 */
+ { 24, 0, 145}, /* 4: CONCAT shift 145 */
+ { 172, 0, 128}, /* 5: likeop shift 128 */
+ { 89, 10, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 102, 0, 126}, /* 7: RSHIFT shift 126 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 80, 0, 137}, /* 9: MINUS shift 137 */
+ { 77, 0, 124}, /* 10: LSHIFT shift 124 */
+ { 106, 0, 141}, /* 11: SLASH shift 141 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+/* State 114 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 115}, /* 3: expr shift 115 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 115 */
+ { 108, 3, 139}, /* 1: STAR shift 139 */
+ { 13, 0, 122}, /* 2: BITOR shift 122 */
+ { 96, 4, 143}, /* 3: REM shift 143 */
+ { 24, 0, 145}, /* 4: CONCAT shift 145 */
+ { 172, 0, 128}, /* 5: likeop shift 128 */
+ { 89, 10, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 102, 0, 126}, /* 7: RSHIFT shift 126 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 80, 0, 137}, /* 9: MINUS shift 137 */
+ { 77, 0, 124}, /* 10: LSHIFT shift 124 */
+ { 106, 0, 141}, /* 11: SLASH shift 141 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+/* State 116 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 117}, /* 3: expr shift 117 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 117 */
+ { 96, 2, 143}, /* 1: REM shift 143 */
+ { 80, 0, 137}, /* 2: MINUS shift 137 */
+ { 54, 0, 110}, /* 3: GT shift 110 */
+ { 51, 0, 114}, /* 4: GE shift 114 */
+ { 73, 0, 112}, /* 5: LE shift 112 */
+ { 11, 0, 120}, /* 6: BITAND shift 120 */
+ { 102, 3, 126}, /* 7: RSHIFT shift 126 */
+ { 108, 0, 139}, /* 8: STAR shift 139 */
+ { 24, 0, 145}, /* 9: CONCAT shift 145 */
+ { 89, 5, 99}, /* 10: ORACLE_OUTER_JOIN shift 99 */
+ { 106, 0, 141}, /* 11: SLASH shift 141 */
+ { 91, 6, 135}, /* 12: PLUS shift 135 */
+ { 172, 8, 128}, /* 13: likeop shift 128 */
+ { 77, 16, 124}, /* 14: LSHIFT shift 124 */
+ { 78, 0, 108}, /* 15: LT shift 108 */
+ { 13, 0, 122}, /* 16: BITOR shift 122 */
+/* State 118 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 119}, /* 3: expr shift 119 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 119 */
+ { 96, 2, 143}, /* 1: REM shift 143 */
+ { 80, 0, 137}, /* 2: MINUS shift 137 */
+ { 54, 0, 110}, /* 3: GT shift 110 */
+ { 51, 0, 114}, /* 4: GE shift 114 */
+ { 73, 0, 112}, /* 5: LE shift 112 */
+ { 11, 0, 120}, /* 6: BITAND shift 120 */
+ { 102, 3, 126}, /* 7: RSHIFT shift 126 */
+ { 108, 0, 139}, /* 8: STAR shift 139 */
+ { 24, 0, 145}, /* 9: CONCAT shift 145 */
+ { 89, 5, 99}, /* 10: ORACLE_OUTER_JOIN shift 99 */
+ { 106, 0, 141}, /* 11: SLASH shift 141 */
+ { 91, 6, 135}, /* 12: PLUS shift 135 */
+ { 172, 8, 128}, /* 13: likeop shift 128 */
+ { 77, 16, 124}, /* 14: LSHIFT shift 124 */
+ { 78, 0, 108}, /* 15: LT shift 108 */
+ { 13, 0, 122}, /* 16: BITOR shift 122 */
+/* State 120 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 121}, /* 3: expr shift 121 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 121 */
+ { 96, 6, 143}, /* 1: REM shift 143 */
+ { 89, 0, 99}, /* 2: ORACLE_OUTER_JOIN shift 99 */
+ { 106, 0, 141}, /* 3: SLASH shift 141 */
+ { 91, 0, 135}, /* 4: PLUS shift 135 */
+ { 172, 7, 128}, /* 5: likeop shift 128 */
+ { 80, 8, 137}, /* 6: MINUS shift 137 */
+ { 108, 0, 139}, /* 7: STAR shift 139 */
+ { 24, 0, 145}, /* 8: CONCAT shift 145 */
+/* State 122 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 123}, /* 3: expr shift 123 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 123 */
+ { 96, 6, 143}, /* 1: REM shift 143 */
+ { 89, 0, 99}, /* 2: ORACLE_OUTER_JOIN shift 99 */
+ { 106, 0, 141}, /* 3: SLASH shift 141 */
+ { 91, 0, 135}, /* 4: PLUS shift 135 */
+ { 172, 7, 128}, /* 5: likeop shift 128 */
+ { 80, 8, 137}, /* 6: MINUS shift 137 */
+ { 108, 0, 139}, /* 7: STAR shift 139 */
+ { 24, 0, 145}, /* 8: CONCAT shift 145 */
+/* State 124 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 125}, /* 3: expr shift 125 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 125 */
+ { 96, 6, 143}, /* 1: REM shift 143 */
+ { 89, 0, 99}, /* 2: ORACLE_OUTER_JOIN shift 99 */
+ { 106, 0, 141}, /* 3: SLASH shift 141 */
+ { 91, 0, 135}, /* 4: PLUS shift 135 */
+ { 172, 7, 128}, /* 5: likeop shift 128 */
+ { 80, 8, 137}, /* 6: MINUS shift 137 */
+ { 108, 0, 139}, /* 7: STAR shift 139 */
+ { 24, 0, 145}, /* 8: CONCAT shift 145 */
+/* State 126 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 127}, /* 3: expr shift 127 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 127 */
+ { 96, 6, 143}, /* 1: REM shift 143 */
+ { 89, 0, 99}, /* 2: ORACLE_OUTER_JOIN shift 99 */
+ { 106, 0, 141}, /* 3: SLASH shift 141 */
+ { 91, 0, 135}, /* 4: PLUS shift 135 */
+ { 172, 7, 128}, /* 5: likeop shift 128 */
+ { 80, 8, 137}, /* 6: MINUS shift 137 */
+ { 108, 0, 139}, /* 7: STAR shift 139 */
+ { 24, 0, 145}, /* 8: CONCAT shift 145 */
+/* State 128 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 129}, /* 3: expr shift 129 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 129 */
+ { 96, 2, 143}, /* 1: REM shift 143 */
+ { 80, 0, 137}, /* 2: MINUS shift 137 */
+ { 54, 0, 110}, /* 3: GT shift 110 */
+ { 51, 0, 114}, /* 4: GE shift 114 */
+ { 73, 0, 112}, /* 5: LE shift 112 */
+ { 11, 0, 120}, /* 6: BITAND shift 120 */
+ { 102, 3, 126}, /* 7: RSHIFT shift 126 */
+ { 108, 0, 139}, /* 8: STAR shift 139 */
+ { 24, 0, 145}, /* 9: CONCAT shift 145 */
+ { 89, 5, 99}, /* 10: ORACLE_OUTER_JOIN shift 99 */
+ { 106, 0, 141}, /* 11: SLASH shift 141 */
+ { 91, 6, 135}, /* 12: PLUS shift 135 */
+ { 172, 8, 128}, /* 13: likeop shift 128 */
+ { 77, 16, 124}, /* 14: LSHIFT shift 124 */
+ { 78, 0, 108}, /* 15: LT shift 108 */
+ { 13, 0, 122}, /* 16: BITOR shift 122 */
+/* State 130 */
+ { 84, 2, 213}, /* 1: NULL shift 213 */
+ { 60, 0, 218}, /* 2: IN shift 218 */
+ { 74, 0, 133}, /* 3: LIKE shift 133 */
+ { 52, 6, 134}, /* 4: GLOB shift 134 */
+ { 172, 4, 131}, /* 5: likeop shift 131 */
+ { 10, 0, 214}, /* 6: BETWEEN shift 214 */
+/* State 131 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 132}, /* 3: expr shift 132 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 132 */
+ { 96, 2, 143}, /* 1: REM shift 143 */
+ { 80, 0, 137}, /* 2: MINUS shift 137 */
+ { 54, 0, 110}, /* 3: GT shift 110 */
+ { 51, 0, 114}, /* 4: GE shift 114 */
+ { 73, 0, 112}, /* 5: LE shift 112 */
+ { 11, 0, 120}, /* 6: BITAND shift 120 */
+ { 102, 3, 126}, /* 7: RSHIFT shift 126 */
+ { 108, 0, 139}, /* 8: STAR shift 139 */
+ { 24, 0, 145}, /* 9: CONCAT shift 145 */
+ { 89, 5, 99}, /* 10: ORACLE_OUTER_JOIN shift 99 */
+ { 106, 0, 141}, /* 11: SLASH shift 141 */
+ { 91, 6, 135}, /* 12: PLUS shift 135 */
+ { 172, 8, 128}, /* 13: likeop shift 128 */
+ { 77, 16, 124}, /* 14: LSHIFT shift 124 */
+ { 78, 0, 108}, /* 15: LT shift 108 */
+ { 13, 0, 122}, /* 16: BITOR shift 122 */
+/* State 135 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 136}, /* 3: expr shift 136 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 136 */
+ { 108, 2, 139}, /* 1: STAR shift 139 */
+ { 96, 3, 143}, /* 2: REM shift 143 */
+ { 24, 0, 145}, /* 3: CONCAT shift 145 */
+ { 106, 0, 141}, /* 4: SLASH shift 141 */
+ { 172, 4, 128}, /* 5: likeop shift 128 */
+ { 89, 0, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+/* State 137 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 138}, /* 3: expr shift 138 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 138 */
+ { 108, 2, 139}, /* 1: STAR shift 139 */
+ { 96, 3, 143}, /* 2: REM shift 143 */
+ { 24, 0, 145}, /* 3: CONCAT shift 145 */
+ { 106, 0, 141}, /* 4: SLASH shift 141 */
+ { 172, 4, 128}, /* 5: likeop shift 128 */
+ { 89, 0, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+/* State 139 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 140}, /* 3: expr shift 140 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 140 */
+ { 24, 0, 145}, /* 1: CONCAT shift 145 */
+ { 172, 0, 128}, /* 2: likeop shift 128 */
+ { 89, 0, 99}, /* 3: ORACLE_OUTER_JOIN shift 99 */
+/* State 141 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 142}, /* 3: expr shift 142 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 142 */
+ { 24, 0, 145}, /* 1: CONCAT shift 145 */
+ { 172, 0, 128}, /* 2: likeop shift 128 */
+ { 89, 0, 99}, /* 3: ORACLE_OUTER_JOIN shift 99 */
+/* State 143 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 144}, /* 3: expr shift 144 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 144 */
+ { 24, 0, 145}, /* 1: CONCAT shift 145 */
+ { 172, 0, 128}, /* 2: likeop shift 128 */
+ { 89, 0, 99}, /* 3: ORACLE_OUTER_JOIN shift 99 */
+/* State 145 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 146}, /* 3: expr shift 146 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 146 */
+ { 172, 0, 128}, /* 1: likeop shift 128 */
+ { 89, 0, 99}, /* 2: ORACLE_OUTER_JOIN shift 99 */
+/* State 148 */
+ { 84, 2, 149}, /* 1: NULL shift 149 */
+ { 82, 0, 150}, /* 2: NOT shift 150 */
+/* State 150 */
+ { 84, 0, 151}, /* 1: NULL shift 151 */
+/* State 153 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 154}, /* 3: expr shift 154 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 154 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 155}, /* 3: AND shift 155 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 155 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 156}, /* 3: expr shift 156 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 156 */
+ { 96, 2, 143}, /* 1: REM shift 143 */
+ { 80, 0, 137}, /* 2: MINUS shift 137 */
+ { 54, 0, 110}, /* 3: GT shift 110 */
+ { 51, 0, 114}, /* 4: GE shift 114 */
+ { 73, 0, 112}, /* 5: LE shift 112 */
+ { 11, 0, 120}, /* 6: BITAND shift 120 */
+ { 102, 3, 126}, /* 7: RSHIFT shift 126 */
+ { 108, 0, 139}, /* 8: STAR shift 139 */
+ { 24, 0, 145}, /* 9: CONCAT shift 145 */
+ { 89, 5, 99}, /* 10: ORACLE_OUTER_JOIN shift 99 */
+ { 106, 0, 141}, /* 11: SLASH shift 141 */
+ { 91, 6, 135}, /* 12: PLUS shift 135 */
+ { 172, 8, 128}, /* 13: likeop shift 128 */
+ { 77, 16, 124}, /* 14: LSHIFT shift 124 */
+ { 78, 0, 108}, /* 15: LT shift 108 */
+ { 13, 0, 122}, /* 16: BITOR shift 122 */
+/* State 157 */
+ { 76, 0, 158}, /* 1: LP shift 158 */
+/* State 158 */
+ { 80, 0, 172}, /* 1: MINUS shift 172 */
+ { 181, 0, 69}, /* 2: oneselect shift 69 */
+ { 82, 0, 168}, /* 3: NOT shift 168 */
+ { 103, 0, 73}, /* 4: SELECT shift 73 */
+ { 84, 0, 101}, /* 5: NULL shift 101 */
+ { 65, 0, 166}, /* 6: INTEGER shift 166 */
+ { 46, 0, 167}, /* 7: FLOAT shift 167 */
+ { 71, 0, 67}, /* 8: JOIN_KW shift 67 */
+ { 152, 10, 165}, /* 9: expr shift 165 */
+ { 12, 0, 170}, /* 10: BITNOT shift 170 */
+ { 110, 0, 66}, /* 11: STRING shift 66 */
+ { 91, 8, 174}, /* 12: PLUS shift 174 */
+ { 192, 9, 159}, /* 13: select shift 159 */
+ { 153, 0, 212}, /* 14: expritem shift 212 */
+ { 154, 16, 208}, /* 15: exprlist shift 208 */
+ { 94, 0, 186}, /* 16: RAISE shift 186 */
+ { 76, 19, 68}, /* 17: LP shift 68 */
+ { 177, 0, 102}, /* 18: nm shift 102 */
+ { 56, 20, 64}, /* 19: ID shift 64 */
+ { 16, 0, 176}, /* 20: CASE shift 176 */
+/* State 159 */
+ { 101, 3, 164}, /* 1: RP shift 164 */
+ { 176, 1, 71}, /* 2: multiselect_op shift 71 */
+ { 66, 0, 162}, /* 3: INTERSECT shift 162 */
+ { 118, 5, 160}, /* 4: UNION shift 160 */
+ { 43, 0, 163}, /* 5: EXCEPT shift 163 */
+/* State 160 */
+ { 4, 0, 161}, /* 1: ALL shift 161 */
+ { 103, 0, 634}, /* 2: SELECT reduce 103 */
+/* State 161 */
+ { 103, 0, 635}, /* 1: SELECT reduce 104 */
+/* State 162 */
+ { 103, 0, 636}, /* 1: SELECT reduce 105 */
+/* State 163 */
+ { 103, 0, 637}, /* 1: SELECT reduce 106 */
+/* State 165 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 100}, /* 3: AND shift 100 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 168 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 169}, /* 3: expr shift 169 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 169 */
+ { 78, 2, 108}, /* 1: LT shift 108 */
+ { 52, 0, 134}, /* 2: GLOB shift 134 */
+ { 106, 7, 141}, /* 3: SLASH shift 141 */
+ { 81, 0, 116}, /* 4: NE shift 116 */
+ { 108, 8, 139}, /* 5: STAR shift 139 */
+ { 83, 0, 152}, /* 6: NOTNULL shift 152 */
+ { 80, 10, 137}, /* 7: MINUS shift 137 */
+ { 82, 0, 130}, /* 8: NOT shift 130 */
+ { 60, 0, 157}, /* 9: IN shift 157 */
+ { 54, 0, 110}, /* 10: GT shift 110 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 89, 13, 99}, /* 12: ORACLE_OUTER_JOIN shift 99 */
+ { 11, 0, 120}, /* 13: BITAND shift 120 */
+ { 91, 15, 135}, /* 14: PLUS shift 135 */
+ { 13, 0, 122}, /* 15: BITOR shift 122 */
+ { 68, 20, 148}, /* 16: IS shift 148 */
+ { 172, 16, 128}, /* 17: likeop shift 128 */
+ { 69, 0, 147}, /* 18: ISNULL shift 147 */
+ { 96, 0, 143}, /* 19: REM shift 143 */
+ { 42, 0, 118}, /* 20: EQ shift 118 */
+ { 24, 0, 145}, /* 21: CONCAT shift 145 */
+ { 73, 0, 112}, /* 22: LE shift 112 */
+ { 74, 0, 133}, /* 23: LIKE shift 133 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 102, 21, 126}, /* 25: RSHIFT shift 126 */
+ { 77, 24, 124}, /* 26: LSHIFT shift 124 */
+/* State 170 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 171}, /* 3: expr shift 171 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 171 */
+ { 172, 0, 128}, /* 1: likeop shift 128 */
+ { 89, 0, 99}, /* 2: ORACLE_OUTER_JOIN shift 99 */
+/* State 172 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 173}, /* 3: expr shift 173 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 173 */
+ { 172, 0, 128}, /* 1: likeop shift 128 */
+ { 89, 0, 99}, /* 2: ORACLE_OUTER_JOIN shift 99 */
+/* State 174 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 175}, /* 3: expr shift 175 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 175 */
+ { 172, 0, 128}, /* 1: likeop shift 128 */
+ { 89, 0, 99}, /* 2: ORACLE_OUTER_JOIN shift 99 */
+/* State 176 */
+ { 126, 0, 755}, /* 1: WHEN reduce 224 */
+ { 76, 0, 68}, /* 2: LP shift 68 */
+ { 46, 5, 167}, /* 3: FLOAT shift 167 */
+ { 71, 0, 67}, /* 4: JOIN_KW shift 67 */
+ { 12, 0, 170}, /* 5: BITNOT shift 170 */
+ { 56, 0, 64}, /* 6: ID shift 64 */
+ { 91, 0, 174}, /* 7: PLUS shift 174 */
+ { 177, 1, 102}, /* 8: nm shift 102 */
+ { 110, 2, 66}, /* 9: STRING shift 66 */
+ { 94, 0, 186}, /* 10: RAISE shift 186 */
+ { 82, 12, 168}, /* 11: NOT shift 168 */
+ { 65, 0, 166}, /* 12: INTEGER shift 166 */
+ { 80, 3, 172}, /* 13: MINUS shift 172 */
+ { 84, 16, 101}, /* 14: NULL shift 101 */
+ { 133, 11, 178}, /* 15: case_operand shift 178 */
+ { 16, 0, 176}, /* 16: CASE shift 176 */
+ { 152, 14, 177}, /* 17: expr shift 177 */
+/* State 177 */
+ { 60, 0, 157}, /* 1: IN shift 157 */
+ { 88, 0, 106}, /* 2: OR shift 106 */
+ { 89, 1, 99}, /* 3: ORACLE_OUTER_JOIN shift 99 */
+ { 68, 7, 148}, /* 4: IS shift 148 */
+ { 91, 0, 135}, /* 5: PLUS shift 135 */
+ { 5, 0, 100}, /* 6: AND shift 100 */
+ { 10, 0, 153}, /* 7: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 8: BITAND shift 120 */
+ { 13, 0, 122}, /* 9: BITOR shift 122 */
+ { 96, 0, 143}, /* 10: REM shift 143 */
+ { 126, 4, 754}, /* 11: WHEN reduce 223 */
+ { 69, 8, 147}, /* 12: ISNULL shift 147 */
+ { 73, 0, 112}, /* 13: LE shift 112 */
+ { 42, 9, 118}, /* 14: EQ shift 118 */
+ { 77, 0, 124}, /* 15: LSHIFT shift 124 */
+ { 102, 13, 126}, /* 16: RSHIFT shift 126 */
+ { 74, 0, 133}, /* 17: LIKE shift 133 */
+ { 51, 0, 114}, /* 18: GE shift 114 */
+ { 52, 0, 134}, /* 19: GLOB shift 134 */
+ { 106, 15, 141}, /* 20: SLASH shift 141 */
+ { 78, 0, 108}, /* 21: LT shift 108 */
+ { 108, 0, 139}, /* 22: STAR shift 139 */
+ { 80, 18, 137}, /* 23: MINUS shift 137 */
+ { 81, 19, 116}, /* 24: NE shift 116 */
+ { 82, 27, 130}, /* 25: NOT shift 130 */
+ { 83, 29, 152}, /* 26: NOTNULL shift 152 */
+ { 24, 0, 145}, /* 27: CONCAT shift 145 */
+ { 172, 0, 128}, /* 28: likeop shift 128 */
+ { 54, 0, 110}, /* 29: GT shift 110 */
+/* State 178 */
+ { 132, 2, 179}, /* 1: case_exprlist shift 179 */
+ { 126, 0, 204}, /* 2: WHEN shift 204 */
+/* State 179 */
+ { 40, 0, 753}, /* 1: END reduce 222 */
+ { 39, 0, 202}, /* 2: ELSE shift 202 */
+ { 126, 0, 182}, /* 3: WHEN shift 182 */
+ { 131, 2, 180}, /* 4: case_else shift 180 */
+/* State 180 */
+ { 40, 0, 181}, /* 1: END shift 181 */
+/* State 182 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 183}, /* 3: expr shift 183 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 183 */
+ { 60, 0, 157}, /* 1: IN shift 157 */
+ { 88, 0, 106}, /* 2: OR shift 106 */
+ { 89, 1, 99}, /* 3: ORACLE_OUTER_JOIN shift 99 */
+ { 10, 0, 153}, /* 4: BETWEEN shift 153 */
+ { 91, 0, 135}, /* 5: PLUS shift 135 */
+ { 5, 0, 100}, /* 6: AND shift 100 */
+ { 11, 0, 120}, /* 7: BITAND shift 120 */
+ { 13, 0, 122}, /* 8: BITOR shift 122 */
+ { 73, 0, 112}, /* 9: LE shift 112 */
+ { 96, 0, 143}, /* 10: REM shift 143 */
+ { 68, 4, 148}, /* 11: IS shift 148 */
+ { 69, 7, 147}, /* 12: ISNULL shift 147 */
+ { 77, 0, 124}, /* 13: LSHIFT shift 124 */
+ { 42, 8, 118}, /* 14: EQ shift 118 */
+ { 51, 0, 114}, /* 15: GE shift 114 */
+ { 102, 9, 126}, /* 16: RSHIFT shift 126 */
+ { 74, 0, 133}, /* 17: LIKE shift 133 */
+ { 52, 0, 134}, /* 18: GLOB shift 134 */
+ { 24, 0, 145}, /* 19: CONCAT shift 145 */
+ { 106, 13, 141}, /* 20: SLASH shift 141 */
+ { 78, 0, 108}, /* 21: LT shift 108 */
+ { 108, 0, 139}, /* 22: STAR shift 139 */
+ { 80, 15, 137}, /* 23: MINUS shift 137 */
+ { 81, 18, 116}, /* 24: NE shift 116 */
+ { 82, 19, 130}, /* 25: NOT shift 130 */
+ { 83, 29, 152}, /* 26: NOTNULL shift 152 */
+ { 113, 0, 184}, /* 27: THEN shift 184 */
+ { 172, 0, 128}, /* 28: likeop shift 128 */
+ { 54, 0, 110}, /* 29: GT shift 110 */
+/* State 184 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 185}, /* 3: expr shift 185 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 185 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 100}, /* 3: AND shift 100 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 186 */
+ { 76, 0, 187}, /* 1: LP shift 187 */
+/* State 187 */
+ { 45, 3, 198}, /* 1: FAIL shift 198 */
+ { 57, 1, 188}, /* 2: IGNORE shift 188 */
+ { 1, 0, 194}, /* 3: ABORT shift 194 */
+ { 99, 0, 190}, /* 4: ROLLBACK shift 190 */
+/* State 188 */
+ { 101, 0, 189}, /* 1: RP shift 189 */
+/* State 190 */
+ { 21, 0, 191}, /* 1: COMMA shift 191 */
+/* State 191 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 192}, /* 2: nm shift 192 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 192 */
+ { 101, 0, 193}, /* 1: RP shift 193 */
+/* State 194 */
+ { 21, 0, 195}, /* 1: COMMA shift 195 */
+/* State 195 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 196}, /* 2: nm shift 196 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 196 */
+ { 101, 0, 197}, /* 1: RP shift 197 */
+/* State 198 */
+ { 21, 0, 199}, /* 1: COMMA shift 199 */
+/* State 199 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 200}, /* 2: nm shift 200 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 200 */
+ { 101, 0, 201}, /* 1: RP shift 201 */
+/* State 202 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 203}, /* 3: expr shift 203 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 203 */
+ { 60, 0, 157}, /* 1: IN shift 157 */
+ { 88, 0, 106}, /* 2: OR shift 106 */
+ { 89, 1, 99}, /* 3: ORACLE_OUTER_JOIN shift 99 */
+ { 10, 0, 153}, /* 4: BETWEEN shift 153 */
+ { 91, 0, 135}, /* 5: PLUS shift 135 */
+ { 5, 0, 100}, /* 6: AND shift 100 */
+ { 40, 8, 752}, /* 7: END reduce 221 */
+ { 11, 0, 120}, /* 8: BITAND shift 120 */
+ { 13, 0, 122}, /* 9: BITOR shift 122 */
+ { 96, 0, 143}, /* 10: REM shift 143 */
+ { 68, 4, 148}, /* 11: IS shift 148 */
+ { 69, 7, 147}, /* 12: ISNULL shift 147 */
+ { 73, 0, 112}, /* 13: LE shift 112 */
+ { 42, 9, 118}, /* 14: EQ shift 118 */
+ { 77, 0, 124}, /* 15: LSHIFT shift 124 */
+ { 102, 13, 126}, /* 16: RSHIFT shift 126 */
+ { 74, 0, 133}, /* 17: LIKE shift 133 */
+ { 51, 0, 114}, /* 18: GE shift 114 */
+ { 52, 0, 134}, /* 19: GLOB shift 134 */
+ { 106, 15, 141}, /* 20: SLASH shift 141 */
+ { 78, 0, 108}, /* 21: LT shift 108 */
+ { 108, 0, 139}, /* 22: STAR shift 139 */
+ { 80, 18, 137}, /* 23: MINUS shift 137 */
+ { 81, 19, 116}, /* 24: NE shift 116 */
+ { 82, 27, 130}, /* 25: NOT shift 130 */
+ { 83, 29, 152}, /* 26: NOTNULL shift 152 */
+ { 24, 0, 145}, /* 27: CONCAT shift 145 */
+ { 172, 0, 128}, /* 28: likeop shift 128 */
+ { 54, 0, 110}, /* 29: GT shift 110 */
+/* State 204 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 205}, /* 3: expr shift 205 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 205 */
+ { 60, 0, 157}, /* 1: IN shift 157 */
+ { 88, 0, 106}, /* 2: OR shift 106 */
+ { 89, 1, 99}, /* 3: ORACLE_OUTER_JOIN shift 99 */
+ { 10, 0, 153}, /* 4: BETWEEN shift 153 */
+ { 91, 0, 135}, /* 5: PLUS shift 135 */
+ { 5, 0, 100}, /* 6: AND shift 100 */
+ { 11, 0, 120}, /* 7: BITAND shift 120 */
+ { 13, 0, 122}, /* 8: BITOR shift 122 */
+ { 73, 0, 112}, /* 9: LE shift 112 */
+ { 96, 0, 143}, /* 10: REM shift 143 */
+ { 68, 4, 148}, /* 11: IS shift 148 */
+ { 69, 7, 147}, /* 12: ISNULL shift 147 */
+ { 77, 0, 124}, /* 13: LSHIFT shift 124 */
+ { 42, 8, 118}, /* 14: EQ shift 118 */
+ { 51, 0, 114}, /* 15: GE shift 114 */
+ { 102, 9, 126}, /* 16: RSHIFT shift 126 */
+ { 74, 0, 133}, /* 17: LIKE shift 133 */
+ { 52, 0, 134}, /* 18: GLOB shift 134 */
+ { 24, 0, 145}, /* 19: CONCAT shift 145 */
+ { 106, 13, 141}, /* 20: SLASH shift 141 */
+ { 78, 0, 108}, /* 21: LT shift 108 */
+ { 108, 0, 139}, /* 22: STAR shift 139 */
+ { 80, 15, 137}, /* 23: MINUS shift 137 */
+ { 81, 18, 116}, /* 24: NE shift 116 */
+ { 82, 19, 130}, /* 25: NOT shift 130 */
+ { 83, 29, 152}, /* 26: NOTNULL shift 152 */
+ { 113, 0, 206}, /* 27: THEN shift 206 */
+ { 172, 0, 128}, /* 28: likeop shift 128 */
+ { 54, 0, 110}, /* 29: GT shift 110 */
+/* State 206 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 207}, /* 3: expr shift 207 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 207 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 100}, /* 3: AND shift 100 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 208 */
+ { 21, 0, 210}, /* 1: COMMA shift 210 */
+ { 101, 1, 209}, /* 2: RP shift 209 */
+/* State 210 */
+ { 80, 4, 172}, /* 1: MINUS shift 172 */
+ { 177, 6, 102}, /* 2: nm shift 102 */
+ { 82, 0, 168}, /* 3: NOT shift 168 */
+ { 16, 0, 176}, /* 4: CASE shift 176 */
+ { 84, 0, 101}, /* 5: NULL shift 101 */
+ { 65, 0, 166}, /* 6: INTEGER shift 166 */
+ { 56, 0, 64}, /* 7: ID shift 64 */
+ { 71, 0, 67}, /* 8: JOIN_KW shift 67 */
+ { 152, 7, 165}, /* 9: expr shift 165 */
+ { 153, 0, 211}, /* 10: expritem shift 211 */
+ { 12, 0, 170}, /* 11: BITNOT shift 170 */
+ { 91, 0, 174}, /* 12: PLUS shift 174 */
+ { 76, 11, 68}, /* 13: LP shift 68 */
+ { 94, 16, 186}, /* 14: RAISE shift 186 */
+ { 110, 14, 66}, /* 15: STRING shift 66 */
+ { 46, 0, 167}, /* 16: FLOAT shift 167 */
+/* State 214 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 215}, /* 3: expr shift 215 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 215 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 216}, /* 3: AND shift 216 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 216 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 217}, /* 3: expr shift 217 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 217 */
+ { 78, 2, 108}, /* 1: LT shift 108 */
+ { 52, 0, 134}, /* 2: GLOB shift 134 */
+ { 106, 7, 141}, /* 3: SLASH shift 141 */
+ { 81, 0, 116}, /* 4: NE shift 116 */
+ { 108, 8, 139}, /* 5: STAR shift 139 */
+ { 83, 0, 152}, /* 6: NOTNULL shift 152 */
+ { 80, 10, 137}, /* 7: MINUS shift 137 */
+ { 82, 0, 130}, /* 8: NOT shift 130 */
+ { 60, 0, 157}, /* 9: IN shift 157 */
+ { 54, 0, 110}, /* 10: GT shift 110 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 89, 13, 99}, /* 12: ORACLE_OUTER_JOIN shift 99 */
+ { 11, 0, 120}, /* 13: BITAND shift 120 */
+ { 91, 15, 135}, /* 14: PLUS shift 135 */
+ { 13, 0, 122}, /* 15: BITOR shift 122 */
+ { 68, 20, 148}, /* 16: IS shift 148 */
+ { 172, 16, 128}, /* 17: likeop shift 128 */
+ { 69, 0, 147}, /* 18: ISNULL shift 147 */
+ { 96, 0, 143}, /* 19: REM shift 143 */
+ { 42, 0, 118}, /* 20: EQ shift 118 */
+ { 24, 0, 145}, /* 21: CONCAT shift 145 */
+ { 73, 0, 112}, /* 22: LE shift 112 */
+ { 74, 0, 133}, /* 23: LIKE shift 133 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 102, 21, 126}, /* 25: RSHIFT shift 126 */
+ { 77, 24, 124}, /* 26: LSHIFT shift 124 */
+/* State 218 */
+ { 76, 0, 219}, /* 1: LP shift 219 */
+/* State 219 */
+ { 80, 0, 172}, /* 1: MINUS shift 172 */
+ { 181, 0, 69}, /* 2: oneselect shift 69 */
+ { 82, 0, 168}, /* 3: NOT shift 168 */
+ { 103, 0, 73}, /* 4: SELECT shift 73 */
+ { 84, 0, 101}, /* 5: NULL shift 101 */
+ { 65, 0, 166}, /* 6: INTEGER shift 166 */
+ { 46, 0, 167}, /* 7: FLOAT shift 167 */
+ { 71, 0, 67}, /* 8: JOIN_KW shift 67 */
+ { 152, 10, 165}, /* 9: expr shift 165 */
+ { 12, 0, 170}, /* 10: BITNOT shift 170 */
+ { 110, 0, 66}, /* 11: STRING shift 66 */
+ { 91, 8, 174}, /* 12: PLUS shift 174 */
+ { 192, 9, 220}, /* 13: select shift 220 */
+ { 153, 0, 212}, /* 14: expritem shift 212 */
+ { 154, 16, 222}, /* 15: exprlist shift 222 */
+ { 94, 0, 186}, /* 16: RAISE shift 186 */
+ { 76, 19, 68}, /* 17: LP shift 68 */
+ { 177, 0, 102}, /* 18: nm shift 102 */
+ { 56, 20, 64}, /* 19: ID shift 64 */
+ { 16, 0, 176}, /* 20: CASE shift 176 */
+/* State 220 */
+ { 101, 3, 221}, /* 1: RP shift 221 */
+ { 176, 1, 71}, /* 2: multiselect_op shift 71 */
+ { 66, 0, 162}, /* 3: INTERSECT shift 162 */
+ { 118, 5, 160}, /* 4: UNION shift 160 */
+ { 43, 0, 163}, /* 5: EXCEPT shift 163 */
+/* State 222 */
+ { 21, 0, 210}, /* 1: COMMA shift 210 */
+ { 101, 1, 223}, /* 2: RP shift 223 */
+/* State 224 */
+ { 138, 0, 225}, /* 1: collate shift 225 */
+ { 19, 0, 95}, /* 2: COLLATE shift 95 */
+/* State 225 */
+ { 198, 0, 226}, /* 1: sortorder shift 226 */
+ { 34, 3, 59}, /* 2: DESC shift 59 */
+ { 7, 0, 58}, /* 3: ASC shift 58 */
+/* State 227 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 228}, /* 3: expr shift 228 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 228 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 100}, /* 3: AND shift 100 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 229 */
+ { 14, 0, 230}, /* 1: BY shift 230 */
+/* State 230 */
+ { 153, 0, 212}, /* 1: expritem shift 212 */
+ { 154, 0, 231}, /* 2: exprlist shift 231 */
+ { 76, 0, 68}, /* 3: LP shift 68 */
+ { 71, 0, 67}, /* 4: JOIN_KW shift 67 */
+ { 46, 11, 167}, /* 5: FLOAT shift 167 */
+ { 56, 0, 64}, /* 6: ID shift 64 */
+ { 91, 0, 174}, /* 7: PLUS shift 174 */
+ { 177, 0, 102}, /* 8: nm shift 102 */
+ { 110, 3, 66}, /* 9: STRING shift 66 */
+ { 94, 0, 186}, /* 10: RAISE shift 186 */
+ { 12, 0, 170}, /* 11: BITNOT shift 170 */
+ { 65, 0, 166}, /* 12: INTEGER shift 166 */
+ { 80, 5, 172}, /* 13: MINUS shift 172 */
+ { 84, 16, 101}, /* 14: NULL shift 101 */
+ { 82, 12, 168}, /* 15: NOT shift 168 */
+ { 16, 0, 176}, /* 16: CASE shift 176 */
+ { 152, 14, 165}, /* 17: expr shift 165 */
+/* State 231 */
+ { 21, 0, 210}, /* 1: COMMA shift 210 */
+/* State 232 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 233}, /* 3: expr shift 233 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 233 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 100}, /* 3: AND shift 100 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 235 */
+ { 193, 0, 236}, /* 1: seltablist shift 236 */
+ { 199, 1, 246}, /* 2: stl_prefix shift 246 */
+/* State 236 */
+ { 70, 0, 239}, /* 1: JOIN shift 239 */
+ { 21, 0, 238}, /* 2: COMMA shift 238 */
+ { 170, 1, 237}, /* 3: joinop shift 237 */
+ { 71, 0, 240}, /* 4: JOIN_KW shift 240 */
+/* State 240 */
+ { 110, 4, 21}, /* 1: STRING shift 21 */
+ { 71, 5, 22}, /* 2: JOIN_KW shift 22 */
+ { 177, 0, 242}, /* 3: nm shift 242 */
+ { 70, 0, 241}, /* 4: JOIN shift 241 */
+ { 56, 0, 20}, /* 5: ID shift 20 */
+/* State 242 */
+ { 110, 4, 21}, /* 1: STRING shift 21 */
+ { 71, 5, 22}, /* 2: JOIN_KW shift 22 */
+ { 177, 0, 244}, /* 3: nm shift 244 */
+ { 70, 0, 243}, /* 4: JOIN shift 243 */
+ { 56, 0, 20}, /* 5: ID shift 20 */
+/* State 244 */
+ { 70, 0, 245}, /* 1: JOIN shift 245 */
+/* State 246 */
+ { 110, 0, 21}, /* 1: STRING shift 21 */
+ { 76, 4, 266}, /* 2: LP shift 266 */
+ { 177, 0, 247}, /* 3: nm shift 247 */
+ { 71, 5, 22}, /* 4: JOIN_KW shift 22 */
+ { 56, 0, 20}, /* 5: ID shift 20 */
+/* State 247 */
+ { 160, 3, 252}, /* 1: ids shift 252 */
+ { 56, 5, 248}, /* 2: ID shift 248 */
+ { 110, 0, 249}, /* 3: STRING shift 249 */
+ { 128, 0, 253}, /* 4: as shift 253 */
+ { 6, 0, 250}, /* 5: AS shift 250 */
+/* State 250 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 251}, /* 2: nm shift 251 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 253 */
+ { 87, 0, 264}, /* 1: ON shift 264 */
+ { 179, 1, 254}, /* 2: on_opt shift 254 */
+/* State 254 */
+ { 210, 2, 255}, /* 1: using_opt shift 255 */
+ { 122, 0, 256}, /* 2: USING shift 256 */
+/* State 256 */
+ { 76, 0, 257}, /* 1: LP shift 257 */
+/* State 257 */
+ { 162, 0, 258}, /* 1: idxlist shift 258 */
+ { 56, 0, 20}, /* 2: ID shift 20 */
+ { 110, 2, 21}, /* 3: STRING shift 21 */
+ { 177, 0, 262}, /* 4: nm shift 262 */
+ { 71, 0, 22}, /* 5: JOIN_KW shift 22 */
+ { 161, 5, 263}, /* 6: idxitem shift 263 */
+/* State 258 */
+ { 21, 0, 260}, /* 1: COMMA shift 260 */
+ { 101, 1, 259}, /* 2: RP shift 259 */
+/* State 260 */
+ { 110, 0, 21}, /* 1: STRING shift 21 */
+ { 161, 4, 261}, /* 2: idxitem shift 261 */
+ { 177, 0, 262}, /* 3: nm shift 262 */
+ { 71, 5, 22}, /* 4: JOIN_KW shift 22 */
+ { 56, 0, 20}, /* 5: ID shift 20 */
+/* State 264 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 265}, /* 3: expr shift 265 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 265 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 100}, /* 3: AND shift 100 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 266 */
+ { 192, 0, 267}, /* 1: select shift 267 */
+ { 181, 3, 69}, /* 2: oneselect shift 69 */
+ { 103, 0, 73}, /* 3: SELECT shift 73 */
+/* State 267 */
+ { 101, 3, 268}, /* 1: RP shift 268 */
+ { 176, 1, 71}, /* 2: multiselect_op shift 71 */
+ { 66, 0, 162}, /* 3: INTERSECT shift 162 */
+ { 118, 5, 160}, /* 4: UNION shift 160 */
+ { 43, 0, 163}, /* 5: EXCEPT shift 163 */
+/* State 268 */
+ { 160, 3, 252}, /* 1: ids shift 252 */
+ { 56, 5, 248}, /* 2: ID shift 248 */
+ { 110, 0, 249}, /* 3: STRING shift 249 */
+ { 128, 0, 269}, /* 4: as shift 269 */
+ { 6, 0, 250}, /* 5: AS shift 250 */
+/* State 269 */
+ { 87, 0, 264}, /* 1: ON shift 264 */
+ { 179, 1, 270}, /* 2: on_opt shift 270 */
+/* State 270 */
+ { 210, 2, 271}, /* 1: using_opt shift 271 */
+ { 122, 0, 256}, /* 2: USING shift 256 */
+/* State 272 */
+ { 80, 4, 172}, /* 1: MINUS shift 172 */
+ { 177, 6, 276}, /* 2: nm shift 276 */
+ { 82, 0, 168}, /* 3: NOT shift 168 */
+ { 16, 0, 176}, /* 4: CASE shift 176 */
+ { 84, 0, 101}, /* 5: NULL shift 101 */
+ { 65, 0, 166}, /* 6: INTEGER shift 166 */
+ { 56, 0, 64}, /* 7: ID shift 64 */
+ { 71, 0, 67}, /* 8: JOIN_KW shift 67 */
+ { 152, 7, 273}, /* 9: expr shift 273 */
+ { 76, 11, 68}, /* 10: LP shift 68 */
+ { 12, 0, 170}, /* 11: BITNOT shift 170 */
+ { 91, 0, 174}, /* 12: PLUS shift 174 */
+ { 108, 10, 275}, /* 13: STAR shift 275 */
+ { 94, 16, 186}, /* 14: RAISE shift 186 */
+ { 110, 14, 66}, /* 15: STRING shift 66 */
+ { 46, 0, 167}, /* 16: FLOAT shift 167 */
+/* State 273 */
+ { 69, 0, 147}, /* 1: ISNULL shift 147 */
+ { 106, 5, 141}, /* 2: SLASH shift 141 */
+ { 68, 0, 148}, /* 3: IS shift 148 */
+ { 102, 1, 126}, /* 4: RSHIFT shift 126 */
+ { 73, 0, 112}, /* 5: LE shift 112 */
+ { 5, 0, 100}, /* 6: AND shift 100 */
+ { 6, 0, 250}, /* 7: AS shift 250 */
+ { 172, 2, 128}, /* 8: likeop shift 128 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 108, 21, 139}, /* 10: STAR shift 139 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 110, 27, 249}, /* 12: STRING shift 249 */
+ { 78, 0, 108}, /* 13: LT shift 108 */
+ { 13, 0, 122}, /* 14: BITOR shift 122 */
+ { 80, 0, 137}, /* 15: MINUS shift 137 */
+ { 81, 0, 116}, /* 16: NE shift 116 */
+ { 82, 0, 130}, /* 17: NOT shift 130 */
+ { 83, 0, 152}, /* 18: NOTNULL shift 152 */
+ { 51, 0, 114}, /* 19: GE shift 114 */
+ { 52, 0, 134}, /* 20: GLOB shift 134 */
+ { 42, 0, 118}, /* 21: EQ shift 118 */
+ { 54, 0, 110}, /* 22: GT shift 110 */
+ { 88, 0, 106}, /* 23: OR shift 106 */
+ { 89, 32, 99}, /* 24: ORACLE_OUTER_JOIN shift 99 */
+ { 24, 0, 145}, /* 25: CONCAT shift 145 */
+ { 91, 0, 135}, /* 26: PLUS shift 135 */
+ { 77, 33, 124}, /* 27: LSHIFT shift 124 */
+ { 60, 0, 157}, /* 28: IN shift 157 */
+ { 160, 0, 252}, /* 29: ids shift 252 */
+ { 128, 0, 274}, /* 30: as shift 274 */
+ { 96, 0, 143}, /* 31: REM shift 143 */
+ { 56, 0, 248}, /* 32: ID shift 248 */
+ { 11, 0, 120}, /* 33: BITAND shift 120 */
+/* State 276 */
+ { 36, 0, 277}, /* 1: DOT shift 277 */
+/* State 277 */
+ { 110, 0, 21}, /* 1: STRING shift 21 */
+ { 71, 5, 22}, /* 2: JOIN_KW shift 22 */
+ { 177, 0, 104}, /* 3: nm shift 104 */
+ { 108, 0, 278}, /* 4: STAR shift 278 */
+ { 56, 0, 20}, /* 5: ID shift 20 */
+/* State 282 */
+ { 60, 0, 157}, /* 1: IN shift 157 */
+ { 88, 0, 106}, /* 2: OR shift 106 */
+ { 89, 1, 99}, /* 3: ORACLE_OUTER_JOIN shift 99 */
+ { 10, 0, 153}, /* 4: BETWEEN shift 153 */
+ { 91, 0, 135}, /* 5: PLUS shift 135 */
+ { 5, 0, 100}, /* 6: AND shift 100 */
+ { 11, 0, 120}, /* 7: BITAND shift 120 */
+ { 13, 0, 122}, /* 8: BITOR shift 122 */
+ { 73, 0, 112}, /* 9: LE shift 112 */
+ { 96, 0, 143}, /* 10: REM shift 143 */
+ { 68, 4, 148}, /* 11: IS shift 148 */
+ { 69, 7, 147}, /* 12: ISNULL shift 147 */
+ { 77, 0, 124}, /* 13: LSHIFT shift 124 */
+ { 42, 8, 118}, /* 14: EQ shift 118 */
+ { 101, 0, 283}, /* 15: RP shift 283 */
+ { 102, 9, 126}, /* 16: RSHIFT shift 126 */
+ { 74, 0, 133}, /* 17: LIKE shift 133 */
+ { 51, 0, 114}, /* 18: GE shift 114 */
+ { 52, 0, 134}, /* 19: GLOB shift 134 */
+ { 106, 13, 141}, /* 20: SLASH shift 141 */
+ { 78, 0, 108}, /* 21: LT shift 108 */
+ { 108, 0, 139}, /* 22: STAR shift 139 */
+ { 80, 18, 137}, /* 23: MINUS shift 137 */
+ { 81, 19, 116}, /* 24: NE shift 116 */
+ { 82, 27, 130}, /* 25: NOT shift 130 */
+ { 83, 29, 152}, /* 26: NOTNULL shift 152 */
+ { 24, 0, 145}, /* 27: CONCAT shift 145 */
+ { 172, 0, 128}, /* 28: likeop shift 128 */
+ { 54, 0, 110}, /* 29: GT shift 110 */
+/* State 284 */
+ { 21, 0, 210}, /* 1: COMMA shift 210 */
+ { 101, 1, 285}, /* 2: RP shift 285 */
+/* State 286 */
+ { 101, 0, 287}, /* 1: RP shift 287 */
+/* State 288 */
+ { 60, 0, 157}, /* 1: IN shift 157 */
+ { 88, 0, 106}, /* 2: OR shift 106 */
+ { 89, 1, 99}, /* 3: ORACLE_OUTER_JOIN shift 99 */
+ { 10, 0, 153}, /* 4: BETWEEN shift 153 */
+ { 91, 0, 135}, /* 5: PLUS shift 135 */
+ { 5, 0, 100}, /* 6: AND shift 100 */
+ { 11, 0, 120}, /* 7: BITAND shift 120 */
+ { 13, 0, 122}, /* 8: BITOR shift 122 */
+ { 73, 0, 112}, /* 9: LE shift 112 */
+ { 96, 0, 143}, /* 10: REM shift 143 */
+ { 68, 4, 148}, /* 11: IS shift 148 */
+ { 69, 7, 147}, /* 12: ISNULL shift 147 */
+ { 77, 0, 124}, /* 13: LSHIFT shift 124 */
+ { 42, 8, 118}, /* 14: EQ shift 118 */
+ { 101, 0, 289}, /* 15: RP shift 289 */
+ { 102, 9, 126}, /* 16: RSHIFT shift 126 */
+ { 74, 0, 133}, /* 17: LIKE shift 133 */
+ { 51, 0, 114}, /* 18: GE shift 114 */
+ { 52, 0, 134}, /* 19: GLOB shift 134 */
+ { 106, 13, 141}, /* 20: SLASH shift 141 */
+ { 78, 0, 108}, /* 21: LT shift 108 */
+ { 108, 0, 139}, /* 22: STAR shift 139 */
+ { 80, 18, 137}, /* 23: MINUS shift 137 */
+ { 81, 19, 116}, /* 24: NE shift 116 */
+ { 82, 27, 130}, /* 25: NOT shift 130 */
+ { 83, 29, 152}, /* 26: NOTNULL shift 152 */
+ { 24, 0, 145}, /* 27: CONCAT shift 145 */
+ { 172, 0, 128}, /* 28: likeop shift 128 */
+ { 54, 0, 110}, /* 29: GT shift 110 */
+/* State 289 */
+ { 180, 0, 290}, /* 1: onconf shift 290 */
+ { 87, 0, 10}, /* 2: ON shift 10 */
+/* State 291 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 292}, /* 2: nm shift 292 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 292 */
+ { 76, 0, 310}, /* 1: LP shift 310 */
+ { 163, 0, 293}, /* 2: idxlist_opt shift 293 */
+/* State 293 */
+ { 188, 0, 294}, /* 1: refargs shift 294 */
+/* State 294 */
+ { 87, 0, 298}, /* 1: ON shift 298 */
+ { 187, 3, 295}, /* 2: refarg shift 295 */
+ { 79, 0, 296}, /* 3: MATCH shift 296 */
+/* State 296 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 297}, /* 2: nm shift 297 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 298 */
+ { 120, 2, 306}, /* 1: UPDATE shift 306 */
+ { 63, 0, 308}, /* 2: INSERT shift 308 */
+ { 32, 0, 299}, /* 3: DELETE shift 299 */
+/* State 299 */
+ { 98, 0, 305}, /* 1: RESTRICT shift 305 */
+ { 105, 0, 301}, /* 2: SET shift 301 */
+ { 186, 1, 300}, /* 3: refact shift 300 */
+ { 15, 0, 304}, /* 4: CASCADE shift 304 */
+/* State 301 */
+ { 84, 0, 302}, /* 1: NULL shift 302 */
+ { 29, 0, 303}, /* 2: DEFAULT shift 303 */
+/* State 306 */
+ { 98, 0, 305}, /* 1: RESTRICT shift 305 */
+ { 105, 0, 301}, /* 2: SET shift 301 */
+ { 186, 1, 307}, /* 3: refact shift 307 */
+ { 15, 0, 304}, /* 4: CASCADE shift 304 */
+/* State 308 */
+ { 98, 0, 305}, /* 1: RESTRICT shift 305 */
+ { 105, 0, 301}, /* 2: SET shift 301 */
+ { 186, 1, 309}, /* 3: refact shift 309 */
+ { 15, 0, 304}, /* 4: CASCADE shift 304 */
+/* State 310 */
+ { 162, 0, 311}, /* 1: idxlist shift 311 */
+ { 56, 0, 20}, /* 2: ID shift 20 */
+ { 110, 2, 21}, /* 3: STRING shift 21 */
+ { 177, 0, 262}, /* 4: nm shift 262 */
+ { 71, 0, 22}, /* 5: JOIN_KW shift 22 */
+ { 161, 5, 263}, /* 6: idxitem shift 263 */
+/* State 311 */
+ { 21, 0, 260}, /* 1: COMMA shift 260 */
+ { 101, 1, 312}, /* 2: RP shift 312 */
+/* State 314 */
+ { 56, 0, 96}, /* 1: ID shift 96 */
+ { 159, 0, 315}, /* 2: id shift 315 */
+/* State 316 */
+ { 164, 2, 317}, /* 1: init_deferred_pred_opt shift 317 */
+ { 62, 0, 51}, /* 2: INITIALLY shift 51 */
+/* State 319 */
+ { 91, 2, 323}, /* 1: PLUS shift 323 */
+ { 84, 7, 330}, /* 2: NULL shift 330 */
+ { 65, 0, 322}, /* 3: INTEGER shift 322 */
+ { 80, 0, 326}, /* 4: MINUS shift 326 */
+ { 46, 0, 329}, /* 5: FLOAT shift 329 */
+ { 110, 0, 320}, /* 6: STRING shift 320 */
+ { 56, 0, 321}, /* 7: ID shift 321 */
+/* State 323 */
+ { 46, 0, 325}, /* 1: FLOAT shift 325 */
+ { 65, 0, 324}, /* 2: INTEGER shift 324 */
+/* State 326 */
+ { 46, 0, 328}, /* 1: FLOAT shift 328 */
+ { 65, 0, 327}, /* 2: INTEGER shift 327 */
+/* State 331 */
+ { 160, 2, 343}, /* 1: ids shift 343 */
+ { 76, 4, 332}, /* 2: LP shift 332 */
+ { 110, 0, 249}, /* 3: STRING shift 249 */
+ { 56, 0, 248}, /* 4: ID shift 248 */
+/* State 332 */
+ { 80, 0, 341}, /* 1: MINUS shift 341 */
+ { 65, 0, 338}, /* 2: INTEGER shift 338 */
+ { 91, 0, 339}, /* 3: PLUS shift 339 */
+ { 195, 3, 333}, /* 4: signed shift 333 */
+/* State 333 */
+ { 21, 0, 335}, /* 1: COMMA shift 335 */
+ { 101, 1, 334}, /* 2: RP shift 334 */
+/* State 335 */
+ { 80, 0, 341}, /* 1: MINUS shift 341 */
+ { 65, 0, 338}, /* 2: INTEGER shift 338 */
+ { 91, 0, 339}, /* 3: PLUS shift 339 */
+ { 195, 3, 336}, /* 4: signed shift 336 */
+/* State 336 */
+ { 101, 0, 337}, /* 1: RP shift 337 */
+/* State 339 */
+ { 65, 0, 340}, /* 1: INTEGER shift 340 */
+/* State 341 */
+ { 65, 0, 342}, /* 1: INTEGER shift 342 */
+/* State 346 */
+ { 200, 4, 377}, /* 1: tcons shift 377 */
+ { 17, 0, 362}, /* 2: CHECK shift 362 */
+ { 26, 0, 349}, /* 3: CONSTRAINT shift 349 */
+ { 48, 0, 365}, /* 4: FOREIGN shift 365 */
+ { 93, 7, 351}, /* 5: PRIMARY shift 351 */
+ { 101, 5, 608}, /* 6: RP reduce 77 */
+ { 21, 0, 347}, /* 7: COMMA shift 347 */
+ { 119, 0, 357}, /* 8: UNIQUE shift 357 */
+/* State 347 */
+ { 48, 0, 365}, /* 1: FOREIGN shift 365 */
+ { 26, 0, 349}, /* 2: CONSTRAINT shift 349 */
+ { 200, 2, 348}, /* 3: tcons shift 348 */
+ { 93, 0, 351}, /* 4: PRIMARY shift 351 */
+ { 17, 0, 362}, /* 5: CHECK shift 362 */
+ { 119, 5, 357}, /* 6: UNIQUE shift 357 */
+/* State 349 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 350}, /* 2: nm shift 350 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 351 */
+ { 72, 0, 352}, /* 1: KEY shift 352 */
+/* State 352 */
+ { 76, 0, 353}, /* 1: LP shift 353 */
+/* State 353 */
+ { 162, 0, 354}, /* 1: idxlist shift 354 */
+ { 56, 0, 20}, /* 2: ID shift 20 */
+ { 110, 2, 21}, /* 3: STRING shift 21 */
+ { 177, 0, 262}, /* 4: nm shift 262 */
+ { 71, 0, 22}, /* 5: JOIN_KW shift 22 */
+ { 161, 5, 263}, /* 6: idxitem shift 263 */
+/* State 354 */
+ { 21, 0, 260}, /* 1: COMMA shift 260 */
+ { 101, 1, 355}, /* 2: RP shift 355 */
+/* State 355 */
+ { 180, 0, 356}, /* 1: onconf shift 356 */
+ { 87, 0, 10}, /* 2: ON shift 10 */
+/* State 357 */
+ { 76, 0, 358}, /* 1: LP shift 358 */
+/* State 358 */
+ { 162, 0, 359}, /* 1: idxlist shift 359 */
+ { 56, 0, 20}, /* 2: ID shift 20 */
+ { 110, 2, 21}, /* 3: STRING shift 21 */
+ { 177, 0, 262}, /* 4: nm shift 262 */
+ { 71, 0, 22}, /* 5: JOIN_KW shift 22 */
+ { 161, 5, 263}, /* 6: idxitem shift 263 */
+/* State 359 */
+ { 21, 0, 260}, /* 1: COMMA shift 260 */
+ { 101, 1, 360}, /* 2: RP shift 360 */
+/* State 360 */
+ { 180, 0, 361}, /* 1: onconf shift 361 */
+ { 87, 0, 10}, /* 2: ON shift 10 */
+/* State 362 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 363}, /* 3: expr shift 363 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 363 */
+ { 180, 3, 364}, /* 1: onconf shift 364 */
+ { 91, 0, 135}, /* 2: PLUS shift 135 */
+ { 60, 0, 157}, /* 3: IN shift 157 */
+ { 42, 0, 118}, /* 4: EQ shift 118 */
+ { 13, 0, 122}, /* 5: BITOR shift 122 */
+ { 5, 0, 100}, /* 6: AND shift 100 */
+ { 96, 0, 143}, /* 7: REM shift 143 */
+ { 78, 0, 108}, /* 8: LT shift 108 */
+ { 68, 0, 148}, /* 9: IS shift 148 */
+ { 69, 0, 147}, /* 10: ISNULL shift 147 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 102, 4, 126}, /* 13: RSHIFT shift 126 */
+ { 73, 5, 112}, /* 14: LE shift 112 */
+ { 74, 0, 133}, /* 15: LIKE shift 133 */
+ { 51, 0, 114}, /* 16: GE shift 114 */
+ { 106, 0, 141}, /* 17: SLASH shift 141 */
+ { 77, 0, 124}, /* 18: LSHIFT shift 124 */
+ { 108, 8, 139}, /* 19: STAR shift 139 */
+ { 82, 26, 130}, /* 20: NOT shift 130 */
+ { 80, 0, 137}, /* 21: MINUS shift 137 */
+ { 81, 16, 116}, /* 22: NE shift 116 */
+ { 172, 20, 128}, /* 23: likeop shift 128 */
+ { 83, 0, 152}, /* 24: NOTNULL shift 152 */
+ { 54, 27, 110}, /* 25: GT shift 110 */
+ { 52, 0, 134}, /* 26: GLOB shift 134 */
+ { 24, 0, 145}, /* 27: CONCAT shift 145 */
+ { 87, 0, 10}, /* 28: ON shift 10 */
+ { 88, 0, 106}, /* 29: OR shift 106 */
+ { 89, 0, 99}, /* 30: ORACLE_OUTER_JOIN shift 99 */
+/* State 365 */
+ { 72, 0, 366}, /* 1: KEY shift 366 */
+/* State 366 */
+ { 76, 0, 367}, /* 1: LP shift 367 */
+/* State 367 */
+ { 162, 0, 368}, /* 1: idxlist shift 368 */
+ { 56, 0, 20}, /* 2: ID shift 20 */
+ { 110, 2, 21}, /* 3: STRING shift 21 */
+ { 177, 0, 262}, /* 4: nm shift 262 */
+ { 71, 0, 22}, /* 5: JOIN_KW shift 22 */
+ { 161, 5, 263}, /* 6: idxitem shift 263 */
+/* State 368 */
+ { 21, 0, 260}, /* 1: COMMA shift 260 */
+ { 101, 1, 369}, /* 2: RP shift 369 */
+/* State 369 */
+ { 95, 0, 370}, /* 1: REFERENCES shift 370 */
+/* State 370 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 371}, /* 2: nm shift 371 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 371 */
+ { 76, 0, 310}, /* 1: LP shift 310 */
+ { 163, 0, 372}, /* 2: idxlist_opt shift 372 */
+/* State 372 */
+ { 188, 0, 373}, /* 1: refargs shift 373 */
+/* State 373 */
+ { 147, 0, 375}, /* 1: defer_subclause_opt shift 375 */
+ { 30, 0, 316}, /* 2: DEFERRABLE shift 316 */
+ { 79, 2, 296}, /* 3: MATCH shift 296 */
+ { 87, 0, 298}, /* 4: ON shift 298 */
+ { 82, 0, 374}, /* 5: NOT shift 374 */
+ { 187, 5, 295}, /* 6: refarg shift 295 */
+ { 146, 0, 376}, /* 7: defer_subclause shift 376 */
+/* State 374 */
+ { 30, 0, 49}, /* 1: DEFERRABLE shift 49 */
+/* State 380 */
+ { 192, 0, 381}, /* 1: select shift 381 */
+ { 181, 3, 69}, /* 2: oneselect shift 69 */
+ { 103, 0, 73}, /* 3: SELECT shift 73 */
+/* State 381 */
+ { 66, 0, 162}, /* 1: INTERSECT shift 162 */
+ { 176, 1, 71}, /* 2: multiselect_op shift 71 */
+ { 43, 0, 163}, /* 3: EXCEPT shift 163 */
+ { 118, 3, 160}, /* 4: UNION shift 160 */
+ { 104, 0, 551}, /* 5: SEMI reduce 20 */
+/* State 382 */
+ { 61, 0, 762}, /* 1: INDEX reduce 231 */
+ { 115, 1, 401}, /* 2: TRIGGER shift 401 */
+ { 119, 0, 400}, /* 3: UNIQUE shift 400 */
+ { 201, 0, 383}, /* 4: temp shift 383 */
+ { 112, 0, 390}, /* 5: TEMP shift 390 */
+ { 209, 3, 391}, /* 6: uniqueflag shift 391 */
+/* State 383 */
+ { 111, 0, 384}, /* 1: TABLE shift 384 */
+ { 125, 1, 386}, /* 2: VIEW shift 386 */
+/* State 384 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 385}, /* 2: nm shift 385 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 386 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 387}, /* 2: nm shift 387 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 387 */
+ { 6, 0, 388}, /* 1: AS shift 388 */
+/* State 388 */
+ { 192, 0, 389}, /* 1: select shift 389 */
+ { 181, 3, 69}, /* 2: oneselect shift 69 */
+ { 103, 0, 73}, /* 3: SELECT shift 73 */
+/* State 389 */
+ { 66, 0, 162}, /* 1: INTERSECT shift 162 */
+ { 176, 1, 71}, /* 2: multiselect_op shift 71 */
+ { 43, 0, 163}, /* 3: EXCEPT shift 163 */
+ { 118, 3, 160}, /* 4: UNION shift 160 */
+ { 104, 0, 629}, /* 5: SEMI reduce 98 */
+/* State 391 */
+ { 61, 0, 392}, /* 1: INDEX shift 392 */
+/* State 392 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 393}, /* 2: nm shift 393 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 393 */
+ { 87, 0, 394}, /* 1: ON shift 394 */
+/* State 394 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 395}, /* 2: nm shift 395 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 395 */
+ { 76, 0, 396}, /* 1: LP shift 396 */
+/* State 396 */
+ { 162, 0, 397}, /* 1: idxlist shift 397 */
+ { 56, 0, 20}, /* 2: ID shift 20 */
+ { 110, 2, 21}, /* 3: STRING shift 21 */
+ { 177, 0, 262}, /* 4: nm shift 262 */
+ { 71, 0, 22}, /* 5: JOIN_KW shift 22 */
+ { 161, 5, 263}, /* 6: idxitem shift 263 */
+/* State 397 */
+ { 21, 0, 260}, /* 1: COMMA shift 260 */
+ { 101, 1, 398}, /* 2: RP shift 398 */
+/* State 398 */
+ { 180, 2, 399}, /* 1: onconf shift 399 */
+ { 87, 0, 10}, /* 2: ON shift 10 */
+ { 104, 0, 619}, /* 3: SEMI reduce 88 */
+/* State 399 */
+ { 104, 0, 760}, /* 1: SEMI reduce 229 */
+/* State 400 */
+ { 61, 0, 761}, /* 1: INDEX reduce 230 */
+/* State 401 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 402}, /* 2: nm shift 402 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 402 */
+ { 64, 2, 467}, /* 1: INSTEAD shift 467 */
+ { 8, 0, 465}, /* 2: BEFORE shift 465 */
+ { 206, 4, 403}, /* 3: trigger_time shift 403 */
+ { 2, 0, 466}, /* 4: AFTER shift 466 */
+/* State 403 */
+ { 120, 3, 462}, /* 1: UPDATE shift 462 */
+ { 205, 0, 404}, /* 2: trigger_event shift 404 */
+ { 32, 0, 460}, /* 3: DELETE shift 460 */
+ { 63, 0, 461}, /* 4: INSERT shift 461 */
+/* State 404 */
+ { 87, 0, 405}, /* 1: ON shift 405 */
+/* State 405 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 406}, /* 2: nm shift 406 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 406 */
+ { 47, 0, 456}, /* 1: FOR shift 456 */
+ { 155, 1, 407}, /* 2: foreach_clause shift 407 */
+/* State 407 */
+ { 126, 3, 454}, /* 1: WHEN shift 454 */
+ { 211, 0, 408}, /* 2: when_clause shift 408 */
+ { 9, 0, 797}, /* 3: BEGIN reduce 266 */
+/* State 408 */
+ { 9, 0, 409}, /* 1: BEGIN shift 409 */
+/* State 409 */
+ { 63, 0, 431}, /* 1: INSERT shift 431 */
+ { 181, 0, 69}, /* 2: oneselect shift 69 */
+ { 120, 0, 416}, /* 3: UPDATE shift 416 */
+ { 192, 3, 410}, /* 4: select shift 410 */
+ { 103, 8, 73}, /* 5: SELECT shift 73 */
+ { 203, 9, 413}, /* 6: trigger_cmd shift 413 */
+ { 204, 0, 411}, /* 7: trigger_cmd_list shift 411 */
+ { 40, 0, 800}, /* 8: END reduce 269 */
+ { 32, 0, 450}, /* 9: DELETE shift 450 */
+/* State 410 */
+ { 66, 0, 162}, /* 1: INTERSECT shift 162 */
+ { 176, 1, 71}, /* 2: multiselect_op shift 71 */
+ { 43, 0, 163}, /* 3: EXCEPT shift 163 */
+ { 118, 3, 160}, /* 4: UNION shift 160 */
+ { 104, 0, 805}, /* 5: SEMI reduce 274 */
+/* State 411 */
+ { 40, 0, 412}, /* 1: END shift 412 */
+/* State 412 */
+ { 104, 0, 785}, /* 1: SEMI reduce 254 */
+/* State 413 */
+ { 104, 0, 414}, /* 1: SEMI shift 414 */
+/* State 414 */
+ { 63, 0, 431}, /* 1: INSERT shift 431 */
+ { 181, 0, 69}, /* 2: oneselect shift 69 */
+ { 120, 0, 416}, /* 3: UPDATE shift 416 */
+ { 192, 3, 410}, /* 4: select shift 410 */
+ { 103, 8, 73}, /* 5: SELECT shift 73 */
+ { 203, 9, 413}, /* 6: trigger_cmd shift 413 */
+ { 204, 0, 415}, /* 7: trigger_cmd_list shift 415 */
+ { 40, 0, 800}, /* 8: END reduce 269 */
+ { 32, 0, 450}, /* 9: DELETE shift 450 */
+/* State 415 */
+ { 40, 0, 799}, /* 1: END reduce 268 */
+/* State 416 */
+ { 182, 2, 419}, /* 1: orconf shift 419 */
+ { 88, 0, 417}, /* 2: OR shift 417 */
+/* State 417 */
+ { 1, 0, 14}, /* 1: ABORT shift 14 */
+ { 97, 1, 17}, /* 2: REPLACE shift 17 */
+ { 99, 5, 13}, /* 3: ROLLBACK shift 13 */
+ { 189, 3, 418}, /* 4: resolvetype shift 418 */
+ { 57, 6, 16}, /* 5: IGNORE shift 16 */
+ { 45, 0, 15}, /* 6: FAIL shift 15 */
+/* State 419 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 420}, /* 2: nm shift 420 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 420 */
+ { 105, 0, 421}, /* 1: SET shift 421 */
+/* State 421 */
+ { 110, 0, 21}, /* 1: STRING shift 21 */
+ { 71, 4, 22}, /* 2: JOIN_KW shift 22 */
+ { 177, 0, 428}, /* 3: nm shift 428 */
+ { 56, 0, 20}, /* 4: ID shift 20 */
+ { 194, 0, 422}, /* 5: setlist shift 422 */
+/* State 422 */
+ { 212, 3, 427}, /* 1: where_opt shift 427 */
+ { 21, 0, 423}, /* 2: COMMA shift 423 */
+ { 104, 0, 685}, /* 3: SEMI reduce 154 */
+ { 127, 0, 232}, /* 4: WHERE shift 232 */
+/* State 423 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 424}, /* 2: nm shift 424 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 424 */
+ { 42, 0, 425}, /* 1: EQ shift 425 */
+/* State 425 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 426}, /* 3: expr shift 426 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 426 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 100}, /* 3: AND shift 100 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 427 */
+ { 104, 0, 801}, /* 1: SEMI reduce 270 */
+/* State 428 */
+ { 42, 0, 429}, /* 1: EQ shift 429 */
+/* State 429 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 430}, /* 3: expr shift 430 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 430 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 100}, /* 3: AND shift 100 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 431 */
+ { 67, 0, 621}, /* 1: INTO reduce 90 */
+ { 88, 1, 417}, /* 2: OR shift 417 */
+ { 182, 0, 432}, /* 3: orconf shift 432 */
+/* State 432 */
+ { 67, 0, 433}, /* 1: INTO shift 433 */
+/* State 433 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 434}, /* 2: nm shift 434 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 434 */
+ { 76, 0, 435}, /* 1: LP shift 435 */
+ { 167, 0, 441}, /* 2: inscollist_opt shift 441 */
+/* State 435 */
+ { 110, 0, 21}, /* 1: STRING shift 21 */
+ { 166, 4, 436}, /* 2: inscollist shift 436 */
+ { 177, 0, 440}, /* 3: nm shift 440 */
+ { 71, 5, 22}, /* 4: JOIN_KW shift 22 */
+ { 56, 0, 20}, /* 5: ID shift 20 */
+/* State 436 */
+ { 21, 0, 438}, /* 1: COMMA shift 438 */
+ { 101, 1, 437}, /* 2: RP shift 437 */
+/* State 438 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 439}, /* 2: nm shift 439 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 441 */
+ { 192, 3, 442}, /* 1: select shift 442 */
+ { 181, 0, 69}, /* 2: oneselect shift 69 */
+ { 124, 0, 443}, /* 3: VALUES shift 443 */
+ { 103, 0, 73}, /* 4: SELECT shift 73 */
+/* State 442 */
+ { 66, 0, 162}, /* 1: INTERSECT shift 162 */
+ { 176, 1, 71}, /* 2: multiselect_op shift 71 */
+ { 43, 0, 163}, /* 3: EXCEPT shift 163 */
+ { 118, 3, 160}, /* 4: UNION shift 160 */
+ { 104, 0, 803}, /* 5: SEMI reduce 272 */
+/* State 443 */
+ { 76, 0, 444}, /* 1: LP shift 444 */
+/* State 444 */
+ { 80, 4, 172}, /* 1: MINUS shift 172 */
+ { 177, 6, 102}, /* 2: nm shift 102 */
+ { 82, 0, 168}, /* 3: NOT shift 168 */
+ { 16, 0, 176}, /* 4: CASE shift 176 */
+ { 84, 0, 101}, /* 5: NULL shift 101 */
+ { 65, 0, 166}, /* 6: INTEGER shift 166 */
+ { 56, 0, 64}, /* 7: ID shift 64 */
+ { 71, 0, 67}, /* 8: JOIN_KW shift 67 */
+ { 152, 7, 449}, /* 9: expr shift 449 */
+ { 169, 0, 445}, /* 10: itemlist shift 445 */
+ { 12, 0, 170}, /* 11: BITNOT shift 170 */
+ { 91, 0, 174}, /* 12: PLUS shift 174 */
+ { 76, 11, 68}, /* 13: LP shift 68 */
+ { 94, 16, 186}, /* 14: RAISE shift 186 */
+ { 110, 14, 66}, /* 15: STRING shift 66 */
+ { 46, 0, 167}, /* 16: FLOAT shift 167 */
+/* State 445 */
+ { 21, 0, 446}, /* 1: COMMA shift 446 */
+ { 101, 1, 448}, /* 2: RP shift 448 */
+/* State 446 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 447}, /* 3: expr shift 447 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 447 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 100}, /* 3: AND shift 100 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 448 */
+ { 104, 0, 802}, /* 1: SEMI reduce 271 */
+/* State 449 */
+ { 88, 2, 106}, /* 1: OR shift 106 */
+ { 60, 0, 157}, /* 2: IN shift 157 */
+ { 5, 0, 100}, /* 3: AND shift 100 */
+ { 68, 0, 148}, /* 4: IS shift 148 */
+ { 172, 1, 128}, /* 5: likeop shift 128 */
+ { 89, 3, 99}, /* 6: ORACLE_OUTER_JOIN shift 99 */
+ { 13, 0, 122}, /* 7: BITOR shift 122 */
+ { 91, 0, 135}, /* 8: PLUS shift 135 */
+ { 74, 0, 133}, /* 9: LIKE shift 133 */
+ { 78, 0, 108}, /* 10: LT shift 108 */
+ { 10, 0, 153}, /* 11: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 12: BITAND shift 120 */
+ { 96, 4, 143}, /* 13: REM shift 143 */
+ { 69, 7, 147}, /* 14: ISNULL shift 147 */
+ { 42, 0, 118}, /* 15: EQ shift 118 */
+ { 80, 17, 137}, /* 16: MINUS shift 137 */
+ { 52, 20, 134}, /* 17: GLOB shift 134 */
+ { 73, 0, 112}, /* 18: LE shift 112 */
+ { 102, 9, 126}, /* 19: RSHIFT shift 126 */
+ { 24, 0, 145}, /* 20: CONCAT shift 145 */
+ { 54, 0, 110}, /* 21: GT shift 110 */
+ { 77, 0, 124}, /* 22: LSHIFT shift 124 */
+ { 106, 10, 141}, /* 23: SLASH shift 141 */
+ { 51, 0, 114}, /* 24: GE shift 114 */
+ { 108, 16, 139}, /* 25: STAR shift 139 */
+ { 81, 0, 116}, /* 26: NE shift 116 */
+ { 82, 21, 130}, /* 27: NOT shift 130 */
+ { 83, 0, 152}, /* 28: NOTNULL shift 152 */
+/* State 450 */
+ { 49, 0, 451}, /* 1: FROM shift 451 */
+/* State 451 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 452}, /* 2: nm shift 452 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 452 */
+ { 104, 0, 685}, /* 1: SEMI reduce 154 */
+ { 127, 0, 232}, /* 2: WHERE shift 232 */
+ { 212, 1, 453}, /* 3: where_opt shift 453 */
+/* State 453 */
+ { 104, 0, 804}, /* 1: SEMI reduce 273 */
+/* State 454 */
+ { 76, 4, 68}, /* 1: LP shift 68 */
+ { 91, 1, 174}, /* 2: PLUS shift 174 */
+ { 152, 0, 455}, /* 3: expr shift 455 */
+ { 46, 7, 167}, /* 4: FLOAT shift 167 */
+ { 94, 0, 186}, /* 5: RAISE shift 186 */
+ { 110, 9, 66}, /* 6: STRING shift 66 */
+ { 16, 0, 176}, /* 7: CASE shift 176 */
+ { 82, 0, 168}, /* 8: NOT shift 168 */
+ { 80, 11, 172}, /* 9: MINUS shift 172 */
+ { 84, 0, 101}, /* 10: NULL shift 101 */
+ { 65, 0, 166}, /* 11: INTEGER shift 166 */
+ { 71, 14, 67}, /* 12: JOIN_KW shift 67 */
+ { 177, 15, 102}, /* 13: nm shift 102 */
+ { 56, 0, 64}, /* 14: ID shift 64 */
+ { 12, 0, 170}, /* 15: BITNOT shift 170 */
+/* State 455 */
+ { 60, 0, 157}, /* 1: IN shift 157 */
+ { 88, 0, 106}, /* 2: OR shift 106 */
+ { 89, 1, 99}, /* 3: ORACLE_OUTER_JOIN shift 99 */
+ { 9, 0, 798}, /* 4: BEGIN reduce 267 */
+ { 91, 0, 135}, /* 5: PLUS shift 135 */
+ { 5, 0, 100}, /* 6: AND shift 100 */
+ { 10, 0, 153}, /* 7: BETWEEN shift 153 */
+ { 11, 0, 120}, /* 8: BITAND shift 120 */
+ { 13, 0, 122}, /* 9: BITOR shift 122 */
+ { 96, 4, 143}, /* 10: REM shift 143 */
+ { 68, 7, 148}, /* 11: IS shift 148 */
+ { 69, 8, 147}, /* 12: ISNULL shift 147 */
+ { 73, 0, 112}, /* 13: LE shift 112 */
+ { 42, 9, 118}, /* 14: EQ shift 118 */
+ { 77, 0, 124}, /* 15: LSHIFT shift 124 */
+ { 102, 13, 126}, /* 16: RSHIFT shift 126 */
+ { 74, 0, 133}, /* 17: LIKE shift 133 */
+ { 51, 0, 114}, /* 18: GE shift 114 */
+ { 52, 0, 134}, /* 19: GLOB shift 134 */
+ { 106, 15, 141}, /* 20: SLASH shift 141 */
+ { 78, 0, 108}, /* 21: LT shift 108 */
+ { 108, 0, 139}, /* 22: STAR shift 139 */
+ { 80, 18, 137}, /* 23: MINUS shift 137 */
+ { 81, 19, 116}, /* 24: NE shift 116 */
+ { 82, 27, 130}, /* 25: NOT shift 130 */
+ { 83, 29, 152}, /* 26: NOTNULL shift 152 */
+ { 24, 0, 145}, /* 27: CONCAT shift 145 */
+ { 172, 0, 128}, /* 28: likeop shift 128 */
+ { 54, 0, 110}, /* 29: GT shift 110 */
+/* State 456 */
+ { 38, 0, 457}, /* 1: EACH shift 457 */
+/* State 457 */
+ { 100, 0, 458}, /* 1: ROW shift 458 */
+ { 109, 0, 459}, /* 2: STATEMENT shift 459 */
+/* State 460 */
+ { 87, 0, 790}, /* 1: ON reduce 259 */
+/* State 461 */
+ { 87, 0, 791}, /* 1: ON reduce 260 */
+/* State 462 */
+ { 85, 0, 463}, /* 1: OF shift 463 */
+ { 87, 1, 792}, /* 2: ON reduce 261 */
+/* State 463 */
+ { 110, 0, 21}, /* 1: STRING shift 21 */
+ { 166, 4, 464}, /* 2: inscollist shift 464 */
+ { 177, 0, 440}, /* 3: nm shift 440 */
+ { 71, 5, 22}, /* 4: JOIN_KW shift 22 */
+ { 56, 0, 20}, /* 5: ID shift 20 */
+/* State 464 */
+ { 21, 0, 438}, /* 1: COMMA shift 438 */
+ { 87, 1, 793}, /* 2: ON reduce 262 */
+/* State 467 */
+ { 85, 0, 468}, /* 1: OF shift 468 */
+/* State 469 */
+ { 61, 0, 474}, /* 1: INDEX shift 474 */
+ { 125, 1, 472}, /* 2: VIEW shift 472 */
+ { 111, 0, 470}, /* 3: TABLE shift 470 */
+ { 115, 3, 476}, /* 4: TRIGGER shift 476 */
+/* State 470 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 471}, /* 2: nm shift 471 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 471 */
+ { 104, 0, 628}, /* 1: SEMI reduce 97 */
+/* State 472 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 473}, /* 2: nm shift 473 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 473 */
+ { 104, 0, 630}, /* 1: SEMI reduce 99 */
+/* State 474 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 475}, /* 2: nm shift 475 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 475 */
+ { 104, 0, 768}, /* 1: SEMI reduce 237 */
+/* State 476 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 477}, /* 2: nm shift 477 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 477 */
+ { 104, 0, 810}, /* 1: SEMI reduce 279 */
+/* State 478 */
+ { 66, 0, 162}, /* 1: INTERSECT shift 162 */
+ { 176, 1, 71}, /* 2: multiselect_op shift 71 */
+ { 43, 0, 163}, /* 3: EXCEPT shift 163 */
+ { 118, 3, 160}, /* 4: UNION shift 160 */
+ { 104, 0, 631}, /* 5: SEMI reduce 100 */
+/* State 479 */
+ { 49, 0, 480}, /* 1: FROM shift 480 */
+/* State 480 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 481}, /* 2: nm shift 481 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 481 */
+ { 104, 0, 685}, /* 1: SEMI reduce 154 */
+ { 127, 0, 232}, /* 2: WHERE shift 232 */
+ { 212, 1, 482}, /* 3: where_opt shift 482 */
+/* State 482 */
+ { 104, 0, 684}, /* 1: SEMI reduce 153 */
+/* State 483 */
+ { 182, 2, 484}, /* 1: orconf shift 484 */
+ { 88, 0, 417}, /* 2: OR shift 417 */
+/* State 484 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 485}, /* 2: nm shift 485 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 485 */
+ { 105, 0, 486}, /* 1: SET shift 486 */
+/* State 486 */
+ { 110, 0, 21}, /* 1: STRING shift 21 */
+ { 71, 4, 22}, /* 2: JOIN_KW shift 22 */
+ { 177, 0, 428}, /* 3: nm shift 428 */
+ { 56, 0, 20}, /* 4: ID shift 20 */
+ { 194, 0, 487}, /* 5: setlist shift 487 */
+/* State 487 */
+ { 212, 3, 488}, /* 1: where_opt shift 488 */
+ { 21, 0, 423}, /* 2: COMMA shift 423 */
+ { 104, 0, 685}, /* 3: SEMI reduce 154 */
+ { 127, 0, 232}, /* 4: WHERE shift 232 */
+/* State 488 */
+ { 104, 0, 687}, /* 1: SEMI reduce 156 */
+/* State 489 */
+ { 67, 0, 490}, /* 1: INTO shift 490 */
+/* State 490 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 491}, /* 2: nm shift 491 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 491 */
+ { 76, 0, 435}, /* 1: LP shift 435 */
+ { 167, 0, 492}, /* 2: inscollist_opt shift 492 */
+/* State 492 */
+ { 192, 3, 493}, /* 1: select shift 493 */
+ { 181, 0, 69}, /* 2: oneselect shift 69 */
+ { 124, 0, 494}, /* 3: VALUES shift 494 */
+ { 103, 0, 73}, /* 4: SELECT shift 73 */
+/* State 493 */
+ { 66, 0, 162}, /* 1: INTERSECT shift 162 */
+ { 176, 1, 71}, /* 2: multiselect_op shift 71 */
+ { 43, 0, 163}, /* 3: EXCEPT shift 163 */
+ { 118, 3, 160}, /* 4: UNION shift 160 */
+ { 104, 0, 691}, /* 5: SEMI reduce 160 */
+/* State 494 */
+ { 76, 0, 495}, /* 1: LP shift 495 */
+/* State 495 */
+ { 80, 4, 172}, /* 1: MINUS shift 172 */
+ { 177, 6, 102}, /* 2: nm shift 102 */
+ { 82, 0, 168}, /* 3: NOT shift 168 */
+ { 16, 0, 176}, /* 4: CASE shift 176 */
+ { 84, 0, 101}, /* 5: NULL shift 101 */
+ { 65, 0, 166}, /* 6: INTEGER shift 166 */
+ { 56, 0, 64}, /* 7: ID shift 64 */
+ { 71, 0, 67}, /* 8: JOIN_KW shift 67 */
+ { 152, 7, 449}, /* 9: expr shift 449 */
+ { 169, 0, 496}, /* 10: itemlist shift 496 */
+ { 12, 0, 170}, /* 11: BITNOT shift 170 */
+ { 91, 0, 174}, /* 12: PLUS shift 174 */
+ { 76, 11, 68}, /* 13: LP shift 68 */
+ { 94, 16, 186}, /* 14: RAISE shift 186 */
+ { 110, 14, 66}, /* 15: STRING shift 66 */
+ { 46, 0, 167}, /* 16: FLOAT shift 167 */
+/* State 496 */
+ { 21, 0, 446}, /* 1: COMMA shift 446 */
+ { 101, 1, 497}, /* 2: RP shift 497 */
+/* State 497 */
+ { 104, 0, 690}, /* 1: SEMI reduce 159 */
+/* State 498 */
+ { 67, 0, 621}, /* 1: INTO reduce 90 */
+ { 88, 1, 417}, /* 2: OR shift 417 */
+ { 182, 0, 499}, /* 3: orconf shift 499 */
+/* State 499 */
+ { 67, 0, 692}, /* 1: INTO reduce 161 */
+/* State 500 */
+ { 67, 0, 693}, /* 1: INTO reduce 162 */
+/* State 501 */
+ { 182, 2, 502}, /* 1: orconf shift 502 */
+ { 88, 0, 417}, /* 2: OR shift 417 */
+/* State 502 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 503}, /* 2: nm shift 503 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 503 */
+ { 49, 0, 504}, /* 1: FROM shift 504 */
+/* State 504 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 505}, /* 2: nm shift 505 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 505 */
+ { 122, 2, 506}, /* 1: USING shift 506 */
+ { 104, 0, 770}, /* 2: SEMI reduce 239 */
+/* State 506 */
+ { 33, 0, 507}, /* 1: DELIMITERS shift 507 */
+/* State 507 */
+ { 110, 0, 508}, /* 1: STRING shift 508 */
+/* State 508 */
+ { 104, 0, 769}, /* 1: SEMI reduce 238 */
+/* State 509 */
+ { 110, 0, 21}, /* 1: STRING shift 21 */
+ { 71, 4, 22}, /* 2: JOIN_KW shift 22 */
+ { 177, 0, 510}, /* 3: nm shift 510 */
+ { 56, 0, 20}, /* 4: ID shift 20 */
+ { 104, 0, 771}, /* 5: SEMI reduce 240 */
+/* State 510 */
+ { 104, 0, 772}, /* 1: SEMI reduce 241 */
+/* State 511 */
+ { 56, 0, 248}, /* 1: ID shift 248 */
+ { 160, 0, 512}, /* 2: ids shift 512 */
+ { 110, 1, 249}, /* 3: STRING shift 249 */
+/* State 512 */
+ { 42, 0, 513}, /* 1: EQ shift 513 */
+ { 76, 0, 525}, /* 2: LP shift 525 */
+ { 104, 0, 778}, /* 3: SEMI reduce 247 */
+/* State 513 */
+ { 110, 3, 21}, /* 1: STRING shift 21 */
+ { 91, 4, 524}, /* 2: PLUS shift 524 */
+ { 80, 0, 522}, /* 3: MINUS shift 522 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+ { 184, 0, 516}, /* 5: plus_num shift 516 */
+ { 185, 9, 518}, /* 6: plus_opt shift 518 */
+ { 56, 0, 20}, /* 7: ID shift 20 */
+ { 177, 10, 514}, /* 8: nm shift 514 */
+ { 175, 0, 517}, /* 9: minus_num shift 517 */
+ { 87, 0, 515}, /* 10: ON shift 515 */
+/* State 514 */
+ { 104, 0, 773}, /* 1: SEMI reduce 242 */
+/* State 515 */
+ { 104, 0, 774}, /* 1: SEMI reduce 243 */
+/* State 516 */
+ { 104, 0, 775}, /* 1: SEMI reduce 244 */
+/* State 517 */
+ { 104, 0, 776}, /* 1: SEMI reduce 245 */
+/* State 518 */
+ { 46, 0, 521}, /* 1: FLOAT shift 521 */
+ { 178, 1, 519}, /* 2: number shift 519 */
+ { 65, 0, 520}, /* 3: INTEGER shift 520 */
+/* State 519 */
+ { 104, 0, 779}, /* 1: SEMI reduce 248 */
+/* State 520 */
+ { 104, 0, 781}, /* 1: SEMI reduce 250 */
+/* State 521 */
+ { 104, 0, 782}, /* 1: SEMI reduce 251 */
+/* State 522 */
+ { 46, 0, 521}, /* 1: FLOAT shift 521 */
+ { 178, 1, 523}, /* 2: number shift 523 */
+ { 65, 0, 520}, /* 3: INTEGER shift 520 */
+/* State 523 */
+ { 104, 0, 780}, /* 1: SEMI reduce 249 */
+/* State 525 */
+ { 56, 0, 20}, /* 1: ID shift 20 */
+ { 177, 0, 526}, /* 2: nm shift 526 */
+ { 110, 0, 21}, /* 3: STRING shift 21 */
+ { 71, 0, 22}, /* 4: JOIN_KW shift 22 */
+/* State 526 */
+ { 101, 0, 527}, /* 1: RP shift 527 */
+/* State 527 */
+ { 104, 0, 777}, /* 1: SEMI reduce 246 */
+};
+
+/* The state table contains information needed to look up the correct
+** action in the action table, given the current state of the parser.
+** Information needed includes:
+**
+** + A pointer to the start of the action hash table in yyActionTable.
+**
+** + The number of entries in the action hash table.
+**
+** + The default action. This is the action to take if no entry for
+** the given look-ahead is found in the action hash table.
+*/
+struct yyStateEntry {
+ const yyActionEntry *hashtbl; /* Start of the hash table in yyActionTable */
+ YYCODETYPE nEntry; /* Number of entries in action hash table */
+ YYACTIONTYPE actionDefault; /* Default action if look-ahead not found */
+};
+typedef struct yyStateEntry yyStateEntry;
+static const yyStateEntry yyStateTable[] = {
+ { &yyActionTable[0], 6, 538 },
+ { &yyActionTable[6], 5, 538 },
+ { &yyActionTable[11], 0, 533 },
+ { &yyActionTable[11], 20, 811 },
+ { &yyActionTable[31], 1, 811 },
+ { &yyActionTable[32], 0, 534 },
+ { &yyActionTable[32], 1, 811 },
+ { &yyActionTable[33], 2, 540 },
+ { &yyActionTable[35], 3, 811 },
+ { &yyActionTable[38], 1, 811 },
+ { &yyActionTable[39], 1, 811 },
+ { &yyActionTable[40], 6, 811 },
+ { &yyActionTable[46], 0, 620 },
+ { &yyActionTable[46], 0, 623 },
+ { &yyActionTable[46], 0, 624 },
+ { &yyActionTable[46], 0, 625 },
+ { &yyActionTable[46], 0, 626 },
+ { &yyActionTable[46], 0, 627 },
+ { &yyActionTable[46], 4, 541 },
+ { &yyActionTable[50], 0, 542 },
+ { &yyActionTable[50], 0, 559 },
+ { &yyActionTable[50], 0, 560 },
+ { &yyActionTable[50], 0, 561 },
+ { &yyActionTable[50], 3, 811 },
+ { &yyActionTable[53], 1, 811 },
+ { &yyActionTable[54], 3, 811 },
+ { &yyActionTable[57], 1, 811 },
+ { &yyActionTable[58], 3, 811 },
+ { &yyActionTable[61], 1, 811 },
+ { &yyActionTable[62], 3, 811 },
+ { &yyActionTable[65], 1, 811 },
+ { &yyActionTable[66], 7, 811 },
+ { &yyActionTable[73], 3, 811 },
+ { &yyActionTable[76], 1, 811 },
+ { &yyActionTable[77], 1, 811 },
+ { &yyActionTable[78], 13, 811 },
+ { &yyActionTable[91], 0, 552 },
+ { &yyActionTable[91], 5, 562 },
+ { &yyActionTable[96], 1, 572 },
+ { &yyActionTable[97], 13, 554 },
+ { &yyActionTable[110], 0, 571 },
+ { &yyActionTable[110], 4, 811 },
+ { &yyActionTable[114], 10, 811 },
+ { &yyActionTable[124], 0, 573 },
+ { &yyActionTable[124], 2, 619 },
+ { &yyActionTable[126], 0, 584 },
+ { &yyActionTable[126], 2, 811 },
+ { &yyActionTable[128], 2, 619 },
+ { &yyActionTable[130], 0, 585 },
+ { &yyActionTable[130], 2, 604 },
+ { &yyActionTable[132], 0, 602 },
+ { &yyActionTable[132], 2, 811 },
+ { &yyActionTable[134], 0, 605 },
+ { &yyActionTable[134], 0, 606 },
+ { &yyActionTable[134], 1, 811 },
+ { &yyActionTable[135], 3, 672 },
+ { &yyActionTable[138], 2, 619 },
+ { &yyActionTable[140], 0, 586 },
+ { &yyActionTable[140], 0, 670 },
+ { &yyActionTable[140], 0, 671 },
+ { &yyActionTable[140], 2, 619 },
+ { &yyActionTable[142], 0, 587 },
+ { &yyActionTable[142], 1, 811 },
+ { &yyActionTable[143], 15, 811 },
+ { &yyActionTable[158], 2, 702 },
+ { &yyActionTable[160], 18, 759 },
+ { &yyActionTable[178], 1, 708 },
+ { &yyActionTable[179], 1, 703 },
+ { &yyActionTable[180], 18, 811 },
+ { &yyActionTable[198], 0, 632 },
+ { &yyActionTable[198], 5, 811 },
+ { &yyActionTable[203], 2, 811 },
+ { &yyActionTable[205], 0, 633 },
+ { &yyActionTable[205], 3, 641 },
+ { &yyActionTable[208], 2, 643 },
+ { &yyActionTable[210], 3, 650 },
+ { &yyActionTable[213], 2, 685 },
+ { &yyActionTable[215], 2, 675 },
+ { &yyActionTable[217], 2, 677 },
+ { &yyActionTable[219], 2, 665 },
+ { &yyActionTable[221], 2, 679 },
+ { &yyActionTable[223], 0, 638 },
+ { &yyActionTable[223], 1, 811 },
+ { &yyActionTable[224], 3, 680 },
+ { &yyActionTable[227], 1, 811 },
+ { &yyActionTable[228], 0, 681 },
+ { &yyActionTable[228], 1, 811 },
+ { &yyActionTable[229], 1, 811 },
+ { &yyActionTable[230], 1, 811 },
+ { &yyActionTable[231], 17, 811 },
+ { &yyActionTable[248], 1, 666 },
+ { &yyActionTable[249], 16, 811 },
+ { &yyActionTable[265], 2, 673 },
+ { &yyActionTable[267], 3, 672 },
+ { &yyActionTable[270], 0, 667 },
+ { &yyActionTable[270], 2, 811 },
+ { &yyActionTable[272], 0, 556 },
+ { &yyActionTable[272], 0, 674 },
+ { &yyActionTable[272], 28, 669 },
+ { &yyActionTable[300], 0, 705 },
+ { &yyActionTable[300], 15, 811 },
+ { &yyActionTable[315], 0, 701 },
+ { &yyActionTable[315], 1, 811 },
+ { &yyActionTable[316], 4, 811 },
+ { &yyActionTable[320], 0, 704 },
+ { &yyActionTable[320], 26, 711 },
+ { &yyActionTable[346], 15, 811 },
+ { &yyActionTable[361], 27, 712 },
+ { &yyActionTable[388], 15, 811 },
+ { &yyActionTable[403], 12, 713 },
+ { &yyActionTable[415], 15, 811 },
+ { &yyActionTable[430], 12, 714 },
+ { &yyActionTable[442], 15, 811 },
+ { &yyActionTable[457], 12, 715 },
+ { &yyActionTable[469], 15, 811 },
+ { &yyActionTable[484], 12, 716 },
+ { &yyActionTable[496], 15, 811 },
+ { &yyActionTable[511], 16, 717 },
+ { &yyActionTable[527], 15, 811 },
+ { &yyActionTable[542], 16, 718 },
+ { &yyActionTable[558], 15, 811 },
+ { &yyActionTable[573], 8, 719 },
+ { &yyActionTable[581], 15, 811 },
+ { &yyActionTable[596], 8, 720 },
+ { &yyActionTable[604], 15, 811 },
+ { &yyActionTable[619], 8, 721 },
+ { &yyActionTable[627], 15, 811 },
+ { &yyActionTable[642], 8, 722 },
+ { &yyActionTable[650], 15, 811 },
+ { &yyActionTable[665], 16, 723 },
+ { &yyActionTable[681], 6, 811 },
+ { &yyActionTable[687], 15, 811 },
+ { &yyActionTable[702], 16, 724 },
+ { &yyActionTable[718], 0, 725 },
+ { &yyActionTable[718], 0, 726 },
+ { &yyActionTable[718], 15, 811 },
+ { &yyActionTable[733], 6, 727 },
+ { &yyActionTable[739], 15, 811 },
+ { &yyActionTable[754], 6, 728 },
+ { &yyActionTable[760], 15, 811 },
+ { &yyActionTable[775], 3, 729 },
+ { &yyActionTable[778], 15, 811 },
+ { &yyActionTable[793], 3, 730 },
+ { &yyActionTable[796], 15, 811 },
+ { &yyActionTable[811], 3, 731 },
+ { &yyActionTable[814], 15, 811 },
+ { &yyActionTable[829], 2, 732 },
+ { &yyActionTable[831], 0, 733 },
+ { &yyActionTable[831], 2, 811 },
+ { &yyActionTable[833], 0, 734 },
+ { &yyActionTable[833], 1, 811 },
+ { &yyActionTable[834], 0, 737 },
+ { &yyActionTable[834], 0, 735 },
+ { &yyActionTable[834], 15, 811 },
+ { &yyActionTable[849], 28, 811 },
+ { &yyActionTable[877], 15, 811 },
+ { &yyActionTable[892], 16, 743 },
+ { &yyActionTable[908], 1, 811 },
+ { &yyActionTable[909], 20, 759 },
+ { &yyActionTable[929], 5, 811 },
+ { &yyActionTable[934], 2, 811 },
+ { &yyActionTable[936], 1, 811 },
+ { &yyActionTable[937], 1, 811 },
+ { &yyActionTable[938], 1, 811 },
+ { &yyActionTable[939], 0, 746 },
+ { &yyActionTable[939], 28, 758 },
+ { &yyActionTable[967], 0, 706 },
+ { &yyActionTable[967], 0, 707 },
+ { &yyActionTable[967], 15, 811 },
+ { &yyActionTable[982], 26, 738 },
+ { &yyActionTable[1008], 15, 811 },
+ { &yyActionTable[1023], 2, 739 },
+ { &yyActionTable[1025], 15, 811 },
+ { &yyActionTable[1040], 2, 740 },
+ { &yyActionTable[1042], 15, 811 },
+ { &yyActionTable[1057], 2, 741 },
+ { &yyActionTable[1059], 17, 811 },
+ { &yyActionTable[1076], 29, 811 },
+ { &yyActionTable[1105], 2, 811 },
+ { &yyActionTable[1107], 4, 811 },
+ { &yyActionTable[1111], 1, 811 },
+ { &yyActionTable[1112], 0, 749 },
+ { &yyActionTable[1112], 15, 811 },
+ { &yyActionTable[1127], 29, 811 },
+ { &yyActionTable[1156], 15, 811 },
+ { &yyActionTable[1171], 28, 750 },
+ { &yyActionTable[1199], 1, 811 },
+ { &yyActionTable[1200], 4, 811 },
+ { &yyActionTable[1204], 1, 811 },
+ { &yyActionTable[1205], 0, 806 },
+ { &yyActionTable[1205], 1, 811 },
+ { &yyActionTable[1206], 4, 811 },
+ { &yyActionTable[1210], 1, 811 },
+ { &yyActionTable[1211], 0, 807 },
+ { &yyActionTable[1211], 1, 811 },
+ { &yyActionTable[1212], 4, 811 },
+ { &yyActionTable[1216], 1, 811 },
+ { &yyActionTable[1217], 0, 808 },
+ { &yyActionTable[1217], 1, 811 },
+ { &yyActionTable[1218], 4, 811 },
+ { &yyActionTable[1222], 1, 811 },
+ { &yyActionTable[1223], 0, 809 },
+ { &yyActionTable[1223], 15, 811 },
+ { &yyActionTable[1238], 29, 811 },
+ { &yyActionTable[1267], 15, 811 },
+ { &yyActionTable[1282], 29, 811 },
+ { &yyActionTable[1311], 15, 811 },
+ { &yyActionTable[1326], 28, 751 },
+ { &yyActionTable[1354], 2, 811 },
+ { &yyActionTable[1356], 0, 745 },
+ { &yyActionTable[1356], 16, 759 },
+ { &yyActionTable[1372], 0, 756 },
+ { &yyActionTable[1372], 0, 757 },
+ { &yyActionTable[1372], 0, 736 },
+ { &yyActionTable[1372], 15, 811 },
+ { &yyActionTable[1387], 28, 811 },
+ { &yyActionTable[1415], 15, 811 },
+ { &yyActionTable[1430], 26, 744 },
+ { &yyActionTable[1456], 1, 811 },
+ { &yyActionTable[1457], 20, 759 },
+ { &yyActionTable[1477], 5, 811 },
+ { &yyActionTable[1482], 0, 748 },
+ { &yyActionTable[1482], 2, 811 },
+ { &yyActionTable[1484], 0, 747 },
+ { &yyActionTable[1484], 2, 673 },
+ { &yyActionTable[1486], 3, 672 },
+ { &yyActionTable[1489], 0, 668 },
+ { &yyActionTable[1489], 15, 811 },
+ { &yyActionTable[1504], 28, 678 },
+ { &yyActionTable[1532], 1, 811 },
+ { &yyActionTable[1533], 17, 759 },
+ { &yyActionTable[1550], 1, 676 },
+ { &yyActionTable[1551], 15, 811 },
+ { &yyActionTable[1566], 28, 686 },
+ { &yyActionTable[1594], 0, 642 },
+ { &yyActionTable[1594], 2, 653 },
+ { &yyActionTable[1596], 4, 651 },
+ { &yyActionTable[1600], 0, 652 },
+ { &yyActionTable[1600], 0, 656 },
+ { &yyActionTable[1600], 0, 657 },
+ { &yyActionTable[1600], 5, 811 },
+ { &yyActionTable[1605], 0, 658 },
+ { &yyActionTable[1605], 5, 811 },
+ { &yyActionTable[1610], 0, 659 },
+ { &yyActionTable[1610], 1, 811 },
+ { &yyActionTable[1611], 0, 660 },
+ { &yyActionTable[1611], 5, 811 },
+ { &yyActionTable[1616], 5, 649 },
+ { &yyActionTable[1621], 0, 557 },
+ { &yyActionTable[1621], 0, 558 },
+ { &yyActionTable[1621], 4, 811 },
+ { &yyActionTable[1625], 0, 647 },
+ { &yyActionTable[1625], 0, 648 },
+ { &yyActionTable[1625], 2, 662 },
+ { &yyActionTable[1627], 2, 664 },
+ { &yyActionTable[1629], 0, 654 },
+ { &yyActionTable[1629], 1, 811 },
+ { &yyActionTable[1630], 6, 811 },
+ { &yyActionTable[1636], 2, 811 },
+ { &yyActionTable[1638], 0, 663 },
+ { &yyActionTable[1638], 5, 811 },
+ { &yyActionTable[1643], 0, 765 },
+ { &yyActionTable[1643], 0, 767 },
+ { &yyActionTable[1643], 0, 766 },
+ { &yyActionTable[1643], 15, 811 },
+ { &yyActionTable[1658], 28, 661 },
+ { &yyActionTable[1686], 3, 811 },
+ { &yyActionTable[1689], 5, 811 },
+ { &yyActionTable[1694], 5, 649 },
+ { &yyActionTable[1699], 2, 662 },
+ { &yyActionTable[1701], 2, 664 },
+ { &yyActionTable[1703], 0, 655 },
+ { &yyActionTable[1703], 16, 811 },
+ { &yyActionTable[1719], 33, 649 },
+ { &yyActionTable[1752], 0, 644 },
+ { &yyActionTable[1752], 0, 645 },
+ { &yyActionTable[1752], 1, 811 },
+ { &yyActionTable[1753], 5, 811 },
+ { &yyActionTable[1758], 0, 646 },
+ { &yyActionTable[1758], 0, 639 },
+ { &yyActionTable[1758], 0, 640 },
+ { &yyActionTable[1758], 0, 742 },
+ { &yyActionTable[1758], 29, 811 },
+ { &yyActionTable[1787], 0, 700 },
+ { &yyActionTable[1787], 2, 811 },
+ { &yyActionTable[1789], 0, 709 },
+ { &yyActionTable[1789], 1, 811 },
+ { &yyActionTable[1790], 0, 710 },
+ { &yyActionTable[1790], 29, 811 },
+ { &yyActionTable[1819], 2, 619 },
+ { &yyActionTable[1821], 0, 588 },
+ { &yyActionTable[1821], 4, 811 },
+ { &yyActionTable[1825], 2, 763 },
+ { &yyActionTable[1827], 1, 592 },
+ { &yyActionTable[1828], 3, 589 },
+ { &yyActionTable[1831], 0, 593 },
+ { &yyActionTable[1831], 4, 811 },
+ { &yyActionTable[1835], 0, 594 },
+ { &yyActionTable[1835], 3, 811 },
+ { &yyActionTable[1838], 4, 811 },
+ { &yyActionTable[1842], 0, 595 },
+ { &yyActionTable[1842], 2, 811 },
+ { &yyActionTable[1844], 0, 598 },
+ { &yyActionTable[1844], 0, 599 },
+ { &yyActionTable[1844], 0, 600 },
+ { &yyActionTable[1844], 0, 601 },
+ { &yyActionTable[1844], 4, 811 },
+ { &yyActionTable[1848], 0, 596 },
+ { &yyActionTable[1848], 4, 811 },
+ { &yyActionTable[1852], 0, 597 },
+ { &yyActionTable[1852], 6, 811 },
+ { &yyActionTable[1858], 2, 811 },
+ { &yyActionTable[1860], 0, 764 },
+ { &yyActionTable[1860], 0, 590 },
+ { &yyActionTable[1860], 2, 811 },
+ { &yyActionTable[1862], 0, 591 },
+ { &yyActionTable[1862], 2, 604 },
+ { &yyActionTable[1864], 0, 603 },
+ { &yyActionTable[1864], 0, 574 },
+ { &yyActionTable[1864], 7, 811 },
+ { &yyActionTable[1871], 0, 575 },
+ { &yyActionTable[1871], 0, 576 },
+ { &yyActionTable[1871], 0, 577 },
+ { &yyActionTable[1871], 2, 811 },
+ { &yyActionTable[1873], 0, 578 },
+ { &yyActionTable[1873], 0, 581 },
+ { &yyActionTable[1873], 2, 811 },
+ { &yyActionTable[1875], 0, 579 },
+ { &yyActionTable[1875], 0, 582 },
+ { &yyActionTable[1875], 0, 580 },
+ { &yyActionTable[1875], 0, 583 },
+ { &yyActionTable[1875], 4, 563 },
+ { &yyActionTable[1879], 4, 811 },
+ { &yyActionTable[1883], 2, 811 },
+ { &yyActionTable[1885], 0, 564 },
+ { &yyActionTable[1885], 4, 811 },
+ { &yyActionTable[1889], 1, 811 },
+ { &yyActionTable[1890], 0, 565 },
+ { &yyActionTable[1890], 0, 568 },
+ { &yyActionTable[1890], 1, 811 },
+ { &yyActionTable[1891], 0, 569 },
+ { &yyActionTable[1891], 1, 811 },
+ { &yyActionTable[1892], 0, 570 },
+ { &yyActionTable[1892], 0, 567 },
+ { &yyActionTable[1892], 0, 566 },
+ { &yyActionTable[1892], 0, 555 },
+ { &yyActionTable[1892], 8, 811 },
+ { &yyActionTable[1900], 6, 811 },
+ { &yyActionTable[1906], 0, 609 },
+ { &yyActionTable[1906], 4, 811 },
+ { &yyActionTable[1910], 0, 612 },
+ { &yyActionTable[1910], 1, 811 },
+ { &yyActionTable[1911], 1, 811 },
+ { &yyActionTable[1912], 6, 811 },
+ { &yyActionTable[1918], 2, 811 },
+ { &yyActionTable[1920], 2, 619 },
+ { &yyActionTable[1922], 0, 613 },
+ { &yyActionTable[1922], 1, 811 },
+ { &yyActionTable[1923], 6, 811 },
+ { &yyActionTable[1929], 2, 811 },
+ { &yyActionTable[1931], 2, 619 },
+ { &yyActionTable[1933], 0, 614 },
+ { &yyActionTable[1933], 15, 811 },
+ { &yyActionTable[1948], 30, 619 },
+ { &yyActionTable[1978], 0, 615 },
+ { &yyActionTable[1978], 1, 811 },
+ { &yyActionTable[1979], 1, 811 },
+ { &yyActionTable[1980], 6, 811 },
+ { &yyActionTable[1986], 2, 811 },
+ { &yyActionTable[1988], 1, 811 },
+ { &yyActionTable[1989], 4, 811 },
+ { &yyActionTable[1993], 2, 763 },
+ { &yyActionTable[1995], 1, 592 },
+ { &yyActionTable[1996], 7, 617 },
+ { &yyActionTable[2003], 1, 811 },
+ { &yyActionTable[2004], 0, 616 },
+ { &yyActionTable[2004], 0, 618 },
+ { &yyActionTable[2004], 0, 610 },
+ { &yyActionTable[2004], 0, 611 },
+ { &yyActionTable[2004], 0, 553 },
+ { &yyActionTable[2004], 3, 811 },
+ { &yyActionTable[2007], 5, 811 },
+ { &yyActionTable[2012], 6, 549 },
+ { &yyActionTable[2018], 2, 811 },
+ { &yyActionTable[2020], 4, 811 },
+ { &yyActionTable[2024], 0, 547 },
+ { &yyActionTable[2024], 4, 811 },
+ { &yyActionTable[2028], 1, 811 },
+ { &yyActionTable[2029], 3, 811 },
+ { &yyActionTable[2032], 5, 811 },
+ { &yyActionTable[2037], 0, 548 },
+ { &yyActionTable[2037], 1, 811 },
+ { &yyActionTable[2038], 4, 811 },
+ { &yyActionTable[2042], 1, 811 },
+ { &yyActionTable[2043], 4, 811 },
+ { &yyActionTable[2047], 1, 811 },
+ { &yyActionTable[2048], 6, 811 },
+ { &yyActionTable[2054], 2, 811 },
+ { &yyActionTable[2056], 3, 811 },
+ { &yyActionTable[2059], 1, 811 },
+ { &yyActionTable[2060], 1, 811 },
+ { &yyActionTable[2061], 4, 811 },
+ { &yyActionTable[2065], 4, 789 },
+ { &yyActionTable[2069], 4, 811 },
+ { &yyActionTable[2073], 1, 811 },
+ { &yyActionTable[2074], 4, 811 },
+ { &yyActionTable[2078], 2, 794 },
+ { &yyActionTable[2080], 3, 811 },
+ { &yyActionTable[2083], 1, 811 },
+ { &yyActionTable[2084], 9, 811 },
+ { &yyActionTable[2093], 5, 811 },
+ { &yyActionTable[2098], 1, 811 },
+ { &yyActionTable[2099], 1, 811 },
+ { &yyActionTable[2100], 1, 811 },
+ { &yyActionTable[2101], 9, 811 },
+ { &yyActionTable[2110], 1, 811 },
+ { &yyActionTable[2111], 2, 621 },
+ { &yyActionTable[2113], 6, 811 },
+ { &yyActionTable[2119], 0, 622 },
+ { &yyActionTable[2119], 4, 811 },
+ { &yyActionTable[2123], 1, 811 },
+ { &yyActionTable[2124], 5, 811 },
+ { &yyActionTable[2129], 4, 811 },
+ { &yyActionTable[2133], 4, 811 },
+ { &yyActionTable[2137], 1, 811 },
+ { &yyActionTable[2138], 15, 811 },
+ { &yyActionTable[2153], 28, 688 },
+ { &yyActionTable[2181], 1, 811 },
+ { &yyActionTable[2182], 1, 811 },
+ { &yyActionTable[2183], 15, 811 },
+ { &yyActionTable[2198], 28, 689 },
+ { &yyActionTable[2226], 3, 811 },
+ { &yyActionTable[2229], 1, 811 },
+ { &yyActionTable[2230], 4, 811 },
+ { &yyActionTable[2234], 2, 696 },
+ { &yyActionTable[2236], 5, 811 },
+ { &yyActionTable[2241], 2, 811 },
+ { &yyActionTable[2243], 0, 697 },
+ { &yyActionTable[2243], 4, 811 },
+ { &yyActionTable[2247], 0, 698 },
+ { &yyActionTable[2247], 0, 699 },
+ { &yyActionTable[2247], 4, 811 },
+ { &yyActionTable[2251], 5, 811 },
+ { &yyActionTable[2256], 1, 811 },
+ { &yyActionTable[2257], 16, 811 },
+ { &yyActionTable[2273], 2, 811 },
+ { &yyActionTable[2275], 15, 811 },
+ { &yyActionTable[2290], 28, 694 },
+ { &yyActionTable[2318], 1, 811 },
+ { &yyActionTable[2319], 28, 695 },
+ { &yyActionTable[2347], 1, 811 },
+ { &yyActionTable[2348], 4, 811 },
+ { &yyActionTable[2352], 3, 811 },
+ { &yyActionTable[2355], 1, 811 },
+ { &yyActionTable[2356], 15, 811 },
+ { &yyActionTable[2371], 29, 811 },
+ { &yyActionTable[2400], 1, 811 },
+ { &yyActionTable[2401], 2, 811 },
+ { &yyActionTable[2403], 0, 795 },
+ { &yyActionTable[2403], 0, 796 },
+ { &yyActionTable[2403], 1, 811 },
+ { &yyActionTable[2404], 1, 811 },
+ { &yyActionTable[2405], 2, 811 },
+ { &yyActionTable[2407], 5, 811 },
+ { &yyActionTable[2412], 2, 811 },
+ { &yyActionTable[2414], 0, 786 },
+ { &yyActionTable[2414], 0, 787 },
+ { &yyActionTable[2414], 1, 811 },
+ { &yyActionTable[2415], 0, 788 },
+ { &yyActionTable[2415], 4, 811 },
+ { &yyActionTable[2419], 4, 811 },
+ { &yyActionTable[2423], 1, 811 },
+ { &yyActionTable[2424], 4, 811 },
+ { &yyActionTable[2428], 1, 811 },
+ { &yyActionTable[2429], 4, 811 },
+ { &yyActionTable[2433], 1, 811 },
+ { &yyActionTable[2434], 4, 811 },
+ { &yyActionTable[2438], 1, 811 },
+ { &yyActionTable[2439], 5, 811 },
+ { &yyActionTable[2444], 1, 811 },
+ { &yyActionTable[2445], 4, 811 },
+ { &yyActionTable[2449], 3, 811 },
+ { &yyActionTable[2452], 1, 811 },
+ { &yyActionTable[2453], 2, 621 },
+ { &yyActionTable[2455], 4, 811 },
+ { &yyActionTable[2459], 1, 811 },
+ { &yyActionTable[2460], 5, 811 },
+ { &yyActionTable[2465], 4, 811 },
+ { &yyActionTable[2469], 1, 811 },
+ { &yyActionTable[2470], 1, 811 },
+ { &yyActionTable[2471], 4, 811 },
+ { &yyActionTable[2475], 2, 696 },
+ { &yyActionTable[2477], 4, 811 },
+ { &yyActionTable[2481], 5, 811 },
+ { &yyActionTable[2486], 1, 811 },
+ { &yyActionTable[2487], 16, 811 },
+ { &yyActionTable[2503], 2, 811 },
+ { &yyActionTable[2505], 1, 811 },
+ { &yyActionTable[2506], 3, 811 },
+ { &yyActionTable[2509], 1, 811 },
+ { &yyActionTable[2510], 1, 811 },
+ { &yyActionTable[2511], 2, 621 },
+ { &yyActionTable[2513], 4, 811 },
+ { &yyActionTable[2517], 1, 811 },
+ { &yyActionTable[2518], 4, 811 },
+ { &yyActionTable[2522], 2, 811 },
+ { &yyActionTable[2524], 1, 811 },
+ { &yyActionTable[2525], 1, 811 },
+ { &yyActionTable[2526], 1, 811 },
+ { &yyActionTable[2527], 5, 811 },
+ { &yyActionTable[2532], 1, 811 },
+ { &yyActionTable[2533], 3, 811 },
+ { &yyActionTable[2536], 3, 811 },
+ { &yyActionTable[2539], 10, 784 },
+ { &yyActionTable[2549], 1, 811 },
+ { &yyActionTable[2550], 1, 811 },
+ { &yyActionTable[2551], 1, 811 },
+ { &yyActionTable[2552], 1, 811 },
+ { &yyActionTable[2553], 3, 811 },
+ { &yyActionTable[2556], 1, 811 },
+ { &yyActionTable[2557], 1, 811 },
+ { &yyActionTable[2558], 1, 811 },
+ { &yyActionTable[2559], 3, 811 },
+ { &yyActionTable[2562], 1, 811 },
+ { &yyActionTable[2563], 0, 783 },
+ { &yyActionTable[2563], 4, 811 },
+ { &yyActionTable[2567], 1, 811 },
+ { &yyActionTable[2568], 1, 811 },
+ { &yyActionTable[2569], 0, 535 },
+ { &yyActionTable[2569], 0, 537 },
+ { &yyActionTable[2569], 0, 532 },
+};
+
+/* The next table maps tokens into fallback tokens. If a construct
+** like the following:
+**
+** %fallback ID X Y Z.
+**
+** appears in the grammer, then ID becomes a fallback token for X, Y,
+** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
+** but it does not parse, the type of the token is changed to ID and
+** the parse is retried before an error is thrown.
+*/
+#ifdef YYFALLBACK
+static const YYCODETYPE yyFallback[] = {
+ 0, /* $ => nothing */
+ 56, /* ABORT => ID */
+ 56, /* AFTER => ID */
+ 0, /* AGG_FUNCTION => nothing */
+ 0, /* ALL => nothing */
+ 0, /* AND => nothing */
+ 0, /* AS => nothing */
+ 56, /* ASC => ID */
+ 56, /* BEFORE => ID */
+ 56, /* BEGIN => ID */
+ 0, /* BETWEEN => nothing */
+ 0, /* BITAND => nothing */
+ 0, /* BITNOT => nothing */
+ 0, /* BITOR => nothing */
+ 0, /* BY => nothing */
+ 56, /* CASCADE => ID */
+ 0, /* CASE => nothing */
+ 0, /* CHECK => nothing */
+ 56, /* CLUSTER => ID */
+ 0, /* COLLATE => nothing */
+ 0, /* COLUMN => nothing */
+ 0, /* COMMA => nothing */
+ 0, /* COMMENT => nothing */
+ 0, /* COMMIT => nothing */
+ 0, /* CONCAT => nothing */
+ 56, /* CONFLICT => ID */
+ 0, /* CONSTRAINT => nothing */
+ 56, /* COPY => ID */
+ 0, /* CREATE => nothing */
+ 0, /* DEFAULT => nothing */
+ 0, /* DEFERRABLE => nothing */
+ 56, /* DEFERRED => ID */
+ 0, /* DELETE => nothing */
+ 56, /* DELIMITERS => ID */
+ 56, /* DESC => ID */
+ 0, /* DISTINCT => nothing */
+ 0, /* DOT => nothing */
+ 0, /* DROP => nothing */
+ 56, /* EACH => ID */
+ 0, /* ELSE => nothing */
+ 56, /* END => ID */
+ 0, /* END_OF_FILE => nothing */
+ 0, /* EQ => nothing */
+ 0, /* EXCEPT => nothing */
+ 56, /* EXPLAIN => ID */
+ 56, /* FAIL => ID */
+ 0, /* FLOAT => nothing */
+ 56, /* FOR => ID */
+ 0, /* FOREIGN => nothing */
+ 0, /* FROM => nothing */
+ 0, /* FUNCTION => nothing */
+ 0, /* GE => nothing */
+ 0, /* GLOB => nothing */
+ 0, /* GROUP => nothing */
+ 0, /* GT => nothing */
+ 0, /* HAVING => nothing */
+ 0, /* ID => nothing */
+ 56, /* IGNORE => ID */
+ 0, /* ILLEGAL => nothing */
+ 56, /* IMMEDIATE => ID */
+ 0, /* IN => nothing */
+ 0, /* INDEX => nothing */
+ 56, /* INITIALLY => ID */
+ 0, /* INSERT => nothing */
+ 56, /* INSTEAD => ID */
+ 0, /* INTEGER => nothing */
+ 0, /* INTERSECT => nothing */
+ 0, /* INTO => nothing */
+ 0, /* IS => nothing */
+ 0, /* ISNULL => nothing */
+ 0, /* JOIN => nothing */
+ 0, /* JOIN_KW => nothing */
+ 56, /* KEY => ID */
+ 0, /* LE => nothing */
+ 0, /* LIKE => nothing */
+ 0, /* LIMIT => nothing */
+ 0, /* LP => nothing */
+ 0, /* LSHIFT => nothing */
+ 0, /* LT => nothing */
+ 56, /* MATCH => ID */
+ 0, /* MINUS => nothing */
+ 0, /* NE => nothing */
+ 0, /* NOT => nothing */
+ 0, /* NOTNULL => nothing */
+ 0, /* NULL => nothing */
+ 56, /* OF => ID */
+ 56, /* OFFSET => ID */
+ 0, /* ON => nothing */
+ 0, /* OR => nothing */
+ 0, /* ORACLE_OUTER_JOIN => nothing */
+ 0, /* ORDER => nothing */
+ 0, /* PLUS => nothing */
+ 56, /* PRAGMA => ID */
+ 0, /* PRIMARY => nothing */
+ 56, /* RAISE => ID */
+ 0, /* REFERENCES => nothing */
+ 0, /* REM => nothing */
+ 56, /* REPLACE => ID */
+ 56, /* RESTRICT => ID */
+ 0, /* ROLLBACK => nothing */
+ 56, /* ROW => ID */
+ 0, /* RP => nothing */
+ 0, /* RSHIFT => nothing */
+ 0, /* SELECT => nothing */
+ 0, /* SEMI => nothing */
+ 0, /* SET => nothing */
+ 0, /* SLASH => nothing */
+ 0, /* SPACE => nothing */
+ 0, /* STAR => nothing */
+ 56, /* STATEMENT => ID */
+ 0, /* STRING => nothing */
+ 0, /* TABLE => nothing */
+ 56, /* TEMP => ID */
+ 0, /* THEN => nothing */
+ 0, /* TRANSACTION => nothing */
+ 56, /* TRIGGER => ID */
+ 0, /* UMINUS => nothing */
+ 0, /* UNCLOSED_STRING => nothing */
+ 0, /* UNION => nothing */
+ 0, /* UNIQUE => nothing */
+ 0, /* UPDATE => nothing */
+ 0, /* UPLUS => nothing */
+ 0, /* USING => nothing */
+ 56, /* VACUUM => ID */
+ 0, /* VALUES => nothing */
+ 56, /* VIEW => ID */
+ 0, /* WHEN => nothing */
+ 0, /* WHERE => nothing */
+};
+#endif /* YYFALLBACK */
+
+/* The following structure represents a single element of the
+** parser's stack. Information stored includes:
+**
+** + The state number for the parser at this level of the stack.
+**
+** + The value of the token stored at this level of the stack.
+** (In other words, the "major" token.)
+**
+** + The semantic value stored at this level of the stack. This is
+** the information used by the action routines in the grammar.
+** It is sometimes called the "minor" token.
+*/
+struct yyStackEntry {
+ int stateno; /* The state-number */
+ int major; /* The major token value. This is the code
+ ** number for the token at this stack level */
+ YYMINORTYPE minor; /* The user-supplied minor token value. This
+ ** is the value of the token */
+};
+typedef struct yyStackEntry yyStackEntry;
+
+/* The state of the parser is completely contained in an instance of
+** the following structure */
+struct yyParser {
+ int yyidx; /* Index of top element in stack */
+ int yyerrcnt; /* Shifts left before out of the error */
+ yyStackEntry *yytop; /* Pointer to the top stack element */
+ sqliteParserARG_SDECL /* A place to hold %extra_argument */
+ yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
+};
+typedef struct yyParser yyParser;
+
+#ifndef NDEBUG
+#include <stdio.h>
+static FILE *yyTraceFILE = 0;
+static char *yyTracePrompt = 0;
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Turn parser tracing on by giving a stream to which to write the trace
+** and a prompt to preface each trace message. Tracing is turned off
+** by making either argument NULL
+**
+** Inputs:
+** <ul>
+** <li> A FILE* to which trace output should be written.
+** If NULL, then tracing is turned off.
+** <li> A prefix string written at the beginning of every
+** line of trace output. If NULL, then tracing is
+** turned off.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+void sqliteParserTrace(FILE *TraceFILE, char *zTracePrompt){
+ yyTraceFILE = TraceFILE;
+ yyTracePrompt = zTracePrompt;
+ if( yyTraceFILE==0 ) yyTracePrompt = 0;
+ else if( yyTracePrompt==0 ) yyTraceFILE = 0;
+}
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/* For tracing shifts, the names of all terminals and nonterminals
+** are required. The following table supplies these names */
+static const char *yyTokenName[] = {
+ "$", "ABORT", "AFTER", "AGG_FUNCTION",
+ "ALL", "AND", "AS", "ASC",
+ "BEFORE", "BEGIN", "BETWEEN", "BITAND",
+ "BITNOT", "BITOR", "BY", "CASCADE",
+ "CASE", "CHECK", "CLUSTER", "COLLATE",
+ "COLUMN", "COMMA", "COMMENT", "COMMIT",
+ "CONCAT", "CONFLICT", "CONSTRAINT", "COPY",
+ "CREATE", "DEFAULT", "DEFERRABLE", "DEFERRED",
+ "DELETE", "DELIMITERS", "DESC", "DISTINCT",
+ "DOT", "DROP", "EACH", "ELSE",
+ "END", "END_OF_FILE", "EQ", "EXCEPT",
+ "EXPLAIN", "FAIL", "FLOAT", "FOR",
+ "FOREIGN", "FROM", "FUNCTION", "GE",
+ "GLOB", "GROUP", "GT", "HAVING",
+ "ID", "IGNORE", "ILLEGAL", "IMMEDIATE",
+ "IN", "INDEX", "INITIALLY", "INSERT",
+ "INSTEAD", "INTEGER", "INTERSECT", "INTO",
+ "IS", "ISNULL", "JOIN", "JOIN_KW",
+ "KEY", "LE", "LIKE", "LIMIT",
+ "LP", "LSHIFT", "LT", "MATCH",
+ "MINUS", "NE", "NOT", "NOTNULL",
+ "NULL", "OF", "OFFSET", "ON",
+ "OR", "ORACLE_OUTER_JOIN", "ORDER", "PLUS",
+ "PRAGMA", "PRIMARY", "RAISE", "REFERENCES",
+ "REM", "REPLACE", "RESTRICT", "ROLLBACK",
+ "ROW", "RP", "RSHIFT", "SELECT",
+ "SEMI", "SET", "SLASH", "SPACE",
+ "STAR", "STATEMENT", "STRING", "TABLE",
+ "TEMP", "THEN", "TRANSACTION", "TRIGGER",
+ "UMINUS", "UNCLOSED_STRING", "UNION", "UNIQUE",
+ "UPDATE", "UPLUS", "USING", "VACUUM",
+ "VALUES", "VIEW", "WHEN", "WHERE",
+ "as", "carg", "carglist", "case_else",
+ "case_exprlist", "case_operand", "ccons", "cmd",
+ "cmdlist", "cmdx", "collate", "column",
+ "columnid", "columnlist", "conslist", "conslist_opt",
+ "create_table", "create_table_args", "defer_subclause", "defer_subclause_opt",
+ "distinct", "ecmd", "error", "explain",
+ "expr", "expritem", "exprlist", "foreach_clause",
+ "from", "groupby_opt", "having_opt", "id",
+ "ids", "idxitem", "idxlist", "idxlist_opt",
+ "init_deferred_pred_opt", "input", "inscollist", "inscollist_opt",
+ "insert_cmd", "itemlist", "joinop", "joinop2",
+ "likeop", "limit_opt", "limit_sep", "minus_num",
+ "multiselect_op", "nm", "number", "on_opt",
+ "onconf", "oneselect", "orconf", "orderby_opt",
+ "plus_num", "plus_opt", "refact", "refarg",
+ "refargs", "resolvetype", "sclp", "selcollist",
+ "select", "seltablist", "setlist", "signed",
+ "sortitem", "sortlist", "sortorder", "stl_prefix",
+ "tcons", "temp", "trans_opt", "trigger_cmd",
+ "trigger_cmd_list", "trigger_event", "trigger_time", "type",
+ "typename", "uniqueflag", "using_opt", "when_clause",
+ "where_opt",
+};
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/* For tracing reduce actions, the names of all rules are required.
+*/
+static const char *yyRuleName[] = {
+ /* 0 */ "input ::= cmdlist",
+ /* 1 */ "cmdlist ::= ecmd",
+ /* 2 */ "cmdlist ::= cmdlist ecmd",
+ /* 3 */ "ecmd ::= explain cmdx SEMI",
+ /* 4 */ "ecmd ::= SEMI",
+ /* 5 */ "cmdx ::= cmd",
+ /* 6 */ "explain ::= EXPLAIN",
+ /* 7 */ "explain ::=",
+ /* 8 */ "cmd ::= BEGIN trans_opt onconf",
+ /* 9 */ "trans_opt ::=",
+ /* 10 */ "trans_opt ::= TRANSACTION",
+ /* 11 */ "trans_opt ::= TRANSACTION nm",
+ /* 12 */ "cmd ::= COMMIT trans_opt",
+ /* 13 */ "cmd ::= END trans_opt",
+ /* 14 */ "cmd ::= ROLLBACK trans_opt",
+ /* 15 */ "cmd ::= create_table create_table_args",
+ /* 16 */ "create_table ::= CREATE temp TABLE nm",
+ /* 17 */ "temp ::= TEMP",
+ /* 18 */ "temp ::=",
+ /* 19 */ "create_table_args ::= LP columnlist conslist_opt RP",
+ /* 20 */ "create_table_args ::= AS select",
+ /* 21 */ "columnlist ::= columnlist COMMA column",
+ /* 22 */ "columnlist ::= column",
+ /* 23 */ "column ::= columnid type carglist",
+ /* 24 */ "columnid ::= nm",
+ /* 25 */ "id ::= ID",
+ /* 26 */ "ids ::= ID",
+ /* 27 */ "ids ::= STRING",
+ /* 28 */ "nm ::= ID",
+ /* 29 */ "nm ::= STRING",
+ /* 30 */ "nm ::= JOIN_KW",
+ /* 31 */ "type ::=",
+ /* 32 */ "type ::= typename",
+ /* 33 */ "type ::= typename LP signed RP",
+ /* 34 */ "type ::= typename LP signed COMMA signed RP",
+ /* 35 */ "typename ::= ids",
+ /* 36 */ "typename ::= typename ids",
+ /* 37 */ "signed ::= INTEGER",
+ /* 38 */ "signed ::= PLUS INTEGER",
+ /* 39 */ "signed ::= MINUS INTEGER",
+ /* 40 */ "carglist ::= carglist carg",
+ /* 41 */ "carglist ::=",
+ /* 42 */ "carg ::= CONSTRAINT nm ccons",
+ /* 43 */ "carg ::= ccons",
+ /* 44 */ "carg ::= DEFAULT STRING",
+ /* 45 */ "carg ::= DEFAULT ID",
+ /* 46 */ "carg ::= DEFAULT INTEGER",
+ /* 47 */ "carg ::= DEFAULT PLUS INTEGER",
+ /* 48 */ "carg ::= DEFAULT MINUS INTEGER",
+ /* 49 */ "carg ::= DEFAULT FLOAT",
+ /* 50 */ "carg ::= DEFAULT PLUS FLOAT",
+ /* 51 */ "carg ::= DEFAULT MINUS FLOAT",
+ /* 52 */ "carg ::= DEFAULT NULL",
+ /* 53 */ "ccons ::= NULL onconf",
+ /* 54 */ "ccons ::= NOT NULL onconf",
+ /* 55 */ "ccons ::= PRIMARY KEY sortorder onconf",
+ /* 56 */ "ccons ::= UNIQUE onconf",
+ /* 57 */ "ccons ::= CHECK LP expr RP onconf",
+ /* 58 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
+ /* 59 */ "ccons ::= defer_subclause",
+ /* 60 */ "ccons ::= COLLATE id",
+ /* 61 */ "refargs ::=",
+ /* 62 */ "refargs ::= refargs refarg",
+ /* 63 */ "refarg ::= MATCH nm",
+ /* 64 */ "refarg ::= ON DELETE refact",
+ /* 65 */ "refarg ::= ON UPDATE refact",
+ /* 66 */ "refarg ::= ON INSERT refact",
+ /* 67 */ "refact ::= SET NULL",
+ /* 68 */ "refact ::= SET DEFAULT",
+ /* 69 */ "refact ::= CASCADE",
+ /* 70 */ "refact ::= RESTRICT",
+ /* 71 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
+ /* 72 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
+ /* 73 */ "init_deferred_pred_opt ::=",
+ /* 74 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
+ /* 75 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
+ /* 76 */ "conslist_opt ::=",
+ /* 77 */ "conslist_opt ::= COMMA conslist",
+ /* 78 */ "conslist ::= conslist COMMA tcons",
+ /* 79 */ "conslist ::= conslist tcons",
+ /* 80 */ "conslist ::= tcons",
+ /* 81 */ "tcons ::= CONSTRAINT nm",
+ /* 82 */ "tcons ::= PRIMARY KEY LP idxlist RP onconf",
+ /* 83 */ "tcons ::= UNIQUE LP idxlist RP onconf",
+ /* 84 */ "tcons ::= CHECK expr onconf",
+ /* 85 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
+ /* 86 */ "defer_subclause_opt ::=",
+ /* 87 */ "defer_subclause_opt ::= defer_subclause",
+ /* 88 */ "onconf ::=",
+ /* 89 */ "onconf ::= ON CONFLICT resolvetype",
+ /* 90 */ "orconf ::=",
+ /* 91 */ "orconf ::= OR resolvetype",
+ /* 92 */ "resolvetype ::= ROLLBACK",
+ /* 93 */ "resolvetype ::= ABORT",
+ /* 94 */ "resolvetype ::= FAIL",
+ /* 95 */ "resolvetype ::= IGNORE",
+ /* 96 */ "resolvetype ::= REPLACE",
+ /* 97 */ "cmd ::= DROP TABLE nm",
+ /* 98 */ "cmd ::= CREATE temp VIEW nm AS select",
+ /* 99 */ "cmd ::= DROP VIEW nm",
+ /* 100 */ "cmd ::= select",
+ /* 101 */ "select ::= oneselect",
+ /* 102 */ "select ::= select multiselect_op oneselect",
+ /* 103 */ "multiselect_op ::= UNION",
+ /* 104 */ "multiselect_op ::= UNION ALL",
+ /* 105 */ "multiselect_op ::= INTERSECT",
+ /* 106 */ "multiselect_op ::= EXCEPT",
+ /* 107 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
+ /* 108 */ "distinct ::= DISTINCT",
+ /* 109 */ "distinct ::= ALL",
+ /* 110 */ "distinct ::=",
+ /* 111 */ "sclp ::= selcollist COMMA",
+ /* 112 */ "sclp ::=",
+ /* 113 */ "selcollist ::= sclp expr as",
+ /* 114 */ "selcollist ::= sclp STAR",
+ /* 115 */ "selcollist ::= sclp nm DOT STAR",
+ /* 116 */ "as ::= AS nm",
+ /* 117 */ "as ::= ids",
+ /* 118 */ "as ::=",
+ /* 119 */ "from ::=",
+ /* 120 */ "from ::= FROM seltablist",
+ /* 121 */ "stl_prefix ::= seltablist joinop",
+ /* 122 */ "stl_prefix ::=",
+ /* 123 */ "seltablist ::= stl_prefix nm as on_opt using_opt",
+ /* 124 */ "seltablist ::= stl_prefix LP select RP as on_opt using_opt",
+ /* 125 */ "joinop ::= COMMA",
+ /* 126 */ "joinop ::= JOIN",
+ /* 127 */ "joinop ::= JOIN_KW JOIN",
+ /* 128 */ "joinop ::= JOIN_KW nm JOIN",
+ /* 129 */ "joinop ::= JOIN_KW nm nm JOIN",
+ /* 130 */ "on_opt ::= ON expr",
+ /* 131 */ "on_opt ::=",
+ /* 132 */ "using_opt ::= USING LP idxlist RP",
+ /* 133 */ "using_opt ::=",
+ /* 134 */ "orderby_opt ::=",
+ /* 135 */ "orderby_opt ::= ORDER BY sortlist",
+ /* 136 */ "sortlist ::= sortlist COMMA sortitem collate sortorder",
+ /* 137 */ "sortlist ::= sortitem collate sortorder",
+ /* 138 */ "sortitem ::= expr",
+ /* 139 */ "sortorder ::= ASC",
+ /* 140 */ "sortorder ::= DESC",
+ /* 141 */ "sortorder ::=",
+ /* 142 */ "collate ::=",
+ /* 143 */ "collate ::= COLLATE id",
+ /* 144 */ "groupby_opt ::=",
+ /* 145 */ "groupby_opt ::= GROUP BY exprlist",
+ /* 146 */ "having_opt ::=",
+ /* 147 */ "having_opt ::= HAVING expr",
+ /* 148 */ "limit_opt ::=",
+ /* 149 */ "limit_opt ::= LIMIT INTEGER",
+ /* 150 */ "limit_opt ::= LIMIT INTEGER limit_sep INTEGER",
+ /* 151 */ "limit_sep ::= OFFSET",
+ /* 152 */ "limit_sep ::= COMMA",
+ /* 153 */ "cmd ::= DELETE FROM nm where_opt",
+ /* 154 */ "where_opt ::=",
+ /* 155 */ "where_opt ::= WHERE expr",
+ /* 156 */ "cmd ::= UPDATE orconf nm SET setlist where_opt",
+ /* 157 */ "setlist ::= setlist COMMA nm EQ expr",
+ /* 158 */ "setlist ::= nm EQ expr",
+ /* 159 */ "cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP",
+ /* 160 */ "cmd ::= insert_cmd INTO nm inscollist_opt select",
+ /* 161 */ "insert_cmd ::= INSERT orconf",
+ /* 162 */ "insert_cmd ::= REPLACE",
+ /* 163 */ "itemlist ::= itemlist COMMA expr",
+ /* 164 */ "itemlist ::= expr",
+ /* 165 */ "inscollist_opt ::=",
+ /* 166 */ "inscollist_opt ::= LP inscollist RP",
+ /* 167 */ "inscollist ::= inscollist COMMA nm",
+ /* 168 */ "inscollist ::= nm",
+ /* 169 */ "expr ::= LP expr RP",
+ /* 170 */ "expr ::= NULL",
+ /* 171 */ "expr ::= ID",
+ /* 172 */ "expr ::= JOIN_KW",
+ /* 173 */ "expr ::= nm DOT nm",
+ /* 174 */ "expr ::= expr ORACLE_OUTER_JOIN",
+ /* 175 */ "expr ::= INTEGER",
+ /* 176 */ "expr ::= FLOAT",
+ /* 177 */ "expr ::= STRING",
+ /* 178 */ "expr ::= ID LP exprlist RP",
+ /* 179 */ "expr ::= ID LP STAR RP",
+ /* 180 */ "expr ::= expr AND expr",
+ /* 181 */ "expr ::= expr OR expr",
+ /* 182 */ "expr ::= expr LT expr",
+ /* 183 */ "expr ::= expr GT expr",
+ /* 184 */ "expr ::= expr LE expr",
+ /* 185 */ "expr ::= expr GE expr",
+ /* 186 */ "expr ::= expr NE expr",
+ /* 187 */ "expr ::= expr EQ expr",
+ /* 188 */ "expr ::= expr BITAND expr",
+ /* 189 */ "expr ::= expr BITOR expr",
+ /* 190 */ "expr ::= expr LSHIFT expr",
+ /* 191 */ "expr ::= expr RSHIFT expr",
+ /* 192 */ "expr ::= expr likeop expr",
+ /* 193 */ "expr ::= expr NOT likeop expr",
+ /* 194 */ "likeop ::= LIKE",
+ /* 195 */ "likeop ::= GLOB",
+ /* 196 */ "expr ::= expr PLUS expr",
+ /* 197 */ "expr ::= expr MINUS expr",
+ /* 198 */ "expr ::= expr STAR expr",
+ /* 199 */ "expr ::= expr SLASH expr",
+ /* 200 */ "expr ::= expr REM expr",
+ /* 201 */ "expr ::= expr CONCAT expr",
+ /* 202 */ "expr ::= expr ISNULL",
+ /* 203 */ "expr ::= expr IS NULL",
+ /* 204 */ "expr ::= expr NOTNULL",
+ /* 205 */ "expr ::= expr NOT NULL",
+ /* 206 */ "expr ::= expr IS NOT NULL",
+ /* 207 */ "expr ::= NOT expr",
+ /* 208 */ "expr ::= BITNOT expr",
+ /* 209 */ "expr ::= MINUS expr",
+ /* 210 */ "expr ::= PLUS expr",
+ /* 211 */ "expr ::= LP select RP",
+ /* 212 */ "expr ::= expr BETWEEN expr AND expr",
+ /* 213 */ "expr ::= expr NOT BETWEEN expr AND expr",
+ /* 214 */ "expr ::= expr IN LP exprlist RP",
+ /* 215 */ "expr ::= expr IN LP select RP",
+ /* 216 */ "expr ::= expr NOT IN LP exprlist RP",
+ /* 217 */ "expr ::= expr NOT IN LP select RP",
+ /* 218 */ "expr ::= CASE case_operand case_exprlist case_else END",
+ /* 219 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
+ /* 220 */ "case_exprlist ::= WHEN expr THEN expr",
+ /* 221 */ "case_else ::= ELSE expr",
+ /* 222 */ "case_else ::=",
+ /* 223 */ "case_operand ::= expr",
+ /* 224 */ "case_operand ::=",
+ /* 225 */ "exprlist ::= exprlist COMMA expritem",
+ /* 226 */ "exprlist ::= expritem",
+ /* 227 */ "expritem ::= expr",
+ /* 228 */ "expritem ::=",
+ /* 229 */ "cmd ::= CREATE uniqueflag INDEX nm ON nm LP idxlist RP onconf",
+ /* 230 */ "uniqueflag ::= UNIQUE",
+ /* 231 */ "uniqueflag ::=",
+ /* 232 */ "idxlist_opt ::=",
+ /* 233 */ "idxlist_opt ::= LP idxlist RP",
+ /* 234 */ "idxlist ::= idxlist COMMA idxitem",
+ /* 235 */ "idxlist ::= idxitem",
+ /* 236 */ "idxitem ::= nm",
+ /* 237 */ "cmd ::= DROP INDEX nm",
+ /* 238 */ "cmd ::= COPY orconf nm FROM nm USING DELIMITERS STRING",
+ /* 239 */ "cmd ::= COPY orconf nm FROM nm",
+ /* 240 */ "cmd ::= VACUUM",
+ /* 241 */ "cmd ::= VACUUM nm",
+ /* 242 */ "cmd ::= PRAGMA ids EQ nm",
+ /* 243 */ "cmd ::= PRAGMA ids EQ ON",
+ /* 244 */ "cmd ::= PRAGMA ids EQ plus_num",
+ /* 245 */ "cmd ::= PRAGMA ids EQ minus_num",
+ /* 246 */ "cmd ::= PRAGMA ids LP nm RP",
+ /* 247 */ "cmd ::= PRAGMA ids",
+ /* 248 */ "plus_num ::= plus_opt number",
+ /* 249 */ "minus_num ::= MINUS number",
+ /* 250 */ "number ::= INTEGER",
+ /* 251 */ "number ::= FLOAT",
+ /* 252 */ "plus_opt ::= PLUS",
+ /* 253 */ "plus_opt ::=",
+ /* 254 */ "cmd ::= CREATE TRIGGER nm trigger_time trigger_event ON nm foreach_clause when_clause BEGIN trigger_cmd_list END",
+ /* 255 */ "trigger_time ::= BEFORE",
+ /* 256 */ "trigger_time ::= AFTER",
+ /* 257 */ "trigger_time ::= INSTEAD OF",
+ /* 258 */ "trigger_time ::=",
+ /* 259 */ "trigger_event ::= DELETE",
+ /* 260 */ "trigger_event ::= INSERT",
+ /* 261 */ "trigger_event ::= UPDATE",
+ /* 262 */ "trigger_event ::= UPDATE OF inscollist",
+ /* 263 */ "foreach_clause ::=",
+ /* 264 */ "foreach_clause ::= FOR EACH ROW",
+ /* 265 */ "foreach_clause ::= FOR EACH STATEMENT",
+ /* 266 */ "when_clause ::=",
+ /* 267 */ "when_clause ::= WHEN expr",
+ /* 268 */ "trigger_cmd_list ::= trigger_cmd SEMI trigger_cmd_list",
+ /* 269 */ "trigger_cmd_list ::=",
+ /* 270 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt",
+ /* 271 */ "trigger_cmd ::= INSERT orconf INTO nm inscollist_opt VALUES LP itemlist RP",
+ /* 272 */ "trigger_cmd ::= INSERT orconf INTO nm inscollist_opt select",
+ /* 273 */ "trigger_cmd ::= DELETE FROM nm where_opt",
+ /* 274 */ "trigger_cmd ::= select",
+ /* 275 */ "expr ::= RAISE LP IGNORE RP",
+ /* 276 */ "expr ::= RAISE LP ROLLBACK COMMA nm RP",
+ /* 277 */ "expr ::= RAISE LP ABORT COMMA nm RP",
+ /* 278 */ "expr ::= RAISE LP FAIL COMMA nm RP",
+ /* 279 */ "cmd ::= DROP TRIGGER nm",
+};
+#endif /* NDEBUG */
+
+/*
+** This function returns the symbolic name associated with a token
+** value.
+*/
+const char *sqliteParserTokenName(int tokenType){
+#ifndef NDEBUG
+ if( tokenType>0 && tokenType<(sizeof(yyTokenName)/sizeof(yyTokenName[0])) ){
+ return yyTokenName[tokenType];
+ }else{
+ return "Unknown";
+ }
+#else
+ return "";
+#endif
+}
+
+/*
+** This function allocates a new parser.
+** The only argument is a pointer to a function which works like
+** malloc.
+**
+** Inputs:
+** A pointer to the function used to allocate memory.
+**
+** Outputs:
+** A pointer to a parser. This pointer is used in subsequent calls
+** to sqliteParser and sqliteParserFree.
+*/
+void *sqliteParserAlloc(void *(*mallocProc)(size_t)){
+ yyParser *pParser;
+ pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
+ if( pParser ){
+ pParser->yyidx = -1;
+ }
+ return pParser;
+}
+
+/* The following function deletes the value associated with a
+** symbol. The symbol can be either a terminal or nonterminal.
+** "yymajor" is the symbol code, and "yypminor" is a pointer to
+** the value.
+*/
+static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){
+ switch( yymajor ){
+ /* Here is inserted the actions which take place when a
+ ** terminal or non-terminal is destroyed. This can happen
+ ** when the symbol is popped from the stack during a
+ ** reduce or during error processing or when a parser is
+ ** being destroyed before it is finished parsing.
+ **
+ ** Note: during a reduce, the only symbols destroyed are those
+ ** which appear on the RHS of the rule, but which are not used
+ ** inside the C code.
+ */
+ case 132:
+#line 660 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprListDelete((yypminor->yy168));}
+#line 4269 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 152:
+#line 514 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprDelete((yypminor->yy272));}
+#line 4274 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 153:
+#line 679 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprDelete((yypminor->yy272));}
+#line 4279 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 154:
+#line 677 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprListDelete((yypminor->yy168));}
+#line 4284 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 156:
+#line 341 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteSrcListDelete((yypminor->yy289));}
+#line 4289 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 157:
+#line 431 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprListDelete((yypminor->yy168));}
+#line 4294 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 158:
+#line 436 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprDelete((yypminor->yy272));}
+#line 4299 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 162:
+#line 701 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteIdListDelete((yypminor->yy268));}
+#line 4304 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 163:
+#line 703 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteIdListDelete((yypminor->yy268));}
+#line 4309 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 166:
+#line 492 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteIdListDelete((yypminor->yy268));}
+#line 4314 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 167:
+#line 490 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteIdListDelete((yypminor->yy268));}
+#line 4319 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 169:
+#line 484 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprListDelete((yypminor->yy168));}
+#line 4324 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 179:
+#line 392 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprDelete((yypminor->yy272));}
+#line 4329 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 181:
+#line 276 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteSelectDelete((yypminor->yy207));}
+#line 4334 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 183:
+#line 403 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprListDelete((yypminor->yy168));}
+#line 4339 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 190:
+#line 312 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprListDelete((yypminor->yy168));}
+#line 4344 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 191:
+#line 310 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprListDelete((yypminor->yy168));}
+#line 4349 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 192:
+#line 274 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteSelectDelete((yypminor->yy207));}
+#line 4354 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 193:
+#line 337 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteSrcListDelete((yypminor->yy289));}
+#line 4359 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 194:
+#line 460 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprListDelete((yypminor->yy168));}
+#line 4364 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 196:
+#line 407 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprDelete((yypminor->yy272));}
+#line 4369 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 197:
+#line 405 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprListDelete((yypminor->yy168));}
+#line 4374 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 199:
+#line 339 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteSrcListDelete((yypminor->yy289));}
+#line 4379 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 205:
+#line 762 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteIdListDelete((yypminor->yy72).b);}
+#line 4384 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 210:
+#line 397 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteIdListDelete((yypminor->yy268));}
+#line 4389 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 212:
+#line 454 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteExprDelete((yypminor->yy272));}
+#line 4394 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ default: break; /* If no destructor action specified: do nothing */
+ }
+}
+
+/*
+** Pop the parser's stack once.
+**
+** If there is a destructor routine associated with the token which
+** is popped from the stack, then call it.
+**
+** Return the major token number for the symbol popped.
+*/
+static int yy_pop_parser_stack(yyParser *pParser){
+ YYCODETYPE yymajor;
+
+ if( pParser->yyidx<0 ) return 0;
+#ifndef NDEBUG
+ if( yyTraceFILE && pParser->yyidx>=0 ){
+ fprintf(yyTraceFILE,"%sPopping %s\n",
+ yyTracePrompt,
+ yyTokenName[pParser->yytop->major]);
+ }
+#endif
+ yymajor = pParser->yytop->major;
+ yy_destructor( yymajor, &pParser->yytop->minor);
+ pParser->yyidx--;
+ pParser->yytop--;
+ return yymajor;
+}
+
+/*
+** Deallocate and destroy a parser. Destructors are all called for
+** all stack elements before shutting the parser down.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser. This should be a pointer
+** obtained from sqliteParserAlloc.
+** <li> A pointer to a function used to reclaim memory obtained
+** from malloc.
+** </ul>
+*/
+void sqliteParserFree(
+ void *p, /* The parser to be deleted */
+ void (*freeProc)(void*) /* Function used to reclaim memory */
+){
+ yyParser *pParser = (yyParser*)p;
+ if( pParser==0 ) return;
+ while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
+ (*freeProc)((void*)pParser);
+}
+
+/*
+** Find the appropriate action for a parser given the look-ahead token.
+**
+** If the look-ahead token is YYNOCODE, then check to see if the action is
+** independent of the look-ahead. If it is, return the action, otherwise
+** return YY_NO_ACTION.
+*/
+static int yy_find_parser_action(
+ yyParser *pParser, /* The parser */
+ int iLookAhead /* The look-ahead token */
+){
+ const yyStateEntry *pState; /* Appropriate entry in the state table */
+ const yyActionEntry *pAction; /* Action appropriate for the look-ahead */
+ int iFallback; /* Fallback token */
+
+ /* if( pParser->yyidx<0 ) return YY_NO_ACTION; */
+ pState = &yyStateTable[pParser->yytop->stateno];
+ if( pState->nEntry==0 ){
+ return pState->actionDefault;
+ }else if( iLookAhead!=YYNOCODE ){
+ pAction = &pState->hashtbl[iLookAhead % pState->nEntry];
+ while( 1 ){
+ if( pAction->lookahead==iLookAhead ) return pAction->action;
+ if( pAction->next==0 ) break;
+ pAction = &pState->hashtbl[pAction->next-1];
+ }
+#ifdef YYFALLBACK
+ if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
+ && (iFallback = yyFallback[iLookAhead])!=0 ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
+ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
+ }
+#endif
+ return yy_find_parser_action(pParser, iFallback);
+ }
+#endif
+ }else if( pState->hashtbl->lookahead!=YYNOCODE ){
+ return YY_NO_ACTION;
+ }
+ return pState->actionDefault;
+}
+
+/*
+** Perform a shift action.
+*/
+static void yy_shift(
+ yyParser *yypParser, /* The parser to be shifted */
+ int yyNewState, /* The new state to shift in */
+ int yyMajor, /* The major token to shift in */
+ YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */
+){
+ yypParser->yyidx++;
+ yypParser->yytop++;
+ if( yypParser->yyidx>=YYSTACKDEPTH ){
+ sqliteParserARG_FETCH;
+ yypParser->yyidx--;
+ yypParser->yytop--;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will execute if the parser
+ ** stack every overflows */
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument var */
+ return;
+ }
+ yypParser->yytop->stateno = yyNewState;
+ yypParser->yytop->major = yyMajor;
+ yypParser->yytop->minor = *yypMinor;
+#ifndef NDEBUG
+ if( yyTraceFILE && yypParser->yyidx>0 ){
+ int i;
+ fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
+ fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
+ for(i=1; i<=yypParser->yyidx; i++)
+ fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
+ fprintf(yyTraceFILE,"\n");
+ }
+#endif
+}
+
+/* The following table contains information about every rule that
+** is used during the reduce.
+*/
+static struct {
+ YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
+ unsigned char nrhs; /* Number of right-hand side symbols in the rule */
+} yyRuleInfo[] = {
+ { 165, 1 },
+ { 136, 1 },
+ { 136, 2 },
+ { 149, 3 },
+ { 149, 1 },
+ { 137, 1 },
+ { 151, 1 },
+ { 151, 0 },
+ { 135, 3 },
+ { 202, 0 },
+ { 202, 1 },
+ { 202, 2 },
+ { 135, 2 },
+ { 135, 2 },
+ { 135, 2 },
+ { 135, 2 },
+ { 144, 4 },
+ { 201, 1 },
+ { 201, 0 },
+ { 145, 4 },
+ { 145, 2 },
+ { 141, 3 },
+ { 141, 1 },
+ { 139, 3 },
+ { 140, 1 },
+ { 159, 1 },
+ { 160, 1 },
+ { 160, 1 },
+ { 177, 1 },
+ { 177, 1 },
+ { 177, 1 },
+ { 207, 0 },
+ { 207, 1 },
+ { 207, 4 },
+ { 207, 6 },
+ { 208, 1 },
+ { 208, 2 },
+ { 195, 1 },
+ { 195, 2 },
+ { 195, 2 },
+ { 130, 2 },
+ { 130, 0 },
+ { 129, 3 },
+ { 129, 1 },
+ { 129, 2 },
+ { 129, 2 },
+ { 129, 2 },
+ { 129, 3 },
+ { 129, 3 },
+ { 129, 2 },
+ { 129, 3 },
+ { 129, 3 },
+ { 129, 2 },
+ { 134, 2 },
+ { 134, 3 },
+ { 134, 4 },
+ { 134, 2 },
+ { 134, 5 },
+ { 134, 4 },
+ { 134, 1 },
+ { 134, 2 },
+ { 188, 0 },
+ { 188, 2 },
+ { 187, 2 },
+ { 187, 3 },
+ { 187, 3 },
+ { 187, 3 },
+ { 186, 2 },
+ { 186, 2 },
+ { 186, 1 },
+ { 186, 1 },
+ { 146, 3 },
+ { 146, 2 },
+ { 164, 0 },
+ { 164, 2 },
+ { 164, 2 },
+ { 143, 0 },
+ { 143, 2 },
+ { 142, 3 },
+ { 142, 2 },
+ { 142, 1 },
+ { 200, 2 },
+ { 200, 6 },
+ { 200, 5 },
+ { 200, 3 },
+ { 200, 10 },
+ { 147, 0 },
+ { 147, 1 },
+ { 180, 0 },
+ { 180, 3 },
+ { 182, 0 },
+ { 182, 2 },
+ { 189, 1 },
+ { 189, 1 },
+ { 189, 1 },
+ { 189, 1 },
+ { 189, 1 },
+ { 135, 3 },
+ { 135, 6 },
+ { 135, 3 },
+ { 135, 1 },
+ { 192, 1 },
+ { 192, 3 },
+ { 176, 1 },
+ { 176, 2 },
+ { 176, 1 },
+ { 176, 1 },
+ { 181, 9 },
+ { 148, 1 },
+ { 148, 1 },
+ { 148, 0 },
+ { 190, 2 },
+ { 190, 0 },
+ { 191, 3 },
+ { 191, 2 },
+ { 191, 4 },
+ { 128, 2 },
+ { 128, 1 },
+ { 128, 0 },
+ { 156, 0 },
+ { 156, 2 },
+ { 199, 2 },
+ { 199, 0 },
+ { 193, 5 },
+ { 193, 7 },
+ { 170, 1 },
+ { 170, 1 },
+ { 170, 2 },
+ { 170, 3 },
+ { 170, 4 },
+ { 179, 2 },
+ { 179, 0 },
+ { 210, 4 },
+ { 210, 0 },
+ { 183, 0 },
+ { 183, 3 },
+ { 197, 5 },
+ { 197, 3 },
+ { 196, 1 },
+ { 198, 1 },
+ { 198, 1 },
+ { 198, 0 },
+ { 138, 0 },
+ { 138, 2 },
+ { 157, 0 },
+ { 157, 3 },
+ { 158, 0 },
+ { 158, 2 },
+ { 173, 0 },
+ { 173, 2 },
+ { 173, 4 },
+ { 174, 1 },
+ { 174, 1 },
+ { 135, 4 },
+ { 212, 0 },
+ { 212, 2 },
+ { 135, 6 },
+ { 194, 5 },
+ { 194, 3 },
+ { 135, 8 },
+ { 135, 5 },
+ { 168, 2 },
+ { 168, 1 },
+ { 169, 3 },
+ { 169, 1 },
+ { 167, 0 },
+ { 167, 3 },
+ { 166, 3 },
+ { 166, 1 },
+ { 152, 3 },
+ { 152, 1 },
+ { 152, 1 },
+ { 152, 1 },
+ { 152, 3 },
+ { 152, 2 },
+ { 152, 1 },
+ { 152, 1 },
+ { 152, 1 },
+ { 152, 4 },
+ { 152, 4 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 4 },
+ { 172, 1 },
+ { 172, 1 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 3 },
+ { 152, 2 },
+ { 152, 3 },
+ { 152, 2 },
+ { 152, 3 },
+ { 152, 4 },
+ { 152, 2 },
+ { 152, 2 },
+ { 152, 2 },
+ { 152, 2 },
+ { 152, 3 },
+ { 152, 5 },
+ { 152, 6 },
+ { 152, 5 },
+ { 152, 5 },
+ { 152, 6 },
+ { 152, 6 },
+ { 152, 5 },
+ { 132, 5 },
+ { 132, 4 },
+ { 131, 2 },
+ { 131, 0 },
+ { 133, 1 },
+ { 133, 0 },
+ { 154, 3 },
+ { 154, 1 },
+ { 153, 1 },
+ { 153, 0 },
+ { 135, 10 },
+ { 209, 1 },
+ { 209, 0 },
+ { 163, 0 },
+ { 163, 3 },
+ { 162, 3 },
+ { 162, 1 },
+ { 161, 1 },
+ { 135, 3 },
+ { 135, 8 },
+ { 135, 5 },
+ { 135, 1 },
+ { 135, 2 },
+ { 135, 4 },
+ { 135, 4 },
+ { 135, 4 },
+ { 135, 4 },
+ { 135, 5 },
+ { 135, 2 },
+ { 184, 2 },
+ { 175, 2 },
+ { 178, 1 },
+ { 178, 1 },
+ { 185, 1 },
+ { 185, 0 },
+ { 135, 12 },
+ { 206, 1 },
+ { 206, 1 },
+ { 206, 2 },
+ { 206, 0 },
+ { 205, 1 },
+ { 205, 1 },
+ { 205, 1 },
+ { 205, 3 },
+ { 155, 0 },
+ { 155, 3 },
+ { 155, 3 },
+ { 211, 0 },
+ { 211, 2 },
+ { 204, 3 },
+ { 204, 0 },
+ { 203, 6 },
+ { 203, 9 },
+ { 203, 6 },
+ { 203, 4 },
+ { 203, 1 },
+ { 152, 4 },
+ { 152, 6 },
+ { 152, 6 },
+ { 152, 6 },
+ { 135, 3 },
+};
+
+static void yy_accept(yyParser*); /* Forward Declaration */
+
+/*
+** Perform a reduce action and the shift that must immediately
+** follow the reduce.
+*/
+static void yy_reduce(
+ yyParser *yypParser, /* The parser */
+ int yyruleno /* Number of the rule by which to reduce */
+){
+ int yygoto; /* The next state */
+ int yyact; /* The next action */
+ YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
+ yyStackEntry *yymsp; /* The top of the parser's stack */
+ int yysize; /* Amount to pop the stack */
+ sqliteParserARG_FETCH;
+ yymsp = yypParser->yytop;
+#ifndef NDEBUG
+ if( yyTraceFILE && yyruleno>=0
+ && yyruleno<sizeof(yyRuleName)/sizeof(yyRuleName[0]) ){
+ fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
+ yyRuleName[yyruleno]);
+ }
+#endif /* NDEBUG */
+
+ switch( yyruleno ){
+ /* Beginning here are the reduction cases. A typical example
+ ** follows:
+ ** case 0:
+ ** #line <lineno> <grammarfile>
+ ** { ... } // User supplied code
+ ** #line <lineno> <thisfile>
+ ** break;
+ */
+ case 0:
+ /* No destructor defined for cmdlist */
+ break;
+ case 1:
+ /* No destructor defined for ecmd */
+ break;
+ case 2:
+ /* No destructor defined for cmdlist */
+ /* No destructor defined for ecmd */
+ break;
+ case 3:
+ /* No destructor defined for explain */
+ /* No destructor defined for cmdx */
+ /* No destructor defined for SEMI */
+ break;
+ case 4:
+ /* No destructor defined for SEMI */
+ break;
+ case 5:
+#line 77 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ sqliteExec(pParse); }
+#line 4877 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for cmd */
+ break;
+ case 6:
+#line 78 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ sqliteBeginParse(pParse, 1); }
+#line 4883 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for EXPLAIN */
+ break;
+ case 7:
+#line 79 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ sqliteBeginParse(pParse, 0); }
+#line 4889 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 8:
+#line 84 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteBeginTransaction(pParse,yymsp[0].minor.yy136);}
+#line 4894 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for BEGIN */
+ /* No destructor defined for trans_opt */
+ break;
+ case 9:
+ break;
+ case 10:
+ /* No destructor defined for TRANSACTION */
+ break;
+ case 11:
+ /* No destructor defined for TRANSACTION */
+ /* No destructor defined for nm */
+ break;
+ case 12:
+#line 88 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteCommitTransaction(pParse);}
+#line 4910 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COMMIT */
+ /* No destructor defined for trans_opt */
+ break;
+ case 13:
+#line 89 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteCommitTransaction(pParse);}
+#line 4917 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for END */
+ /* No destructor defined for trans_opt */
+ break;
+ case 14:
+#line 90 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteRollbackTransaction(pParse);}
+#line 4924 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ROLLBACK */
+ /* No destructor defined for trans_opt */
+ break;
+ case 15:
+ /* No destructor defined for create_table */
+ /* No destructor defined for create_table_args */
+ break;
+ case 16:
+#line 95 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ sqliteStartTable(pParse,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy324,yymsp[-2].minor.yy136,0);
+}
+#line 4937 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for TABLE */
+ break;
+ case 17:
+#line 99 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = pParse->isTemp || !pParse->initFlag;}
+#line 4943 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for TEMP */
+ break;
+ case 18:
+#line 100 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = pParse->isTemp;}
+#line 4949 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 19:
+#line 101 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ sqliteEndTable(pParse,&yymsp[0].minor.yy0,0);
+}
+#line 4956 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for columnlist */
+ /* No destructor defined for conslist_opt */
+ break;
+ case 20:
+#line 104 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ sqliteEndTable(pParse,0,yymsp[0].minor.yy207);
+ sqliteSelectDelete(yymsp[0].minor.yy207);
+}
+#line 4967 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for AS */
+ break;
+ case 21:
+ /* No destructor defined for columnlist */
+ /* No destructor defined for COMMA */
+ /* No destructor defined for column */
+ break;
+ case 22:
+ /* No destructor defined for column */
+ break;
+ case 23:
+ /* No destructor defined for columnid */
+ /* No destructor defined for type */
+ /* No destructor defined for carglist */
+ break;
+ case 24:
+#line 116 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddColumn(pParse,&yymsp[0].minor.yy324);}
+#line 4986 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 25:
+#line 122 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy0;}
+#line 4991 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 26:
+#line 138 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy0;}
+#line 4996 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 27:
+#line 139 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy0;}
+#line 5001 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 28:
+#line 144 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy0;}
+#line 5006 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 29:
+#line 145 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy0;}
+#line 5011 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 30:
+#line 146 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy0;}
+#line 5016 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 31:
+ break;
+ case 32:
+#line 149 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddColumnType(pParse,&yymsp[0].minor.yy324,&yymsp[0].minor.yy324);}
+#line 5023 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 33:
+#line 150 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddColumnType(pParse,&yymsp[-3].minor.yy324,&yymsp[0].minor.yy0);}
+#line 5028 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for signed */
+ break;
+ case 34:
+#line 152 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddColumnType(pParse,&yymsp[-5].minor.yy324,&yymsp[0].minor.yy0);}
+#line 5035 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for signed */
+ /* No destructor defined for COMMA */
+ /* No destructor defined for signed */
+ break;
+ case 35:
+#line 154 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy324;}
+#line 5044 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 36:
+#line 155 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[-1].minor.yy324;}
+#line 5049 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ids */
+ break;
+ case 37:
+ /* No destructor defined for INTEGER */
+ break;
+ case 38:
+ /* No destructor defined for PLUS */
+ /* No destructor defined for INTEGER */
+ break;
+ case 39:
+ /* No destructor defined for MINUS */
+ /* No destructor defined for INTEGER */
+ break;
+ case 40:
+ /* No destructor defined for carglist */
+ /* No destructor defined for carg */
+ break;
+ case 41:
+ break;
+ case 42:
+ /* No destructor defined for CONSTRAINT */
+ /* No destructor defined for nm */
+ /* No destructor defined for ccons */
+ break;
+ case 43:
+ /* No destructor defined for ccons */
+ break;
+ case 44:
+#line 163 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 5080 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DEFAULT */
+ break;
+ case 45:
+#line 164 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 5086 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DEFAULT */
+ break;
+ case 46:
+#line 165 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 5092 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DEFAULT */
+ break;
+ case 47:
+#line 166 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 5098 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DEFAULT */
+ /* No destructor defined for PLUS */
+ break;
+ case 48:
+#line 167 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,1);}
+#line 5105 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DEFAULT */
+ /* No destructor defined for MINUS */
+ break;
+ case 49:
+#line 168 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 5112 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DEFAULT */
+ break;
+ case 50:
+#line 169 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
+#line 5118 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DEFAULT */
+ /* No destructor defined for PLUS */
+ break;
+ case 51:
+#line 170 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,1);}
+#line 5125 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DEFAULT */
+ /* No destructor defined for MINUS */
+ break;
+ case 52:
+ /* No destructor defined for DEFAULT */
+ /* No destructor defined for NULL */
+ break;
+ case 53:
+ /* No destructor defined for NULL */
+ /* No destructor defined for onconf */
+ break;
+ case 54:
+#line 177 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddNotNull(pParse, yymsp[0].minor.yy136);}
+#line 5140 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for NOT */
+ /* No destructor defined for NULL */
+ break;
+ case 55:
+#line 178 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddPrimaryKey(pParse,0,yymsp[0].minor.yy136);}
+#line 5147 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for PRIMARY */
+ /* No destructor defined for KEY */
+ /* No destructor defined for sortorder */
+ break;
+ case 56:
+#line 179 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteCreateIndex(pParse,0,0,0,yymsp[0].minor.yy136,0,0);}
+#line 5155 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for UNIQUE */
+ break;
+ case 57:
+ /* No destructor defined for CHECK */
+ /* No destructor defined for LP */
+ yy_destructor(152,&yymsp[-2].minor);
+ /* No destructor defined for RP */
+ /* No destructor defined for onconf */
+ break;
+ case 58:
+#line 182 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteCreateForeignKey(pParse,0,&yymsp[-2].minor.yy324,yymsp[-1].minor.yy268,yymsp[0].minor.yy136);}
+#line 5168 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for REFERENCES */
+ break;
+ case 59:
+#line 183 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteDeferForeignKey(pParse,yymsp[0].minor.yy136);}
+#line 5174 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 60:
+#line 184 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ sqliteAddCollateType(pParse, sqliteCollateType(yymsp[0].minor.yy324.z, yymsp[0].minor.yy324.n));
+}
+#line 5181 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COLLATE */
+ break;
+ case 61:
+#line 194 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_Restrict * 0x010101; }
+#line 5187 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 62:
+#line 195 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = (yymsp[-1].minor.yy136 & yymsp[0].minor.yy83.mask) | yymsp[0].minor.yy83.value; }
+#line 5192 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 63:
+#line 197 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy83.value = 0; yygotominor.yy83.mask = 0x000000; }
+#line 5197 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for MATCH */
+ /* No destructor defined for nm */
+ break;
+ case 64:
+#line 198 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy83.value = yymsp[0].minor.yy136; yygotominor.yy83.mask = 0x0000ff; }
+#line 5204 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ON */
+ /* No destructor defined for DELETE */
+ break;
+ case 65:
+#line 199 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy83.value = yymsp[0].minor.yy136<<8; yygotominor.yy83.mask = 0x00ff00; }
+#line 5211 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ON */
+ /* No destructor defined for UPDATE */
+ break;
+ case 66:
+#line 200 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy83.value = yymsp[0].minor.yy136<<16; yygotominor.yy83.mask = 0xff0000; }
+#line 5218 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ON */
+ /* No destructor defined for INSERT */
+ break;
+ case 67:
+#line 202 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_SetNull; }
+#line 5225 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for SET */
+ /* No destructor defined for NULL */
+ break;
+ case 68:
+#line 203 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_SetDflt; }
+#line 5232 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for SET */
+ /* No destructor defined for DEFAULT */
+ break;
+ case 69:
+#line 204 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_Cascade; }
+#line 5239 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for CASCADE */
+ break;
+ case 70:
+#line 205 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_Restrict; }
+#line 5245 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for RESTRICT */
+ break;
+ case 71:
+#line 207 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = yymsp[0].minor.yy136;}
+#line 5251 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for NOT */
+ /* No destructor defined for DEFERRABLE */
+ break;
+ case 72:
+#line 208 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = yymsp[0].minor.yy136;}
+#line 5258 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DEFERRABLE */
+ break;
+ case 73:
+#line 210 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = 0;}
+#line 5264 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 74:
+#line 211 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = 1;}
+#line 5269 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for INITIALLY */
+ /* No destructor defined for DEFERRED */
+ break;
+ case 75:
+#line 212 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = 0;}
+#line 5276 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for INITIALLY */
+ /* No destructor defined for IMMEDIATE */
+ break;
+ case 76:
+ break;
+ case 77:
+ /* No destructor defined for COMMA */
+ /* No destructor defined for conslist */
+ break;
+ case 78:
+ /* No destructor defined for conslist */
+ /* No destructor defined for COMMA */
+ /* No destructor defined for tcons */
+ break;
+ case 79:
+ /* No destructor defined for conslist */
+ /* No destructor defined for tcons */
+ break;
+ case 80:
+ /* No destructor defined for tcons */
+ break;
+ case 81:
+ /* No destructor defined for CONSTRAINT */
+ /* No destructor defined for nm */
+ break;
+ case 82:
+#line 224 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteAddPrimaryKey(pParse,yymsp[-2].minor.yy268,yymsp[0].minor.yy136);}
+#line 5305 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for PRIMARY */
+ /* No destructor defined for KEY */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 83:
+#line 226 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteCreateIndex(pParse,0,0,yymsp[-2].minor.yy268,yymsp[0].minor.yy136,0,0);}
+#line 5314 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for UNIQUE */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 84:
+ /* No destructor defined for CHECK */
+ yy_destructor(152,&yymsp[-1].minor);
+ /* No destructor defined for onconf */
+ break;
+ case 85:
+#line 229 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ sqliteCreateForeignKey(pParse, yymsp[-6].minor.yy268, &yymsp[-3].minor.yy324, yymsp[-2].minor.yy268, yymsp[-1].minor.yy136);
+ sqliteDeferForeignKey(pParse, yymsp[0].minor.yy136);
+}
+#line 5330 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for FOREIGN */
+ /* No destructor defined for KEY */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ /* No destructor defined for REFERENCES */
+ break;
+ case 86:
+#line 234 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = 0;}
+#line 5340 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 87:
+#line 235 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = yymsp[0].minor.yy136;}
+#line 5345 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 88:
+#line 243 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_Default; }
+#line 5350 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 89:
+#line 244 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = yymsp[0].minor.yy136; }
+#line 5355 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ON */
+ /* No destructor defined for CONFLICT */
+ break;
+ case 90:
+#line 245 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_Default; }
+#line 5362 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 91:
+#line 246 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = yymsp[0].minor.yy136; }
+#line 5367 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for OR */
+ break;
+ case 92:
+#line 247 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_Rollback; }
+#line 5373 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ROLLBACK */
+ break;
+ case 93:
+#line 248 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_Abort; }
+#line 5379 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ABORT */
+ break;
+ case 94:
+#line 249 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_Fail; }
+#line 5385 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for FAIL */
+ break;
+ case 95:
+#line 250 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_Ignore; }
+#line 5391 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for IGNORE */
+ break;
+ case 96:
+#line 251 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_Replace; }
+#line 5397 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for REPLACE */
+ break;
+ case 97:
+#line 255 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteDropTable(pParse,&yymsp[0].minor.yy324,0);}
+#line 5403 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DROP */
+ /* No destructor defined for TABLE */
+ break;
+ case 98:
+#line 259 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ sqliteCreateView(pParse, &yymsp[-5].minor.yy0, &yymsp[-2].minor.yy324, yymsp[0].minor.yy207, yymsp[-4].minor.yy136);
+}
+#line 5412 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for VIEW */
+ /* No destructor defined for AS */
+ break;
+ case 99:
+#line 262 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ sqliteDropTable(pParse, &yymsp[0].minor.yy324, 1);
+}
+#line 5421 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DROP */
+ /* No destructor defined for VIEW */
+ break;
+ case 100:
+#line 268 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ sqliteSelect(pParse, yymsp[0].minor.yy207, SRT_Callback, 0, 0, 0, 0);
+ sqliteSelectDelete(yymsp[0].minor.yy207);
+}
+#line 5431 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 101:
+#line 278 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy207 = yymsp[0].minor.yy207;}
+#line 5436 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 102:
+#line 279 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ if( yymsp[0].minor.yy207 ){
+ yymsp[0].minor.yy207->op = yymsp[-1].minor.yy136;
+ yymsp[0].minor.yy207->pPrior = yymsp[-2].minor.yy207;
+ }
+ yygotominor.yy207 = yymsp[0].minor.yy207;
+}
+#line 5447 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 103:
+#line 287 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = TK_UNION;}
+#line 5452 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for UNION */
+ break;
+ case 104:
+#line 288 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = TK_ALL;}
+#line 5458 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for UNION */
+ /* No destructor defined for ALL */
+ break;
+ case 105:
+#line 289 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = TK_INTERSECT;}
+#line 5465 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for INTERSECT */
+ break;
+ case 106:
+#line 290 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = TK_EXCEPT;}
+#line 5471 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for EXCEPT */
+ break;
+ case 107:
+#line 292 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy207 = sqliteSelectNew(yymsp[-6].minor.yy168,yymsp[-5].minor.yy289,yymsp[-4].minor.yy272,yymsp[-3].minor.yy168,yymsp[-2].minor.yy272,yymsp[-1].minor.yy168,yymsp[-7].minor.yy136,yymsp[0].minor.yy336.limit,yymsp[0].minor.yy336.offset);
+}
+#line 5479 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for SELECT */
+ break;
+ case 108:
+#line 300 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = 1;}
+#line 5485 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DISTINCT */
+ break;
+ case 109:
+#line 301 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = 0;}
+#line 5491 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ALL */
+ break;
+ case 110:
+#line 302 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = 0;}
+#line 5497 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 111:
+#line 313 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = yymsp[-1].minor.yy168;}
+#line 5502 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 112:
+#line 314 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = 0;}
+#line 5508 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 113:
+#line 315 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy168 = sqliteExprListAppend(yymsp[-2].minor.yy168,yymsp[-1].minor.yy272,yymsp[0].minor.yy324.n?&yymsp[0].minor.yy324:0);
+}
+#line 5515 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 114:
+#line 318 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy168 = sqliteExprListAppend(yymsp[-1].minor.yy168, sqliteExpr(TK_ALL, 0, 0, 0), 0);
+}
+#line 5522 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for STAR */
+ break;
+ case 115:
+#line 321 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ Expr *pRight = sqliteExpr(TK_ALL, 0, 0, 0);
+ Expr *pLeft = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy324);
+ yygotominor.yy168 = sqliteExprListAppend(yymsp[-3].minor.yy168, sqliteExpr(TK_DOT, pLeft, pRight, 0), 0);
+}
+#line 5532 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DOT */
+ /* No destructor defined for STAR */
+ break;
+ case 116:
+#line 331 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy324 = yymsp[0].minor.yy324; }
+#line 5539 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for AS */
+ break;
+ case 117:
+#line 332 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy324 = yymsp[0].minor.yy324; }
+#line 5545 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 118:
+#line 333 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy324.n = 0; }
+#line 5550 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 119:
+#line 345 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy289 = sqliteMalloc(sizeof(*yygotominor.yy289));}
+#line 5555 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 120:
+#line 346 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy289 = yymsp[0].minor.yy289;}
+#line 5560 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for FROM */
+ break;
+ case 121:
+#line 351 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy289 = yymsp[-1].minor.yy289;
+ if( yygotominor.yy289 && yygotominor.yy289->nSrc>0 ) yygotominor.yy289->a[yygotominor.yy289->nSrc-1].jointype = yymsp[0].minor.yy136;
+}
+#line 5569 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 122:
+#line 355 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy289 = 0;}
+#line 5574 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 123:
+#line 356 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy289 = sqliteSrcListAppend(yymsp[-4].minor.yy289,&yymsp[-3].minor.yy324);
+ if( yymsp[-2].minor.yy324.n ) sqliteSrcListAddAlias(yygotominor.yy289,&yymsp[-2].minor.yy324);
+ if( yymsp[-1].minor.yy272 ){
+ if( yygotominor.yy289 && yygotominor.yy289->nSrc>1 ){ yygotominor.yy289->a[yygotominor.yy289->nSrc-2].pOn = yymsp[-1].minor.yy272; }
+ else { sqliteExprDelete(yymsp[-1].minor.yy272); }
+ }
+ if( yymsp[0].minor.yy268 ){
+ if( yygotominor.yy289 && yygotominor.yy289->nSrc>1 ){ yygotominor.yy289->a[yygotominor.yy289->nSrc-2].pUsing = yymsp[0].minor.yy268; }
+ else { sqliteIdListDelete(yymsp[0].minor.yy268); }
+ }
+}
+#line 5590 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 124:
+#line 368 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy289 = sqliteSrcListAppend(yymsp[-6].minor.yy289,0);
+ yygotominor.yy289->a[yygotominor.yy289->nSrc-1].pSelect = yymsp[-4].minor.yy207;
+ if( yymsp[-2].minor.yy324.n ) sqliteSrcListAddAlias(yygotominor.yy289,&yymsp[-2].minor.yy324);
+ if( yymsp[-1].minor.yy272 ){
+ if( yygotominor.yy289 && yygotominor.yy289->nSrc>1 ){ yygotominor.yy289->a[yygotominor.yy289->nSrc-2].pOn = yymsp[-1].minor.yy272; }
+ else { sqliteExprDelete(yymsp[-1].minor.yy272); }
+ }
+ if( yymsp[0].minor.yy268 ){
+ if( yygotominor.yy289 && yygotominor.yy289->nSrc>1 ){ yygotominor.yy289->a[yygotominor.yy289->nSrc-2].pUsing = yymsp[0].minor.yy268; }
+ else { sqliteIdListDelete(yymsp[0].minor.yy268); }
+ }
+}
+#line 5607 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 125:
+#line 384 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = JT_INNER; }
+#line 5614 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 126:
+#line 385 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = JT_INNER; }
+#line 5620 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for JOIN */
+ break;
+ case 127:
+#line 386 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = sqliteJoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
+#line 5626 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for JOIN */
+ break;
+ case 128:
+#line 387 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = sqliteJoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy324,0); }
+#line 5632 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for JOIN */
+ break;
+ case 129:
+#line 389 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = sqliteJoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy324,&yymsp[-1].minor.yy324); }
+#line 5638 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for JOIN */
+ break;
+ case 130:
+#line 393 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = yymsp[0].minor.yy272;}
+#line 5644 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ON */
+ break;
+ case 131:
+#line 394 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = 0;}
+#line 5650 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 132:
+#line 398 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy268 = yymsp[-1].minor.yy268;}
+#line 5655 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for USING */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 133:
+#line 399 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy268 = 0;}
+#line 5663 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 134:
+#line 409 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = 0;}
+#line 5668 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 135:
+#line 410 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = yymsp[0].minor.yy168;}
+#line 5673 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ORDER */
+ /* No destructor defined for BY */
+ break;
+ case 136:
+#line 411 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy168 = sqliteExprListAppend(yymsp[-4].minor.yy168,yymsp[-2].minor.yy272,0);
+ if( yygotominor.yy168 ) yygotominor.yy168->a[yygotominor.yy168->nExpr-1].sortOrder = yymsp[-1].minor.yy136+yymsp[0].minor.yy136;
+}
+#line 5683 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 137:
+#line 415 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy168 = sqliteExprListAppend(0,yymsp[-2].minor.yy272,0);
+ if( yygotominor.yy168 ) yygotominor.yy168->a[0].sortOrder = yymsp[-1].minor.yy136+yymsp[0].minor.yy136;
+}
+#line 5692 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 138:
+#line 419 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = yymsp[0].minor.yy272;}
+#line 5697 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 139:
+#line 424 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = SQLITE_SO_ASC;}
+#line 5702 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ASC */
+ break;
+ case 140:
+#line 425 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = SQLITE_SO_DESC;}
+#line 5708 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DESC */
+ break;
+ case 141:
+#line 426 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = SQLITE_SO_ASC;}
+#line 5714 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 142:
+#line 427 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = SQLITE_SO_UNK;}
+#line 5719 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 143:
+#line 428 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = sqliteCollateType(yymsp[0].minor.yy324.z, yymsp[0].minor.yy324.n);}
+#line 5724 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COLLATE */
+ break;
+ case 144:
+#line 432 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = 0;}
+#line 5730 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 145:
+#line 433 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = yymsp[0].minor.yy168;}
+#line 5735 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for GROUP */
+ /* No destructor defined for BY */
+ break;
+ case 146:
+#line 437 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = 0;}
+#line 5742 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 147:
+#line 438 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = yymsp[0].minor.yy272;}
+#line 5747 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for HAVING */
+ break;
+ case 148:
+#line 441 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy336.limit = -1; yygotominor.yy336.offset = 0;}
+#line 5753 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 149:
+#line 442 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy336.limit = atoi(yymsp[0].minor.yy0.z); yygotominor.yy336.offset = 0;}
+#line 5758 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LIMIT */
+ break;
+ case 150:
+#line 444 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy336.limit = atoi(yymsp[-2].minor.yy0.z); yygotominor.yy336.offset = atoi(yymsp[0].minor.yy0.z);}
+#line 5764 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LIMIT */
+ /* No destructor defined for limit_sep */
+ break;
+ case 151:
+ /* No destructor defined for OFFSET */
+ break;
+ case 152:
+ /* No destructor defined for COMMA */
+ break;
+ case 153:
+#line 451 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteDeleteFrom(pParse, &yymsp[-1].minor.yy324, yymsp[0].minor.yy272);}
+#line 5777 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DELETE */
+ /* No destructor defined for FROM */
+ break;
+ case 154:
+#line 456 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = 0;}
+#line 5784 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 155:
+#line 457 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = yymsp[0].minor.yy272;}
+#line 5789 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for WHERE */
+ break;
+ case 156:
+#line 465 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteUpdate(pParse,&yymsp[-3].minor.yy324,yymsp[-1].minor.yy168,yymsp[0].minor.yy272,yymsp[-4].minor.yy136);}
+#line 5795 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for UPDATE */
+ /* No destructor defined for SET */
+ break;
+ case 157:
+#line 468 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = sqliteExprListAppend(yymsp[-4].minor.yy168,yymsp[0].minor.yy272,&yymsp[-2].minor.yy324);}
+#line 5802 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COMMA */
+ /* No destructor defined for EQ */
+ break;
+ case 158:
+#line 469 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = sqliteExprListAppend(0,yymsp[0].minor.yy272,&yymsp[-2].minor.yy324);}
+#line 5809 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for EQ */
+ break;
+ case 159:
+#line 474 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteInsert(pParse, &yymsp[-5].minor.yy324, yymsp[-1].minor.yy168, 0, yymsp[-4].minor.yy268, yymsp[-7].minor.yy136);}
+#line 5815 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for INTO */
+ /* No destructor defined for VALUES */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 160:
+#line 476 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteInsert(pParse, &yymsp[-2].minor.yy324, 0, yymsp[0].minor.yy207, yymsp[-1].minor.yy268, yymsp[-4].minor.yy136);}
+#line 5824 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for INTO */
+ break;
+ case 161:
+#line 479 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = yymsp[0].minor.yy136;}
+#line 5830 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for INSERT */
+ break;
+ case 162:
+#line 480 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = OE_Replace;}
+#line 5836 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for REPLACE */
+ break;
+ case 163:
+#line 486 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = sqliteExprListAppend(yymsp[-2].minor.yy168,yymsp[0].minor.yy272,0);}
+#line 5842 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 164:
+#line 487 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = sqliteExprListAppend(0,yymsp[0].minor.yy272,0);}
+#line 5848 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 165:
+#line 494 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy268 = 0;}
+#line 5853 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 166:
+#line 495 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy268 = yymsp[-1].minor.yy268;}
+#line 5858 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 167:
+#line 496 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy268 = sqliteIdListAppend(yymsp[-2].minor.yy268,&yymsp[0].minor.yy324);}
+#line 5865 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 168:
+#line 497 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy268 = sqliteIdListAppend(0,&yymsp[0].minor.yy324);}
+#line 5871 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 169:
+#line 516 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = yymsp[-1].minor.yy272; sqliteExprSpan(yygotominor.yy272,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); }
+#line 5876 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 170:
+#line 517 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_NULL, 0, 0, &yymsp[0].minor.yy0);}
+#line 5881 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 171:
+#line 518 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);}
+#line 5886 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 172:
+#line 519 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);}
+#line 5891 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 173:
+#line 520 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy324);
+ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy324);
+ yygotominor.yy272 = sqliteExpr(TK_DOT, temp1, temp2, 0);
+}
+#line 5900 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DOT */
+ break;
+ case 174:
+#line 526 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = yymsp[-1].minor.yy272; ExprSetProperty(yygotominor.yy272,EP_Oracle8Join);}
+#line 5906 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ORACLE_OUTER_JOIN */
+ break;
+ case 175:
+#line 527 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_INTEGER, 0, 0, &yymsp[0].minor.yy0);}
+#line 5912 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 176:
+#line 528 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_FLOAT, 0, 0, &yymsp[0].minor.yy0);}
+#line 5917 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 177:
+#line 529 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_STRING, 0, 0, &yymsp[0].minor.yy0);}
+#line 5922 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 178:
+#line 530 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExprFunction(yymsp[-1].minor.yy168, &yymsp[-3].minor.yy0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
+}
+#line 5930 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ break;
+ case 179:
+#line 534 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExprFunction(0, &yymsp[-3].minor.yy0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
+}
+#line 5939 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for STAR */
+ break;
+ case 180:
+#line 538 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_AND, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 5946 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for AND */
+ break;
+ case 181:
+#line 539 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_OR, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 5952 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for OR */
+ break;
+ case 182:
+#line 540 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_LT, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 5958 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LT */
+ break;
+ case 183:
+#line 541 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_GT, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 5964 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for GT */
+ break;
+ case 184:
+#line 542 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_LE, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 5970 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LE */
+ break;
+ case 185:
+#line 543 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_GE, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 5976 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for GE */
+ break;
+ case 186:
+#line 544 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_NE, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 5982 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for NE */
+ break;
+ case 187:
+#line 545 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_EQ, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 5988 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for EQ */
+ break;
+ case 188:
+#line 546 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_BITAND, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 5994 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for BITAND */
+ break;
+ case 189:
+#line 547 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_BITOR, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 6000 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for BITOR */
+ break;
+ case 190:
+#line 548 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_LSHIFT, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 6006 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LSHIFT */
+ break;
+ case 191:
+#line 549 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_RSHIFT, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 6012 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for RSHIFT */
+ break;
+ case 192:
+#line 550 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ ExprList *pList = sqliteExprListAppend(0, yymsp[0].minor.yy272, 0);
+ pList = sqliteExprListAppend(pList, yymsp[-2].minor.yy272, 0);
+ yygotominor.yy272 = sqliteExprFunction(pList, 0);
+ if( yygotominor.yy272 ) yygotominor.yy272->op = yymsp[-1].minor.yy136;
+ sqliteExprSpan(yygotominor.yy272, &yymsp[-2].minor.yy272->span, &yymsp[0].minor.yy272->span);
+}
+#line 6024 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 193:
+#line 557 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ ExprList *pList = sqliteExprListAppend(0, yymsp[0].minor.yy272, 0);
+ pList = sqliteExprListAppend(pList, yymsp[-3].minor.yy272, 0);
+ yygotominor.yy272 = sqliteExprFunction(pList, 0);
+ if( yygotominor.yy272 ) yygotominor.yy272->op = yymsp[-1].minor.yy136;
+ yygotominor.yy272 = sqliteExpr(TK_NOT, yygotominor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-3].minor.yy272->span,&yymsp[0].minor.yy272->span);
+}
+#line 6036 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for NOT */
+ break;
+ case 194:
+#line 566 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = TK_LIKE;}
+#line 6042 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LIKE */
+ break;
+ case 195:
+#line 567 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy136 = TK_GLOB;}
+#line 6048 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for GLOB */
+ break;
+ case 196:
+#line 568 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_PLUS, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 6054 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for PLUS */
+ break;
+ case 197:
+#line 569 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_MINUS, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 6060 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for MINUS */
+ break;
+ case 198:
+#line 570 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_STAR, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 6066 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for STAR */
+ break;
+ case 199:
+#line 571 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_SLASH, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 6072 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for SLASH */
+ break;
+ case 200:
+#line 572 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_REM, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 6078 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for REM */
+ break;
+ case 201:
+#line 573 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = sqliteExpr(TK_CONCAT, yymsp[-2].minor.yy272, yymsp[0].minor.yy272, 0);}
+#line 6084 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for CONCAT */
+ break;
+ case 202:
+#line 574 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_ISNULL, yymsp[-1].minor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-1].minor.yy272->span,&yymsp[0].minor.yy0);
+}
+#line 6093 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 203:
+#line 578 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_ISNULL, yymsp[-2].minor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-2].minor.yy272->span,&yymsp[0].minor.yy0);
+}
+#line 6101 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for IS */
+ break;
+ case 204:
+#line 582 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_NOTNULL, yymsp[-1].minor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-1].minor.yy272->span,&yymsp[0].minor.yy0);
+}
+#line 6110 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 205:
+#line 586 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_NOTNULL, yymsp[-2].minor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-2].minor.yy272->span,&yymsp[0].minor.yy0);
+}
+#line 6118 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for NOT */
+ break;
+ case 206:
+#line 590 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_NOTNULL, yymsp[-3].minor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-3].minor.yy272->span,&yymsp[0].minor.yy0);
+}
+#line 6127 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for IS */
+ /* No destructor defined for NOT */
+ break;
+ case 207:
+#line 594 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_NOT, yymsp[0].minor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy272->span);
+}
+#line 6137 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 208:
+#line 598 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_BITNOT, yymsp[0].minor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy272->span);
+}
+#line 6145 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 209:
+#line 602 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_UMINUS, yymsp[0].minor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy272->span);
+}
+#line 6153 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 210:
+#line 606 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_UPLUS, yymsp[0].minor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy272->span);
+}
+#line 6161 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 211:
+#line 610 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_SELECT, 0, 0, 0);
+ if( yygotominor.yy272 ) yygotominor.yy272->pSelect = yymsp[-1].minor.yy207;
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
+}
+#line 6170 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 212:
+#line 615 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ ExprList *pList = sqliteExprListAppend(0, yymsp[-2].minor.yy272, 0);
+ pList = sqliteExprListAppend(pList, yymsp[0].minor.yy272, 0);
+ yygotominor.yy272 = sqliteExpr(TK_BETWEEN, yymsp[-4].minor.yy272, 0, 0);
+ if( yygotominor.yy272 ) yygotominor.yy272->pList = pList;
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-4].minor.yy272->span,&yymsp[0].minor.yy272->span);
+}
+#line 6181 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for BETWEEN */
+ /* No destructor defined for AND */
+ break;
+ case 213:
+#line 622 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ ExprList *pList = sqliteExprListAppend(0, yymsp[-2].minor.yy272, 0);
+ pList = sqliteExprListAppend(pList, yymsp[0].minor.yy272, 0);
+ yygotominor.yy272 = sqliteExpr(TK_BETWEEN, yymsp[-5].minor.yy272, 0, 0);
+ if( yygotominor.yy272 ) yygotominor.yy272->pList = pList;
+ yygotominor.yy272 = sqliteExpr(TK_NOT, yygotominor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-5].minor.yy272->span,&yymsp[0].minor.yy272->span);
+}
+#line 6195 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for NOT */
+ /* No destructor defined for BETWEEN */
+ /* No destructor defined for AND */
+ break;
+ case 214:
+#line 630 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_IN, yymsp[-4].minor.yy272, 0, 0);
+ if( yygotominor.yy272 ) yygotominor.yy272->pList = yymsp[-1].minor.yy168;
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-4].minor.yy272->span,&yymsp[0].minor.yy0);
+}
+#line 6207 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for IN */
+ /* No destructor defined for LP */
+ break;
+ case 215:
+#line 635 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_IN, yymsp[-4].minor.yy272, 0, 0);
+ if( yygotominor.yy272 ) yygotominor.yy272->pSelect = yymsp[-1].minor.yy207;
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-4].minor.yy272->span,&yymsp[0].minor.yy0);
+}
+#line 6218 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for IN */
+ /* No destructor defined for LP */
+ break;
+ case 216:
+#line 640 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_IN, yymsp[-5].minor.yy272, 0, 0);
+ if( yygotominor.yy272 ) yygotominor.yy272->pList = yymsp[-1].minor.yy168;
+ yygotominor.yy272 = sqliteExpr(TK_NOT, yygotominor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-5].minor.yy272->span,&yymsp[0].minor.yy0);
+}
+#line 6230 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for NOT */
+ /* No destructor defined for IN */
+ /* No destructor defined for LP */
+ break;
+ case 217:
+#line 646 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_IN, yymsp[-5].minor.yy272, 0, 0);
+ if( yygotominor.yy272 ) yygotominor.yy272->pSelect = yymsp[-1].minor.yy207;
+ yygotominor.yy272 = sqliteExpr(TK_NOT, yygotominor.yy272, 0, 0);
+ sqliteExprSpan(yygotominor.yy272,&yymsp[-5].minor.yy272->span,&yymsp[0].minor.yy0);
+}
+#line 6243 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for NOT */
+ /* No destructor defined for IN */
+ /* No destructor defined for LP */
+ break;
+ case 218:
+#line 654 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_CASE, yymsp[-3].minor.yy272, yymsp[-1].minor.yy272, 0);
+ if( yygotominor.yy272 ) yygotominor.yy272->pList = yymsp[-2].minor.yy168;
+ sqliteExprSpan(yygotominor.yy272, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0);
+}
+#line 6255 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 219:
+#line 661 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy168 = sqliteExprListAppend(yymsp[-4].minor.yy168, yymsp[-2].minor.yy272, 0);
+ yygotominor.yy168 = sqliteExprListAppend(yygotominor.yy168, yymsp[0].minor.yy272, 0);
+}
+#line 6263 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for WHEN */
+ /* No destructor defined for THEN */
+ break;
+ case 220:
+#line 665 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy168 = sqliteExprListAppend(0, yymsp[-2].minor.yy272, 0);
+ yygotominor.yy168 = sqliteExprListAppend(yygotominor.yy168, yymsp[0].minor.yy272, 0);
+}
+#line 6273 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for WHEN */
+ /* No destructor defined for THEN */
+ break;
+ case 221:
+#line 670 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = yymsp[0].minor.yy272;}
+#line 6280 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for ELSE */
+ break;
+ case 222:
+#line 671 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = 0;}
+#line 6286 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 223:
+#line 673 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = yymsp[0].minor.yy272;}
+#line 6291 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 224:
+#line 674 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = 0;}
+#line 6296 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 225:
+#line 682 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = sqliteExprListAppend(yymsp[-2].minor.yy168,yymsp[0].minor.yy272,0);}
+#line 6301 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 226:
+#line 683 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy168 = sqliteExprListAppend(0,yymsp[0].minor.yy272,0);}
+#line 6307 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 227:
+#line 684 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = yymsp[0].minor.yy272;}
+#line 6312 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 228:
+#line 685 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy272 = 0;}
+#line 6317 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 229:
+#line 690 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ if( yymsp[-8].minor.yy136!=OE_None ) yymsp[-8].minor.yy136 = yymsp[0].minor.yy136;
+ if( yymsp[-8].minor.yy136==OE_Default) yymsp[-8].minor.yy136 = OE_Abort;
+ sqliteCreateIndex(pParse, &yymsp[-6].minor.yy324, &yymsp[-4].minor.yy324, yymsp[-2].minor.yy268, yymsp[-8].minor.yy136, &yymsp[-9].minor.yy0, &yymsp[-1].minor.yy0);
+}
+#line 6326 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for INDEX */
+ /* No destructor defined for ON */
+ /* No destructor defined for LP */
+ break;
+ case 230:
+#line 697 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_Abort; }
+#line 6334 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for UNIQUE */
+ break;
+ case 231:
+#line 698 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = OE_None; }
+#line 6340 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 232:
+#line 706 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy268 = 0;}
+#line 6345 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 233:
+#line 707 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy268 = yymsp[-1].minor.yy268;}
+#line 6350 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 234:
+#line 708 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy268 = sqliteIdListAppend(yymsp[-2].minor.yy268,&yymsp[0].minor.yy324);}
+#line 6357 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COMMA */
+ break;
+ case 235:
+#line 709 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy268 = sqliteIdListAppend(0,&yymsp[0].minor.yy324);}
+#line 6363 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 236:
+#line 710 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy324;}
+#line 6368 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 237:
+#line 715 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteDropIndex(pParse, &yymsp[0].minor.yy324);}
+#line 6373 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DROP */
+ /* No destructor defined for INDEX */
+ break;
+ case 238:
+#line 721 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteCopy(pParse,&yymsp[-5].minor.yy324,&yymsp[-3].minor.yy324,&yymsp[0].minor.yy0,yymsp[-6].minor.yy136);}
+#line 6380 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COPY */
+ /* No destructor defined for FROM */
+ /* No destructor defined for USING */
+ /* No destructor defined for DELIMITERS */
+ break;
+ case 239:
+#line 723 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteCopy(pParse,&yymsp[-2].minor.yy324,&yymsp[0].minor.yy324,0,yymsp[-3].minor.yy136);}
+#line 6389 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for COPY */
+ /* No destructor defined for FROM */
+ break;
+ case 240:
+#line 727 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteVacuum(pParse,0);}
+#line 6396 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for VACUUM */
+ break;
+ case 241:
+#line 728 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqliteVacuum(pParse,&yymsp[0].minor.yy324);}
+#line 6402 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for VACUUM */
+ break;
+ case 242:
+#line 732 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqlitePragma(pParse,&yymsp[-2].minor.yy324,&yymsp[0].minor.yy324,0);}
+#line 6408 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for PRAGMA */
+ /* No destructor defined for EQ */
+ break;
+ case 243:
+#line 733 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqlitePragma(pParse,&yymsp[-2].minor.yy324,&yymsp[0].minor.yy0,0);}
+#line 6415 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for PRAGMA */
+ /* No destructor defined for EQ */
+ break;
+ case 244:
+#line 734 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqlitePragma(pParse,&yymsp[-2].minor.yy324,&yymsp[0].minor.yy324,0);}
+#line 6422 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for PRAGMA */
+ /* No destructor defined for EQ */
+ break;
+ case 245:
+#line 735 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqlitePragma(pParse,&yymsp[-2].minor.yy324,&yymsp[0].minor.yy324,1);}
+#line 6429 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for PRAGMA */
+ /* No destructor defined for EQ */
+ break;
+ case 246:
+#line 736 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqlitePragma(pParse,&yymsp[-3].minor.yy324,&yymsp[-1].minor.yy324,0);}
+#line 6436 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for PRAGMA */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 247:
+#line 737 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{sqlitePragma(pParse,&yymsp[0].minor.yy324,&yymsp[0].minor.yy324,0);}
+#line 6444 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for PRAGMA */
+ break;
+ case 248:
+#line 738 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy324;}
+#line 6450 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for plus_opt */
+ break;
+ case 249:
+#line 739 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy324;}
+#line 6456 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for MINUS */
+ break;
+ case 250:
+#line 740 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy0;}
+#line 6462 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 251:
+#line 741 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy324 = yymsp[0].minor.yy0;}
+#line 6467 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 252:
+ /* No destructor defined for PLUS */
+ break;
+ case 253:
+ break;
+ case 254:
+#line 748 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ Token all;
+ all.z = yymsp[-11].minor.yy0.z;
+ all.n = (yymsp[0].minor.yy0.z - yymsp[-11].minor.yy0.z) + yymsp[0].minor.yy0.n;
+ sqliteCreateTrigger(pParse, &yymsp[-9].minor.yy324, yymsp[-8].minor.yy136, yymsp[-7].minor.yy72.a, yymsp[-7].minor.yy72.b, &yymsp[-5].minor.yy324, yymsp[-4].minor.yy136, yymsp[-3].minor.yy176, yymsp[-1].minor.yy209, &all);
+}
+#line 6482 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for TRIGGER */
+ /* No destructor defined for ON */
+ /* No destructor defined for BEGIN */
+ break;
+ case 255:
+#line 756 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = TK_BEFORE; }
+#line 6490 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for BEFORE */
+ break;
+ case 256:
+#line 757 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = TK_AFTER; }
+#line 6496 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for AFTER */
+ break;
+ case 257:
+#line 758 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = TK_INSTEAD;}
+#line 6502 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for INSTEAD */
+ /* No destructor defined for OF */
+ break;
+ case 258:
+#line 759 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = TK_BEFORE; }
+#line 6509 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 259:
+#line 763 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy72.a = TK_DELETE; yygotominor.yy72.b = 0; }
+#line 6514 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DELETE */
+ break;
+ case 260:
+#line 764 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy72.a = TK_INSERT; yygotominor.yy72.b = 0; }
+#line 6520 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for INSERT */
+ break;
+ case 261:
+#line 765 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy72.a = TK_UPDATE; yygotominor.yy72.b = 0;}
+#line 6526 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for UPDATE */
+ break;
+ case 262:
+#line 766 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy72.a = TK_UPDATE; yygotominor.yy72.b = yymsp[0].minor.yy268; }
+#line 6532 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for UPDATE */
+ /* No destructor defined for OF */
+ break;
+ case 263:
+#line 769 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = TK_ROW; }
+#line 6539 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 264:
+#line 770 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = TK_ROW; }
+#line 6544 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for FOR */
+ /* No destructor defined for EACH */
+ /* No destructor defined for ROW */
+ break;
+ case 265:
+#line 771 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy136 = TK_STATEMENT; }
+#line 6552 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for FOR */
+ /* No destructor defined for EACH */
+ /* No destructor defined for STATEMENT */
+ break;
+ case 266:
+#line 774 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy176 = 0; }
+#line 6560 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 267:
+#line 775 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy176 = yymsp[0].minor.yy272; }
+#line 6565 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for WHEN */
+ break;
+ case 268:
+#line 778 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yymsp[-2].minor.yy209->pNext = yymsp[0].minor.yy209 ; yygotominor.yy209 = yymsp[-2].minor.yy209; }
+#line 6572 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for SEMI */
+ break;
+ case 269:
+#line 780 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy209 = 0; }
+#line 6578 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 270:
+#line 785 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{ yygotominor.yy209 = sqliteTriggerUpdateStep(&yymsp[-3].minor.yy324, yymsp[-1].minor.yy168, yymsp[0].minor.yy272, yymsp[-4].minor.yy136); }
+#line 6583 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for UPDATE */
+ /* No destructor defined for SET */
+ break;
+ case 271:
+#line 790 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy209 = sqliteTriggerInsertStep(&yymsp[-5].minor.yy324, yymsp[-4].minor.yy268, yymsp[-1].minor.yy168, 0, yymsp[-7].minor.yy136);}
+#line 6590 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for INSERT */
+ /* No destructor defined for INTO */
+ /* No destructor defined for VALUES */
+ /* No destructor defined for LP */
+ /* No destructor defined for RP */
+ break;
+ case 272:
+#line 793 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy209 = sqliteTriggerInsertStep(&yymsp[-2].minor.yy324, yymsp[-1].minor.yy268, 0, yymsp[0].minor.yy207, yymsp[-4].minor.yy136);}
+#line 6600 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for INSERT */
+ /* No destructor defined for INTO */
+ break;
+ case 273:
+#line 797 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy209 = sqliteTriggerDeleteStep(&yymsp[-1].minor.yy324, yymsp[0].minor.yy272);}
+#line 6607 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DELETE */
+ /* No destructor defined for FROM */
+ break;
+ case 274:
+#line 800 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{yygotominor.yy209 = sqliteTriggerSelectStep(yymsp[0].minor.yy207); }
+#line 6614 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ break;
+ case 275:
+#line 803 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_RAISE, 0, 0, 0);
+ yygotominor.yy272->iColumn = OE_Ignore;
+ sqliteExprSpan(yygotominor.yy272, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0);
+}
+#line 6623 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for IGNORE */
+ break;
+ case 276:
+#line 808 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy324);
+ yygotominor.yy272->iColumn = OE_Rollback;
+ sqliteExprSpan(yygotominor.yy272, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
+}
+#line 6634 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for ROLLBACK */
+ /* No destructor defined for COMMA */
+ break;
+ case 277:
+#line 813 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy324);
+ yygotominor.yy272->iColumn = OE_Abort;
+ sqliteExprSpan(yygotominor.yy272, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
+}
+#line 6646 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for ABORT */
+ /* No destructor defined for COMMA */
+ break;
+ case 278:
+#line 818 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ yygotominor.yy272 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy324);
+ yygotominor.yy272->iColumn = OE_Fail;
+ sqliteExprSpan(yygotominor.yy272, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
+}
+#line 6658 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for LP */
+ /* No destructor defined for FAIL */
+ /* No destructor defined for COMMA */
+ break;
+ case 279:
+#line 825 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+{
+ sqliteDropTrigger(pParse,&yymsp[0].minor.yy324,0);
+}
+#line 6668 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ /* No destructor defined for DROP */
+ /* No destructor defined for TRIGGER */
+ break;
+ };
+ yygoto = yyRuleInfo[yyruleno].lhs;
+ yysize = yyRuleInfo[yyruleno].nrhs;
+ yypParser->yyidx -= yysize;
+ yypParser->yytop -= yysize;
+ yyact = yy_find_parser_action(yypParser,yygoto);
+ if( yyact < YYNSTATE ){
+ yy_shift(yypParser,yyact,yygoto,&yygotominor);
+ }else if( yyact == YYNSTATE + YYNRULE + 1 ){
+ yy_accept(yypParser);
+ }
+}
+
+/*
+** The following code executes when the parse fails
+*/
+static void yy_parse_failed(
+ yyParser *yypParser /* The parser */
+){
+ sqliteParserARG_FETCH;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser fails */
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/*
+** The following code executes when a syntax error first occurs.
+*/
+static void yy_syntax_error(
+ yyParser *yypParser, /* The parser */
+ int yymajor, /* The major type of the error token */
+ YYMINORTYPE yyminor /* The minor type of the error token */
+){
+ sqliteParserARG_FETCH;
+#define TOKEN (yyminor.yy0)
+#line 23 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.y"
+
+ if( pParse->zErrMsg==0 ){
+ if( TOKEN.z[0] ){
+ sqliteSetNString(&pParse->zErrMsg,
+ "near \"", -1, TOKEN.z, TOKEN.n, "\": syntax error", -1, 0);
+ }else{
+ sqliteSetString(&pParse->zErrMsg, "incomplete SQL statement", 0);
+ }
+ }
+ pParse->nErr++;
+
+#line 6725 "/home/wez/src/php/pear/PECL/sqlite/libsqlite/src/parse.c"
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/*
+** The following is executed when the parser accepts
+*/
+static void yy_accept(
+ yyParser *yypParser /* The parser */
+){
+ sqliteParserARG_FETCH;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser accepts */
+ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/* The main parser program.
+** The first argument is a pointer to a structure obtained from
+** "sqliteParserAlloc" which describes the current state of the parser.
+** The second argument is the major token number. The third is
+** the minor token. The fourth optional argument is whatever the
+** user wants (and specified in the grammar) and is available for
+** use by the action routines.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser (an opaque structure.)
+** <li> The major token number.
+** <li> The minor token number.
+** <li> An option argument of a grammar-specified type.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+void sqliteParser(
+ void *yyp, /* The parser */
+ int yymajor, /* The major token code number */
+ sqliteParserTOKENTYPE yyminor /* The value for the token */
+ sqliteParserARG_PDECL /* Optional %extra_argument parameter */
+){
+ YYMINORTYPE yyminorunion;
+ int yyact; /* The parser action. */
+ int yyendofinput; /* True if we are at the end of input */
+ int yyerrorhit = 0; /* True if yymajor has invoked an error */
+ yyParser *yypParser; /* The parser */
+
+ /* (re)initialize the parser, if necessary */
+ yypParser = (yyParser*)yyp;
+ if( yypParser->yyidx<0 ){
+ if( yymajor==0 ) return;
+ yypParser->yyidx = 0;
+ yypParser->yyerrcnt = -1;
+ yypParser->yytop = &yypParser->yystack[0];
+ yypParser->yytop->stateno = 0;
+ yypParser->yytop->major = 0;
+ }
+ yyminorunion.yy0 = yyminor;
+ yyendofinput = (yymajor==0);
+ sqliteParserARG_STORE;
+
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
+ }
+#endif
+
+ do{
+ yyact = yy_find_parser_action(yypParser,yymajor);
+ if( yyact<YYNSTATE ){
+ yy_shift(yypParser,yyact,yymajor,&yyminorunion);
+ yypParser->yyerrcnt--;
+ if( yyendofinput && yypParser->yyidx>=0 ){
+ yymajor = 0;
+ }else{
+ yymajor = YYNOCODE;
+ }
+ }else if( yyact < YYNSTATE + YYNRULE ){
+ yy_reduce(yypParser,yyact-YYNSTATE);
+ }else if( yyact == YY_ERROR_ACTION ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
+ }
+#endif
+#ifdef YYERRORSYMBOL
+ /* A syntax error has occurred.
+ ** The response to an error depends upon whether or not the
+ ** grammar defines an error token "ERROR".
+ **
+ ** This is what we do if the grammar does define ERROR:
+ **
+ ** * Call the %syntax_error function.
+ **
+ ** * Begin popping the stack until we enter a state where
+ ** it is legal to shift the error symbol, then shift
+ ** the error symbol.
+ **
+ ** * Set the error count to three.
+ **
+ ** * Begin accepting and shifting new tokens. No new error
+ ** processing will occur until three tokens have been
+ ** shifted successfully.
+ **
+ */
+ if( yypParser->yyerrcnt<0 ){
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
+ }
+ if( yypParser->yytop->major==YYERRORSYMBOL || yyerrorhit ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sDiscard input token %s\n",
+ yyTracePrompt,yyTokenName[yymajor]);
+ }
+#endif
+ yy_destructor(yymajor,&yyminorunion);
+ yymajor = YYNOCODE;
+ }else{
+ while(
+ yypParser->yyidx >= 0 &&
+ yypParser->yytop->major != YYERRORSYMBOL &&
+ (yyact = yy_find_parser_action(yypParser,YYERRORSYMBOL)) >= YYNSTATE
+ ){
+ yy_pop_parser_stack(yypParser);
+ }
+ if( yypParser->yyidx < 0 || yymajor==0 ){
+ yy_destructor(yymajor,&yyminorunion);
+ yy_parse_failed(yypParser);
+ yymajor = YYNOCODE;
+ }else if( yypParser->yytop->major!=YYERRORSYMBOL ){
+ YYMINORTYPE u2;
+ u2.YYERRSYMDT = 0;
+ yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
+ }
+ }
+ yypParser->yyerrcnt = 3;
+ yyerrorhit = 1;
+#else /* YYERRORSYMBOL is not defined */
+ /* This is what we do if the grammar does not define ERROR:
+ **
+ ** * Report an error message, and throw away the input token.
+ **
+ ** * If the input token is $, then fail the parse.
+ **
+ ** As before, subsequent error messages are suppressed until
+ ** three input tokens have been successfully shifted.
+ */
+ if( yypParser->yyerrcnt<=0 ){
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
+ }
+ yypParser->yyerrcnt = 3;
+ yy_destructor(yymajor,&yyminorunion);
+ if( yyendofinput ){
+ yy_parse_failed(yypParser);
+ }
+ yymajor = YYNOCODE;
+#endif
+ }else{
+ yy_accept(yypParser);
+ yymajor = YYNOCODE;
+ }
+ }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
+ return;
+}
--- /dev/null
+#define TK_ABORT 1
+#define TK_AFTER 2
+#define TK_AGG_FUNCTION 3
+#define TK_ALL 4
+#define TK_AND 5
+#define TK_AS 6
+#define TK_ASC 7
+#define TK_BEFORE 8
+#define TK_BEGIN 9
+#define TK_BETWEEN 10
+#define TK_BITAND 11
+#define TK_BITNOT 12
+#define TK_BITOR 13
+#define TK_BY 14
+#define TK_CASCADE 15
+#define TK_CASE 16
+#define TK_CHECK 17
+#define TK_CLUSTER 18
+#define TK_COLLATE 19
+#define TK_COLUMN 20
+#define TK_COMMA 21
+#define TK_COMMENT 22
+#define TK_COMMIT 23
+#define TK_CONCAT 24
+#define TK_CONFLICT 25
+#define TK_CONSTRAINT 26
+#define TK_COPY 27
+#define TK_CREATE 28
+#define TK_DEFAULT 29
+#define TK_DEFERRABLE 30
+#define TK_DEFERRED 31
+#define TK_DELETE 32
+#define TK_DELIMITERS 33
+#define TK_DESC 34
+#define TK_DISTINCT 35
+#define TK_DOT 36
+#define TK_DROP 37
+#define TK_EACH 38
+#define TK_ELSE 39
+#define TK_END 40
+#define TK_END_OF_FILE 41
+#define TK_EQ 42
+#define TK_EXCEPT 43
+#define TK_EXPLAIN 44
+#define TK_FAIL 45
+#define TK_FLOAT 46
+#define TK_FOR 47
+#define TK_FOREIGN 48
+#define TK_FROM 49
+#define TK_FUNCTION 50
+#define TK_GE 51
+#define TK_GLOB 52
+#define TK_GROUP 53
+#define TK_GT 54
+#define TK_HAVING 55
+#define TK_ID 56
+#define TK_IGNORE 57
+#define TK_ILLEGAL 58
+#define TK_IMMEDIATE 59
+#define TK_IN 60
+#define TK_INDEX 61
+#define TK_INITIALLY 62
+#define TK_INSERT 63
+#define TK_INSTEAD 64
+#define TK_INTEGER 65
+#define TK_INTERSECT 66
+#define TK_INTO 67
+#define TK_IS 68
+#define TK_ISNULL 69
+#define TK_JOIN 70
+#define TK_JOIN_KW 71
+#define TK_KEY 72
+#define TK_LE 73
+#define TK_LIKE 74
+#define TK_LIMIT 75
+#define TK_LP 76
+#define TK_LSHIFT 77
+#define TK_LT 78
+#define TK_MATCH 79
+#define TK_MINUS 80
+#define TK_NE 81
+#define TK_NOT 82
+#define TK_NOTNULL 83
+#define TK_NULL 84
+#define TK_OF 85
+#define TK_OFFSET 86
+#define TK_ON 87
+#define TK_OR 88
+#define TK_ORACLE_OUTER_JOIN 89
+#define TK_ORDER 90
+#define TK_PLUS 91
+#define TK_PRAGMA 92
+#define TK_PRIMARY 93
+#define TK_RAISE 94
+#define TK_REFERENCES 95
+#define TK_REM 96
+#define TK_REPLACE 97
+#define TK_RESTRICT 98
+#define TK_ROLLBACK 99
+#define TK_ROW 100
+#define TK_RP 101
+#define TK_RSHIFT 102
+#define TK_SELECT 103
+#define TK_SEMI 104
+#define TK_SET 105
+#define TK_SLASH 106
+#define TK_SPACE 107
+#define TK_STAR 108
+#define TK_STATEMENT 109
+#define TK_STRING 110
+#define TK_TABLE 111
+#define TK_TEMP 112
+#define TK_THEN 113
+#define TK_TRANSACTION 114
+#define TK_TRIGGER 115
+#define TK_UMINUS 116
+#define TK_UNCLOSED_STRING 117
+#define TK_UNION 118
+#define TK_UNIQUE 119
+#define TK_UPDATE 120
+#define TK_UPLUS 121
+#define TK_USING 122
+#define TK_VACUUM 123
+#define TK_VALUES 124
+#define TK_VIEW 125
+#define TK_WHEN 126
+#define TK_WHERE 127
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains SQLite's grammar for SQL. Process this file
+** using the lemon parser generator to generate C code that runs
+** the parser. Lemon will also generate a header file containing
+** numeric codes for all of the tokens.
+**
+** @(#) $Id$
+*/
+%token_prefix TK_
+%token_type {Token}
+%default_type {Token}
+%extra_argument {Parse *pParse}
+%syntax_error {
+ if( pParse->zErrMsg==0 ){
+ if( TOKEN.z[0] ){
+ sqliteSetNString(&pParse->zErrMsg,
+ "near \"", -1, TOKEN.z, TOKEN.n, "\": syntax error", -1, 0);
+ }else{
+ sqliteSetString(&pParse->zErrMsg, "incomplete SQL statement", 0);
+ }
+ }
+ pParse->nErr++;
+}
+%name sqliteParser
+%include {
+#include "sqliteInt.h"
+#include "parse.h"
+
+/*
+** An instance of this structure holds information about the
+** LIMIT clause of a SELECT statement.
+*/
+struct LimitVal {
+ int limit; /* The LIMIT value. -1 if there is no limit */
+ int offset; /* The OFFSET. 0 if there is none */
+};
+
+/*
+** An instance of the following structure describes the event of a
+** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
+** TK_DELETE, or TK_INSTEAD. If the event is of the form
+**
+** UPDATE ON (a,b,c)
+**
+** Then the "b" IdList records the list "a,b,c".
+*/
+struct TrigEvent { int a; IdList * b; };
+
+} // end %include
+
+// These are extra tokens used by the lexer but never seen by the
+// parser. We put them in a rule so that the parser generator will
+// add them to the parse.h output file.
+//
+%nonassoc END_OF_FILE ILLEGAL SPACE UNCLOSED_STRING COMMENT FUNCTION
+ COLUMN AGG_FUNCTION.
+
+// Input is zero or more commands.
+input ::= cmdlist.
+
+// A list of commands is zero or more commands
+//
+cmdlist ::= ecmd.
+cmdlist ::= cmdlist ecmd.
+ecmd ::= explain cmdx SEMI.
+ecmd ::= SEMI.
+cmdx ::= cmd. { sqliteExec(pParse); }
+explain ::= EXPLAIN. { sqliteBeginParse(pParse, 1); }
+explain ::= . { sqliteBeginParse(pParse, 0); }
+
+///////////////////// Begin and end transactions. ////////////////////////////
+//
+
+cmd ::= BEGIN trans_opt onconf(R). {sqliteBeginTransaction(pParse,R);}
+trans_opt ::= .
+trans_opt ::= TRANSACTION.
+trans_opt ::= TRANSACTION nm.
+cmd ::= COMMIT trans_opt. {sqliteCommitTransaction(pParse);}
+cmd ::= END trans_opt. {sqliteCommitTransaction(pParse);}
+cmd ::= ROLLBACK trans_opt. {sqliteRollbackTransaction(pParse);}
+
+///////////////////// The CREATE TABLE statement ////////////////////////////
+//
+cmd ::= create_table create_table_args.
+create_table ::= CREATE(X) temp(T) TABLE nm(Y). {
+ sqliteStartTable(pParse,&X,&Y,T,0);
+}
+%type temp {int}
+temp(A) ::= TEMP. {A = pParse->isTemp || !pParse->initFlag;}
+temp(A) ::= . {A = pParse->isTemp;}
+create_table_args ::= LP columnlist conslist_opt RP(X). {
+ sqliteEndTable(pParse,&X,0);
+}
+create_table_args ::= AS select(S). {
+ sqliteEndTable(pParse,0,S);
+ sqliteSelectDelete(S);
+}
+columnlist ::= columnlist COMMA column.
+columnlist ::= column.
+
+// About the only information used for a column is the name of the
+// column. The type is always just "text". But the code will accept
+// an elaborate typename. Perhaps someday we'll do something with it.
+//
+column ::= columnid type carglist.
+columnid ::= nm(X). {sqliteAddColumn(pParse,&X);}
+
+// An IDENTIFIER can be a generic identifier, or one of several
+// keywords. Any non-standard keyword can also be an identifier.
+//
+%type id {Token}
+id(A) ::= ID(X). {A = X;}
+
+// The following directive causes tokens ABORT, AFTER, ASC, etc. to
+// fallback to ID if they will not parse as their original value.
+// This obviates the need for the "id" nonterminal.
+//
+%fallback ID
+ ABORT AFTER ASC BEFORE BEGIN CASCADE CLUSTER CONFLICT
+ COPY DEFERRED DELIMITERS DESC EACH END EXPLAIN FAIL FOR
+ IGNORE IMMEDIATE INITIALLY INSTEAD MATCH KEY
+ OF OFFSET PRAGMA RAISE REPLACE RESTRICT ROW STATEMENT
+ TEMP TRIGGER VACUUM VIEW.
+
+// And "ids" is an identifer-or-string.
+//
+%type ids {Token}
+ids(A) ::= ID(X). {A = X;}
+ids(A) ::= STRING(X). {A = X;}
+
+// The name of a column or table can be any of the following:
+//
+%type nm {Token}
+nm(A) ::= ID(X). {A = X;}
+nm(A) ::= STRING(X). {A = X;}
+nm(A) ::= JOIN_KW(X). {A = X;}
+
+type ::= .
+type ::= typename(X). {sqliteAddColumnType(pParse,&X,&X);}
+type ::= typename(X) LP signed RP(Y). {sqliteAddColumnType(pParse,&X,&Y);}
+type ::= typename(X) LP signed COMMA signed RP(Y).
+ {sqliteAddColumnType(pParse,&X,&Y);}
+%type typename {Token}
+typename(A) ::= ids(X). {A = X;}
+typename(A) ::= typename(X) ids. {A = X;}
+signed ::= INTEGER.
+signed ::= PLUS INTEGER.
+signed ::= MINUS INTEGER.
+carglist ::= carglist carg.
+carglist ::= .
+carg ::= CONSTRAINT nm ccons.
+carg ::= ccons.
+carg ::= DEFAULT STRING(X). {sqliteAddDefaultValue(pParse,&X,0);}
+carg ::= DEFAULT ID(X). {sqliteAddDefaultValue(pParse,&X,0);}
+carg ::= DEFAULT INTEGER(X). {sqliteAddDefaultValue(pParse,&X,0);}
+carg ::= DEFAULT PLUS INTEGER(X). {sqliteAddDefaultValue(pParse,&X,0);}
+carg ::= DEFAULT MINUS INTEGER(X). {sqliteAddDefaultValue(pParse,&X,1);}
+carg ::= DEFAULT FLOAT(X). {sqliteAddDefaultValue(pParse,&X,0);}
+carg ::= DEFAULT PLUS FLOAT(X). {sqliteAddDefaultValue(pParse,&X,0);}
+carg ::= DEFAULT MINUS FLOAT(X). {sqliteAddDefaultValue(pParse,&X,1);}
+carg ::= DEFAULT NULL.
+
+// In addition to the type name, we also care about the primary key and
+// UNIQUE constraints.
+//
+ccons ::= NULL onconf.
+ccons ::= NOT NULL onconf(R). {sqliteAddNotNull(pParse, R);}
+ccons ::= PRIMARY KEY sortorder onconf(R). {sqliteAddPrimaryKey(pParse,0,R);}
+ccons ::= UNIQUE onconf(R). {sqliteCreateIndex(pParse,0,0,0,R,0,0);}
+ccons ::= CHECK LP expr RP onconf.
+ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
+ {sqliteCreateForeignKey(pParse,0,&T,TA,R);}
+ccons ::= defer_subclause(D). {sqliteDeferForeignKey(pParse,D);}
+ccons ::= COLLATE id(C). {
+ sqliteAddCollateType(pParse, sqliteCollateType(C.z, C.n));
+}
+
+// The next group of rules parses the arguments to a REFERENCES clause
+// that determine if the referential integrity checking is deferred or
+// or immediate and which determine what action to take if a ref-integ
+// check fails.
+//
+%type refargs {int}
+refargs(A) ::= . { A = OE_Restrict * 0x010101; }
+refargs(A) ::= refargs(X) refarg(Y). { A = (X & Y.mask) | Y.value; }
+%type refarg {struct {int value; int mask;}}
+refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; }
+refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; }
+refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; }
+refarg(A) ::= ON INSERT refact(X). { A.value = X<<16; A.mask = 0xff0000; }
+%type refact {int}
+refact(A) ::= SET NULL. { A = OE_SetNull; }
+refact(A) ::= SET DEFAULT. { A = OE_SetDflt; }
+refact(A) ::= CASCADE. { A = OE_Cascade; }
+refact(A) ::= RESTRICT. { A = OE_Restrict; }
+%type defer_subclause {int}
+defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt(X). {A = X;}
+defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;}
+%type init_deferred_pred_opt {int}
+init_deferred_pred_opt(A) ::= . {A = 0;}
+init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;}
+init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;}
+
+// For the time being, the only constraint we care about is the primary
+// key and UNIQUE. Both create indices.
+//
+conslist_opt ::= .
+conslist_opt ::= COMMA conslist.
+conslist ::= conslist COMMA tcons.
+conslist ::= conslist tcons.
+conslist ::= tcons.
+tcons ::= CONSTRAINT nm.
+tcons ::= PRIMARY KEY LP idxlist(X) RP onconf(R).
+ {sqliteAddPrimaryKey(pParse,X,R);}
+tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
+ {sqliteCreateIndex(pParse,0,0,X,R,0,0);}
+tcons ::= CHECK expr onconf.
+tcons ::= FOREIGN KEY LP idxlist(FA) RP
+ REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
+ sqliteCreateForeignKey(pParse, FA, &T, TA, R);
+ sqliteDeferForeignKey(pParse, D);
+}
+%type defer_subclause_opt {int}
+defer_subclause_opt(A) ::= . {A = 0;}
+defer_subclause_opt(A) ::= defer_subclause(X). {A = X;}
+
+// The following is a non-standard extension that allows us to declare the
+// default behavior when there is a constraint conflict.
+//
+%type onconf {int}
+%type orconf {int}
+%type resolvetype {int}
+onconf(A) ::= . { A = OE_Default; }
+onconf(A) ::= ON CONFLICT resolvetype(X). { A = X; }
+orconf(A) ::= . { A = OE_Default; }
+orconf(A) ::= OR resolvetype(X). { A = X; }
+resolvetype(A) ::= ROLLBACK. { A = OE_Rollback; }
+resolvetype(A) ::= ABORT. { A = OE_Abort; }
+resolvetype(A) ::= FAIL. { A = OE_Fail; }
+resolvetype(A) ::= IGNORE. { A = OE_Ignore; }
+resolvetype(A) ::= REPLACE. { A = OE_Replace; }
+
+////////////////////////// The DROP TABLE /////////////////////////////////////
+//
+cmd ::= DROP TABLE nm(X). {sqliteDropTable(pParse,&X,0);}
+
+///////////////////// The CREATE VIEW statement /////////////////////////////
+//
+cmd ::= CREATE(X) temp(T) VIEW nm(Y) AS select(S). {
+ sqliteCreateView(pParse, &X, &Y, S, T);
+}
+cmd ::= DROP VIEW nm(X). {
+ sqliteDropTable(pParse, &X, 1);
+}
+
+//////////////////////// The SELECT statement /////////////////////////////////
+//
+cmd ::= select(X). {
+ sqliteSelect(pParse, X, SRT_Callback, 0, 0, 0, 0);
+ sqliteSelectDelete(X);
+}
+
+%type select {Select*}
+%destructor select {sqliteSelectDelete($$);}
+%type oneselect {Select*}
+%destructor oneselect {sqliteSelectDelete($$);}
+
+select(A) ::= oneselect(X). {A = X;}
+select(A) ::= select(X) multiselect_op(Y) oneselect(Z). {
+ if( Z ){
+ Z->op = Y;
+ Z->pPrior = X;
+ }
+ A = Z;
+}
+%type multiselect_op {int}
+multiselect_op(A) ::= UNION. {A = TK_UNION;}
+multiselect_op(A) ::= UNION ALL. {A = TK_ALL;}
+multiselect_op(A) ::= INTERSECT. {A = TK_INTERSECT;}
+multiselect_op(A) ::= EXCEPT. {A = TK_EXCEPT;}
+oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
+ groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
+ A = sqliteSelectNew(W,X,Y,P,Q,Z,D,L.limit,L.offset);
+}
+
+// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
+// present and false (0) if it is not.
+//
+%type distinct {int}
+distinct(A) ::= DISTINCT. {A = 1;}
+distinct(A) ::= ALL. {A = 0;}
+distinct(A) ::= . {A = 0;}
+
+// selcollist is a list of expressions that are to become the return
+// values of the SELECT statement. The "*" in statements like
+// "SELECT * FROM ..." is encoded as a special expression with an
+// opcode of TK_ALL.
+//
+%type selcollist {ExprList*}
+%destructor selcollist {sqliteExprListDelete($$);}
+%type sclp {ExprList*}
+%destructor sclp {sqliteExprListDelete($$);}
+sclp(A) ::= selcollist(X) COMMA. {A = X;}
+sclp(A) ::= . {A = 0;}
+selcollist(A) ::= sclp(P) expr(X) as(Y). {
+ A = sqliteExprListAppend(P,X,Y.n?&Y:0);
+}
+selcollist(A) ::= sclp(P) STAR. {
+ A = sqliteExprListAppend(P, sqliteExpr(TK_ALL, 0, 0, 0), 0);
+}
+selcollist(A) ::= sclp(P) nm(X) DOT STAR. {
+ Expr *pRight = sqliteExpr(TK_ALL, 0, 0, 0);
+ Expr *pLeft = sqliteExpr(TK_ID, 0, 0, &X);
+ A = sqliteExprListAppend(P, sqliteExpr(TK_DOT, pLeft, pRight, 0), 0);
+}
+
+// An option "AS <id>" phrase that can follow one of the expressions that
+// define the result set, or one of the tables in the FROM clause.
+//
+%type as {Token}
+as(X) ::= AS nm(Y). { X = Y; }
+as(X) ::= ids(Y). { X = Y; }
+as(X) ::= . { X.n = 0; }
+
+
+%type seltablist {SrcList*}
+%destructor seltablist {sqliteSrcListDelete($$);}
+%type stl_prefix {SrcList*}
+%destructor stl_prefix {sqliteSrcListDelete($$);}
+%type from {SrcList*}
+%destructor from {sqliteSrcListDelete($$);}
+
+// A complete FROM clause.
+//
+from(A) ::= . {A = sqliteMalloc(sizeof(*A));}
+from(A) ::= FROM seltablist(X). {A = X;}
+
+// "seltablist" is a "Select Table List" - the content of the FROM clause
+// in a SELECT statement. "stl_prefix" is a prefix of this list.
+//
+stl_prefix(A) ::= seltablist(X) joinop(Y). {
+ A = X;
+ if( A && A->nSrc>0 ) A->a[A->nSrc-1].jointype = Y;
+}
+stl_prefix(A) ::= . {A = 0;}
+seltablist(A) ::= stl_prefix(X) nm(Y) as(Z) on_opt(N) using_opt(U). {
+ A = sqliteSrcListAppend(X,&Y);
+ if( Z.n ) sqliteSrcListAddAlias(A,&Z);
+ if( N ){
+ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pOn = N; }
+ else { sqliteExprDelete(N); }
+ }
+ if( U ){
+ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pUsing = U; }
+ else { sqliteIdListDelete(U); }
+ }
+}
+seltablist(A) ::= stl_prefix(X) LP select(S) RP as(Z) on_opt(N) using_opt(U). {
+ A = sqliteSrcListAppend(X,0);
+ A->a[A->nSrc-1].pSelect = S;
+ if( Z.n ) sqliteSrcListAddAlias(A,&Z);
+ if( N ){
+ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pOn = N; }
+ else { sqliteExprDelete(N); }
+ }
+ if( U ){
+ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pUsing = U; }
+ else { sqliteIdListDelete(U); }
+ }
+}
+
+%type joinop {int}
+%type joinop2 {int}
+joinop(X) ::= COMMA. { X = JT_INNER; }
+joinop(X) ::= JOIN. { X = JT_INNER; }
+joinop(X) ::= JOIN_KW(A) JOIN. { X = sqliteJoinType(pParse,&A,0,0); }
+joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqliteJoinType(pParse,&A,&B,0); }
+joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
+ { X = sqliteJoinType(pParse,&A,&B,&C); }
+
+%type on_opt {Expr*}
+%destructor on_opt {sqliteExprDelete($$);}
+on_opt(N) ::= ON expr(E). {N = E;}
+on_opt(N) ::= . {N = 0;}
+
+%type using_opt {IdList*}
+%destructor using_opt {sqliteIdListDelete($$);}
+using_opt(U) ::= USING LP idxlist(L) RP. {U = L;}
+using_opt(U) ::= . {U = 0;}
+
+
+%type orderby_opt {ExprList*}
+%destructor orderby_opt {sqliteExprListDelete($$);}
+%type sortlist {ExprList*}
+%destructor sortlist {sqliteExprListDelete($$);}
+%type sortitem {Expr*}
+%destructor sortitem {sqliteExprDelete($$);}
+
+orderby_opt(A) ::= . {A = 0;}
+orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;}
+sortlist(A) ::= sortlist(X) COMMA sortitem(Y) collate(C) sortorder(Z). {
+ A = sqliteExprListAppend(X,Y,0);
+ if( A ) A->a[A->nExpr-1].sortOrder = C+Z;
+}
+sortlist(A) ::= sortitem(Y) collate(C) sortorder(Z). {
+ A = sqliteExprListAppend(0,Y,0);
+ if( A ) A->a[0].sortOrder = C+Z;
+}
+sortitem(A) ::= expr(X). {A = X;}
+
+%type sortorder {int}
+%type collate {int}
+
+sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;}
+sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;}
+sortorder(A) ::= . {A = SQLITE_SO_ASC;}
+collate(C) ::= . {C = SQLITE_SO_UNK;}
+collate(C) ::= COLLATE id(X). {C = sqliteCollateType(X.z, X.n);}
+
+%type groupby_opt {ExprList*}
+%destructor groupby_opt {sqliteExprListDelete($$);}
+groupby_opt(A) ::= . {A = 0;}
+groupby_opt(A) ::= GROUP BY exprlist(X). {A = X;}
+
+%type having_opt {Expr*}
+%destructor having_opt {sqliteExprDelete($$);}
+having_opt(A) ::= . {A = 0;}
+having_opt(A) ::= HAVING expr(X). {A = X;}
+
+%type limit_opt {struct LimitVal}
+limit_opt(A) ::= . {A.limit = -1; A.offset = 0;}
+limit_opt(A) ::= LIMIT INTEGER(X). {A.limit = atoi(X.z); A.offset = 0;}
+limit_opt(A) ::= LIMIT INTEGER(X) limit_sep INTEGER(Y).
+ {A.limit = atoi(X.z); A.offset = atoi(Y.z);}
+limit_sep ::= OFFSET.
+limit_sep ::= COMMA.
+
+/////////////////////////// The DELETE statement /////////////////////////////
+//
+cmd ::= DELETE FROM nm(X) where_opt(Y).
+ {sqliteDeleteFrom(pParse, &X, Y);}
+
+%type where_opt {Expr*}
+%destructor where_opt {sqliteExprDelete($$);}
+
+where_opt(A) ::= . {A = 0;}
+where_opt(A) ::= WHERE expr(X). {A = X;}
+
+%type setlist {ExprList*}
+%destructor setlist {sqliteExprListDelete($$);}
+
+////////////////////////// The UPDATE command ////////////////////////////////
+//
+cmd ::= UPDATE orconf(R) nm(X) SET setlist(Y) where_opt(Z).
+ {sqliteUpdate(pParse,&X,Y,Z,R);}
+
+setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y).
+ {A = sqliteExprListAppend(Z,Y,&X);}
+setlist(A) ::= nm(X) EQ expr(Y). {A = sqliteExprListAppend(0,Y,&X);}
+
+////////////////////////// The INSERT command /////////////////////////////////
+//
+cmd ::= insert_cmd(R) INTO nm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP.
+ {sqliteInsert(pParse, &X, Y, 0, F, R);}
+cmd ::= insert_cmd(R) INTO nm(X) inscollist_opt(F) select(S).
+ {sqliteInsert(pParse, &X, 0, S, F, R);}
+
+%type insert_cmd {int}
+insert_cmd(A) ::= INSERT orconf(R). {A = R;}
+insert_cmd(A) ::= REPLACE. {A = OE_Replace;}
+
+
+%type itemlist {ExprList*}
+%destructor itemlist {sqliteExprListDelete($$);}
+
+itemlist(A) ::= itemlist(X) COMMA expr(Y). {A = sqliteExprListAppend(X,Y,0);}
+itemlist(A) ::= expr(X). {A = sqliteExprListAppend(0,X,0);}
+
+%type inscollist_opt {IdList*}
+%destructor inscollist_opt {sqliteIdListDelete($$);}
+%type inscollist {IdList*}
+%destructor inscollist {sqliteIdListDelete($$);}
+
+inscollist_opt(A) ::= . {A = 0;}
+inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;}
+inscollist(A) ::= inscollist(X) COMMA nm(Y). {A = sqliteIdListAppend(X,&Y);}
+inscollist(A) ::= nm(Y). {A = sqliteIdListAppend(0,&Y);}
+
+/////////////////////////// Expression Processing /////////////////////////////
+//
+%left OR.
+%left AND.
+%right NOT.
+%left EQ NE ISNULL NOTNULL IS LIKE GLOB BETWEEN IN.
+%left GT GE LT LE.
+%left BITAND BITOR LSHIFT RSHIFT.
+%left PLUS MINUS.
+%left STAR SLASH REM.
+%left CONCAT.
+%right UMINUS UPLUS BITNOT.
+%right ORACLE_OUTER_JOIN.
+
+%type expr {Expr*}
+%destructor expr {sqliteExprDelete($$);}
+
+expr(A) ::= LP(B) expr(X) RP(E). {A = X; sqliteExprSpan(A,&B,&E); }
+expr(A) ::= NULL(X). {A = sqliteExpr(TK_NULL, 0, 0, &X);}
+expr(A) ::= ID(X). {A = sqliteExpr(TK_ID, 0, 0, &X);}
+expr(A) ::= JOIN_KW(X). {A = sqliteExpr(TK_ID, 0, 0, &X);}
+expr(A) ::= nm(X) DOT nm(Y). {
+ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &X);
+ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &Y);
+ A = sqliteExpr(TK_DOT, temp1, temp2, 0);
+}
+expr(A) ::= expr(B) ORACLE_OUTER_JOIN.
+ {A = B; ExprSetProperty(A,EP_Oracle8Join);}
+expr(A) ::= INTEGER(X). {A = sqliteExpr(TK_INTEGER, 0, 0, &X);}
+expr(A) ::= FLOAT(X). {A = sqliteExpr(TK_FLOAT, 0, 0, &X);}
+expr(A) ::= STRING(X). {A = sqliteExpr(TK_STRING, 0, 0, &X);}
+expr(A) ::= ID(X) LP exprlist(Y) RP(E). {
+ A = sqliteExprFunction(Y, &X);
+ sqliteExprSpan(A,&X,&E);
+}
+expr(A) ::= ID(X) LP STAR RP(E). {
+ A = sqliteExprFunction(0, &X);
+ sqliteExprSpan(A,&X,&E);
+}
+expr(A) ::= expr(X) AND expr(Y). {A = sqliteExpr(TK_AND, X, Y, 0);}
+expr(A) ::= expr(X) OR expr(Y). {A = sqliteExpr(TK_OR, X, Y, 0);}
+expr(A) ::= expr(X) LT expr(Y). {A = sqliteExpr(TK_LT, X, Y, 0);}
+expr(A) ::= expr(X) GT expr(Y). {A = sqliteExpr(TK_GT, X, Y, 0);}
+expr(A) ::= expr(X) LE expr(Y). {A = sqliteExpr(TK_LE, X, Y, 0);}
+expr(A) ::= expr(X) GE expr(Y). {A = sqliteExpr(TK_GE, X, Y, 0);}
+expr(A) ::= expr(X) NE expr(Y). {A = sqliteExpr(TK_NE, X, Y, 0);}
+expr(A) ::= expr(X) EQ expr(Y). {A = sqliteExpr(TK_EQ, X, Y, 0);}
+expr(A) ::= expr(X) BITAND expr(Y). {A = sqliteExpr(TK_BITAND, X, Y, 0);}
+expr(A) ::= expr(X) BITOR expr(Y). {A = sqliteExpr(TK_BITOR, X, Y, 0);}
+expr(A) ::= expr(X) LSHIFT expr(Y). {A = sqliteExpr(TK_LSHIFT, X, Y, 0);}
+expr(A) ::= expr(X) RSHIFT expr(Y). {A = sqliteExpr(TK_RSHIFT, X, Y, 0);}
+expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE] {
+ ExprList *pList = sqliteExprListAppend(0, Y, 0);
+ pList = sqliteExprListAppend(pList, X, 0);
+ A = sqliteExprFunction(pList, 0);
+ if( A ) A->op = OP;
+ sqliteExprSpan(A, &X->span, &Y->span);
+}
+expr(A) ::= expr(X) NOT likeop(OP) expr(Y). [LIKE] {
+ ExprList *pList = sqliteExprListAppend(0, Y, 0);
+ pList = sqliteExprListAppend(pList, X, 0);
+ A = sqliteExprFunction(pList, 0);
+ if( A ) A->op = OP;
+ A = sqliteExpr(TK_NOT, A, 0, 0);
+ sqliteExprSpan(A,&X->span,&Y->span);
+}
+%type likeop {int}
+likeop(A) ::= LIKE. {A = TK_LIKE;}
+likeop(A) ::= GLOB. {A = TK_GLOB;}
+expr(A) ::= expr(X) PLUS expr(Y). {A = sqliteExpr(TK_PLUS, X, Y, 0);}
+expr(A) ::= expr(X) MINUS expr(Y). {A = sqliteExpr(TK_MINUS, X, Y, 0);}
+expr(A) ::= expr(X) STAR expr(Y). {A = sqliteExpr(TK_STAR, X, Y, 0);}
+expr(A) ::= expr(X) SLASH expr(Y). {A = sqliteExpr(TK_SLASH, X, Y, 0);}
+expr(A) ::= expr(X) REM expr(Y). {A = sqliteExpr(TK_REM, X, Y, 0);}
+expr(A) ::= expr(X) CONCAT expr(Y). {A = sqliteExpr(TK_CONCAT, X, Y, 0);}
+expr(A) ::= expr(X) ISNULL(E). {
+ A = sqliteExpr(TK_ISNULL, X, 0, 0);
+ sqliteExprSpan(A,&X->span,&E);
+}
+expr(A) ::= expr(X) IS NULL(E). {
+ A = sqliteExpr(TK_ISNULL, X, 0, 0);
+ sqliteExprSpan(A,&X->span,&E);
+}
+expr(A) ::= expr(X) NOTNULL(E). {
+ A = sqliteExpr(TK_NOTNULL, X, 0, 0);
+ sqliteExprSpan(A,&X->span,&E);
+}
+expr(A) ::= expr(X) NOT NULL(E). {
+ A = sqliteExpr(TK_NOTNULL, X, 0, 0);
+ sqliteExprSpan(A,&X->span,&E);
+}
+expr(A) ::= expr(X) IS NOT NULL(E). {
+ A = sqliteExpr(TK_NOTNULL, X, 0, 0);
+ sqliteExprSpan(A,&X->span,&E);
+}
+expr(A) ::= NOT(B) expr(X). {
+ A = sqliteExpr(TK_NOT, X, 0, 0);
+ sqliteExprSpan(A,&B,&X->span);
+}
+expr(A) ::= BITNOT(B) expr(X). {
+ A = sqliteExpr(TK_BITNOT, X, 0, 0);
+ sqliteExprSpan(A,&B,&X->span);
+}
+expr(A) ::= MINUS(B) expr(X). [UMINUS] {
+ A = sqliteExpr(TK_UMINUS, X, 0, 0);
+ sqliteExprSpan(A,&B,&X->span);
+}
+expr(A) ::= PLUS(B) expr(X). [UPLUS] {
+ A = sqliteExpr(TK_UPLUS, X, 0, 0);
+ sqliteExprSpan(A,&B,&X->span);
+}
+expr(A) ::= LP(B) select(X) RP(E). {
+ A = sqliteExpr(TK_SELECT, 0, 0, 0);
+ if( A ) A->pSelect = X;
+ sqliteExprSpan(A,&B,&E);
+}
+expr(A) ::= expr(W) BETWEEN expr(X) AND expr(Y). {
+ ExprList *pList = sqliteExprListAppend(0, X, 0);
+ pList = sqliteExprListAppend(pList, Y, 0);
+ A = sqliteExpr(TK_BETWEEN, W, 0, 0);
+ if( A ) A->pList = pList;
+ sqliteExprSpan(A,&W->span,&Y->span);
+}
+expr(A) ::= expr(W) NOT BETWEEN expr(X) AND expr(Y). {
+ ExprList *pList = sqliteExprListAppend(0, X, 0);
+ pList = sqliteExprListAppend(pList, Y, 0);
+ A = sqliteExpr(TK_BETWEEN, W, 0, 0);
+ if( A ) A->pList = pList;
+ A = sqliteExpr(TK_NOT, A, 0, 0);
+ sqliteExprSpan(A,&W->span,&Y->span);
+}
+expr(A) ::= expr(X) IN LP exprlist(Y) RP(E). {
+ A = sqliteExpr(TK_IN, X, 0, 0);
+ if( A ) A->pList = Y;
+ sqliteExprSpan(A,&X->span,&E);
+}
+expr(A) ::= expr(X) IN LP select(Y) RP(E). {
+ A = sqliteExpr(TK_IN, X, 0, 0);
+ if( A ) A->pSelect = Y;
+ sqliteExprSpan(A,&X->span,&E);
+}
+expr(A) ::= expr(X) NOT IN LP exprlist(Y) RP(E). {
+ A = sqliteExpr(TK_IN, X, 0, 0);
+ if( A ) A->pList = Y;
+ A = sqliteExpr(TK_NOT, A, 0, 0);
+ sqliteExprSpan(A,&X->span,&E);
+}
+expr(A) ::= expr(X) NOT IN LP select(Y) RP(E). {
+ A = sqliteExpr(TK_IN, X, 0, 0);
+ if( A ) A->pSelect = Y;
+ A = sqliteExpr(TK_NOT, A, 0, 0);
+ sqliteExprSpan(A,&X->span,&E);
+}
+
+/* CASE expressions */
+expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
+ A = sqliteExpr(TK_CASE, X, Z, 0);
+ if( A ) A->pList = Y;
+ sqliteExprSpan(A, &C, &E);
+}
+%type case_exprlist {ExprList*}
+%destructor case_exprlist {sqliteExprListDelete($$);}
+case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
+ A = sqliteExprListAppend(X, Y, 0);
+ A = sqliteExprListAppend(A, Z, 0);
+}
+case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
+ A = sqliteExprListAppend(0, Y, 0);
+ A = sqliteExprListAppend(A, Z, 0);
+}
+%type case_else {Expr*}
+case_else(A) ::= ELSE expr(X). {A = X;}
+case_else(A) ::= . {A = 0;}
+%type case_operand {Expr*}
+case_operand(A) ::= expr(X). {A = X;}
+case_operand(A) ::= . {A = 0;}
+
+%type exprlist {ExprList*}
+%destructor exprlist {sqliteExprListDelete($$);}
+%type expritem {Expr*}
+%destructor expritem {sqliteExprDelete($$);}
+
+exprlist(A) ::= exprlist(X) COMMA expritem(Y).
+ {A = sqliteExprListAppend(X,Y,0);}
+exprlist(A) ::= expritem(X). {A = sqliteExprListAppend(0,X,0);}
+expritem(A) ::= expr(X). {A = X;}
+expritem(A) ::= . {A = 0;}
+
+///////////////////////////// The CREATE INDEX command ///////////////////////
+//
+cmd ::= CREATE(S) uniqueflag(U) INDEX nm(X)
+ ON nm(Y) LP idxlist(Z) RP(E) onconf(R). {
+ if( U!=OE_None ) U = R;
+ if( U==OE_Default) U = OE_Abort;
+ sqliteCreateIndex(pParse, &X, &Y, Z, U, &S, &E);
+}
+
+%type uniqueflag {int}
+uniqueflag(A) ::= UNIQUE. { A = OE_Abort; }
+uniqueflag(A) ::= . { A = OE_None; }
+
+%type idxlist {IdList*}
+%destructor idxlist {sqliteIdListDelete($$);}
+%type idxlist_opt {IdList*}
+%destructor idxlist_opt {sqliteIdListDelete($$);}
+%type idxitem {Token}
+
+idxlist_opt(A) ::= . {A = 0;}
+idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;}
+idxlist(A) ::= idxlist(X) COMMA idxitem(Y). {A = sqliteIdListAppend(X,&Y);}
+idxlist(A) ::= idxitem(Y). {A = sqliteIdListAppend(0,&Y);}
+idxitem(A) ::= nm(X). {A = X;}
+
+///////////////////////////// The DROP INDEX command /////////////////////////
+//
+
+cmd ::= DROP INDEX nm(X). {sqliteDropIndex(pParse, &X);}
+
+
+///////////////////////////// The COPY command ///////////////////////////////
+//
+cmd ::= COPY orconf(R) nm(X) FROM nm(Y) USING DELIMITERS STRING(Z).
+ {sqliteCopy(pParse,&X,&Y,&Z,R);}
+cmd ::= COPY orconf(R) nm(X) FROM nm(Y).
+ {sqliteCopy(pParse,&X,&Y,0,R);}
+
+///////////////////////////// The VACUUM command /////////////////////////////
+//
+cmd ::= VACUUM. {sqliteVacuum(pParse,0);}
+cmd ::= VACUUM nm(X). {sqliteVacuum(pParse,&X);}
+
+///////////////////////////// The PRAGMA command /////////////////////////////
+//
+cmd ::= PRAGMA ids(X) EQ nm(Y). {sqlitePragma(pParse,&X,&Y,0);}
+cmd ::= PRAGMA ids(X) EQ ON(Y). {sqlitePragma(pParse,&X,&Y,0);}
+cmd ::= PRAGMA ids(X) EQ plus_num(Y). {sqlitePragma(pParse,&X,&Y,0);}
+cmd ::= PRAGMA ids(X) EQ minus_num(Y). {sqlitePragma(pParse,&X,&Y,1);}
+cmd ::= PRAGMA ids(X) LP nm(Y) RP. {sqlitePragma(pParse,&X,&Y,0);}
+cmd ::= PRAGMA ids(X). {sqlitePragma(pParse,&X,&X,0);}
+plus_num(A) ::= plus_opt number(X). {A = X;}
+minus_num(A) ::= MINUS number(X). {A = X;}
+number(A) ::= INTEGER(X). {A = X;}
+number(A) ::= FLOAT(X). {A = X;}
+plus_opt ::= PLUS.
+plus_opt ::= .
+
+//////////////////////////// The CREATE TRIGGER command /////////////////////
+cmd ::= CREATE(A) TRIGGER nm(B) trigger_time(C) trigger_event(D) ON nm(E)
+ foreach_clause(F) when_clause(G)
+ BEGIN trigger_cmd_list(S) END(Z). {
+ Token all;
+ all.z = A.z;
+ all.n = (Z.z - A.z) + Z.n;
+ sqliteCreateTrigger(pParse, &B, C, D.a, D.b, &E, F, G, S, &all);
+}
+
+%type trigger_time {int}
+trigger_time(A) ::= BEFORE. { A = TK_BEFORE; }
+trigger_time(A) ::= AFTER. { A = TK_AFTER; }
+trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;}
+trigger_time(A) ::= . { A = TK_BEFORE; }
+
+%type trigger_event {struct TrigEvent}
+%destructor trigger_event {sqliteIdListDelete($$.b);}
+trigger_event(A) ::= DELETE. { A.a = TK_DELETE; A.b = 0; }
+trigger_event(A) ::= INSERT. { A.a = TK_INSERT; A.b = 0; }
+trigger_event(A) ::= UPDATE. { A.a = TK_UPDATE; A.b = 0;}
+trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X; }
+
+%type foreach_clause {int}
+foreach_clause(A) ::= . { A = TK_ROW; }
+foreach_clause(A) ::= FOR EACH ROW. { A = TK_ROW; }
+foreach_clause(A) ::= FOR EACH STATEMENT. { A = TK_STATEMENT; }
+
+%type when_clause {Expr *}
+when_clause(A) ::= . { A = 0; }
+when_clause(A) ::= WHEN expr(X). { A = X; }
+
+%type trigger_cmd_list {TriggerStep *}
+trigger_cmd_list(A) ::= trigger_cmd(X) SEMI trigger_cmd_list(Y). {
+ X->pNext = Y ; A = X; }
+trigger_cmd_list(A) ::= . { A = 0; }
+
+%type trigger_cmd {TriggerStep *}
+// UPDATE
+trigger_cmd(A) ::= UPDATE orconf(R) nm(X) SET setlist(Y) where_opt(Z).
+ { A = sqliteTriggerUpdateStep(&X, Y, Z, R); }
+
+// INSERT
+trigger_cmd(A) ::= INSERT orconf(R) INTO nm(X) inscollist_opt(F)
+ VALUES LP itemlist(Y) RP.
+{A = sqliteTriggerInsertStep(&X, F, Y, 0, R);}
+
+trigger_cmd(A) ::= INSERT orconf(R) INTO nm(X) inscollist_opt(F) select(S).
+ {A = sqliteTriggerInsertStep(&X, F, 0, S, R);}
+
+// DELETE
+trigger_cmd(A) ::= DELETE FROM nm(X) where_opt(Y).
+ {A = sqliteTriggerDeleteStep(&X, Y);}
+
+// SELECT
+trigger_cmd(A) ::= select(X). {A = sqliteTriggerSelectStep(X); }
+
+// The special RAISE expression that may occur in trigger programs
+expr(A) ::= RAISE(X) LP IGNORE RP(Y). {
+ A = sqliteExpr(TK_RAISE, 0, 0, 0);
+ A->iColumn = OE_Ignore;
+ sqliteExprSpan(A, &X, &Y);
+}
+expr(A) ::= RAISE(X) LP ROLLBACK COMMA nm(Z) RP(Y). {
+ A = sqliteExpr(TK_RAISE, 0, 0, &Z);
+ A->iColumn = OE_Rollback;
+ sqliteExprSpan(A, &X, &Y);
+}
+expr(A) ::= RAISE(X) LP ABORT COMMA nm(Z) RP(Y). {
+ A = sqliteExpr(TK_RAISE, 0, 0, &Z);
+ A->iColumn = OE_Abort;
+ sqliteExprSpan(A, &X, &Y);
+}
+expr(A) ::= RAISE(X) LP FAIL COMMA nm(Z) RP(Y). {
+ A = sqliteExpr(TK_RAISE, 0, 0, &Z);
+ A->iColumn = OE_Fail;
+ sqliteExprSpan(A, &X, &Y);
+}
+
+//////////////////////// DROP TRIGGER statement //////////////////////////////
+cmd ::= DROP TRIGGER nm(X). {
+ sqliteDropTrigger(pParse,&X,0);
+}
--- /dev/null
+/*
+** The "printf" code that follows dates from the 1980's. It is in
+** the public domain. The original comments are included here for
+** completeness. They are slightly out-of-date.
+**
+** The following modules is an enhanced replacement for the "printf" subroutines
+** found in the standard C library. The following enhancements are
+** supported:
+**
+** + Additional functions. The standard set of "printf" functions
+** includes printf, fprintf, sprintf, vprintf, vfprintf, and
+** vsprintf. This module adds the following:
+**
+** * snprintf -- Works like sprintf, but has an extra argument
+** which is the size of the buffer written to.
+**
+** * mprintf -- Similar to sprintf. Writes output to memory
+** obtained from malloc.
+**
+** * xprintf -- Calls a function to dispose of output.
+**
+** * nprintf -- No output, but returns the number of characters
+** that would have been output by printf.
+**
+** * A v- version (ex: vsnprintf) of every function is also
+** supplied.
+**
+** + A few extensions to the formatting notation are supported:
+**
+** * The "=" flag (similar to "-") causes the output to be
+** be centered in the appropriately sized field.
+**
+** * The %b field outputs an integer in binary notation.
+**
+** * The %c field now accepts a precision. The character output
+** is repeated by the number of times the precision specifies.
+**
+** * The %' field works like %c, but takes as its character the
+** next character of the format string, instead of the next
+** argument. For example, printf("%.78'-") prints 78 minus
+** signs, the same as printf("%.78c",'-').
+**
+** + When compiled using GCC on a SPARC, this version of printf is
+** faster than the library printf for SUN OS 4.1.
+**
+** + All functions are fully reentrant.
+**
+*/
+#include "sqliteInt.h"
+
+/*
+** Undefine COMPATIBILITY to make some slight changes in the way things
+** work. I think the changes are an improvement, but they are not
+** backwards compatible.
+*/
+/* #define COMPATIBILITY / * Compatible with SUN OS 4.1 */
+
+/*
+** Conversion types fall into various categories as defined by the
+** following enumeration.
+*/
+enum et_type { /* The type of the format field */
+ etRADIX, /* Integer types. %d, %x, %o, and so forth */
+ etFLOAT, /* Floating point. %f */
+ etEXP, /* Exponentional notation. %e and %E */
+ etGENERIC, /* Floating or exponential, depending on exponent. %g */
+ etSIZE, /* Return number of characters processed so far. %n */
+ etSTRING, /* Strings. %s */
+ etPERCENT, /* Percent symbol. %% */
+ etCHARX, /* Characters. %c */
+ etERROR, /* Used to indicate no such conversion type */
+/* The rest are extensions, not normally found in printf() */
+ etCHARLIT, /* Literal characters. %' */
+ etSQLESCAPE, /* Strings with '\'' doubled. %q */
+ etSQLESCAPE2, /* Strings with '\'' doubled and enclosed in '',
+ NULL pointers replaced by SQL NULL. %Q */
+ etORDINAL /* 1st, 2nd, 3rd and so forth */
+};
+
+/*
+** Each builtin conversion character (ex: the 'd' in "%d") is described
+** by an instance of the following structure
+*/
+typedef struct et_info { /* Information about each format field */
+ int fmttype; /* The format field code letter */
+ int base; /* The base for radix conversion */
+ char *charset; /* The character set for conversion */
+ int flag_signed; /* Is the quantity signed? */
+ char *prefix; /* Prefix on non-zero values in alt format */
+ enum et_type type; /* Conversion paradigm */
+} et_info;
+
+/*
+** The following table is searched linearly, so it is good to put the
+** most frequently used conversion types first.
+*/
+static et_info fmtinfo[] = {
+ { 'd', 10, "0123456789", 1, 0, etRADIX, },
+ { 's', 0, 0, 0, 0, etSTRING, },
+ { 'q', 0, 0, 0, 0, etSQLESCAPE, },
+ { 'Q', 0, 0, 0, 0, etSQLESCAPE2, },
+ { 'c', 0, 0, 0, 0, etCHARX, },
+ { 'o', 8, "01234567", 0, "0", etRADIX, },
+ { 'u', 10, "0123456789", 0, 0, etRADIX, },
+ { 'x', 16, "0123456789abcdef", 0, "x0", etRADIX, },
+ { 'X', 16, "0123456789ABCDEF", 0, "X0", etRADIX, },
+ { 'r', 10, "0123456789", 0, 0, etORDINAL, },
+ { 'f', 0, 0, 1, 0, etFLOAT, },
+ { 'e', 0, "e", 1, 0, etEXP, },
+ { 'E', 0, "E", 1, 0, etEXP, },
+ { 'g', 0, "e", 1, 0, etGENERIC, },
+ { 'G', 0, "E", 1, 0, etGENERIC, },
+ { 'i', 10, "0123456789", 1, 0, etRADIX, },
+ { 'n', 0, 0, 0, 0, etSIZE, },
+ { '%', 0, 0, 0, 0, etPERCENT, },
+ { 'b', 2, "01", 0, "b0", etRADIX, }, /* Binary */
+ { 'p', 10, "0123456789", 0, 0, etRADIX, }, /* Pointers */
+ { '\'', 0, 0, 0, 0, etCHARLIT, }, /* Literal char */
+};
+#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
+
+/*
+** If NOFLOATINGPOINT is defined, then none of the floating point
+** conversions will work.
+*/
+#ifndef etNOFLOATINGPOINT
+/*
+** "*val" is a double such that 0.1 <= *val < 10.0
+** Return the ascii code for the leading digit of *val, then
+** multiply "*val" by 10.0 to renormalize.
+**
+** Example:
+** input: *val = 3.14159
+** output: *val = 1.4159 function return = '3'
+**
+** The counter *cnt is incremented each time. After counter exceeds
+** 16 (the number of significant digits in a 64-bit float) '0' is
+** always returned.
+*/
+static int et_getdigit(double *val, int *cnt){
+ int digit;
+ double d;
+ if( (*cnt)++ >= 16 ) return '0';
+ digit = (int)*val;
+ d = digit;
+ digit += '0';
+ *val = (*val - d)*10.0;
+ return digit;
+}
+#endif
+
+#define etBUFSIZE 1000 /* Size of the output buffer */
+
+/*
+** The root program. All variations call this core.
+**
+** INPUTS:
+** func This is a pointer to a function taking three arguments
+** 1. A pointer to anything. Same as the "arg" parameter.
+** 2. A pointer to the list of characters to be output
+** (Note, this list is NOT null terminated.)
+** 3. An integer number of characters to be output.
+** (Note: This number might be zero.)
+**
+** arg This is the pointer to anything which will be passed as the
+** first argument to "func". Use it for whatever you like.
+**
+** fmt This is the format string, as in the usual print.
+**
+** ap This is a pointer to a list of arguments. Same as in
+** vfprint.
+**
+** OUTPUTS:
+** The return value is the total number of characters sent to
+** the function "func". Returns -1 on a error.
+**
+** Note that the order in which automatic variables are declared below
+** seems to make a big difference in determining how fast this beast
+** will run.
+*/
+static int vxprintf(
+ void (*func)(void*,char*,int),
+ void *arg,
+ const char *format,
+ va_list ap
+){
+ register const char *fmt; /* The format string. */
+ register int c; /* Next character in the format string */
+ register char *bufpt; /* Pointer to the conversion buffer */
+ register int precision; /* Precision of the current field */
+ register int length; /* Length of the field */
+ register int idx; /* A general purpose loop counter */
+ int count; /* Total number of characters output */
+ int width; /* Width of the current field */
+ int flag_leftjustify; /* True if "-" flag is present */
+ int flag_plussign; /* True if "+" flag is present */
+ int flag_blanksign; /* True if " " flag is present */
+ int flag_alternateform; /* True if "#" flag is present */
+ int flag_zeropad; /* True if field width constant starts with zero */
+ int flag_long; /* True if "l" flag is present */
+ int flag_center; /* True if "=" flag is present */
+ unsigned long longvalue; /* Value for integer types */
+ double realvalue; /* Value for real types */
+ et_info *infop; /* Pointer to the appropriate info structure */
+ char buf[etBUFSIZE]; /* Conversion buffer */
+ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
+ int errorflag = 0; /* True if an error is encountered */
+ enum et_type xtype; /* Conversion paradigm */
+ char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
+ static char spaces[] = " "
+ " ";
+#define etSPACESIZE (sizeof(spaces)-1)
+#ifndef etNOFLOATINGPOINT
+ int exp; /* exponent of real numbers */
+ double rounder; /* Used for rounding floating point values */
+ int flag_dp; /* True if decimal point should be shown */
+ int flag_rtz; /* True if trailing zeros should be removed */
+ int flag_exp; /* True to force display of the exponent */
+ int nsd; /* Number of significant digits returned */
+#endif
+
+ fmt = format; /* Put in a register for speed */
+ count = length = 0;
+ bufpt = 0;
+ for(; (c=(*fmt))!=0; ++fmt){
+ if( c!='%' ){
+ register int amt;
+ bufpt = (char *)fmt;
+ amt = 1;
+ while( (c=(*++fmt))!='%' && c!=0 ) amt++;
+ (*func)(arg,bufpt,amt);
+ count += amt;
+ if( c==0 ) break;
+ }
+ if( (c=(*++fmt))==0 ){
+ errorflag = 1;
+ (*func)(arg,"%",1);
+ count++;
+ break;
+ }
+ /* Find out what flags are present */
+ flag_leftjustify = flag_plussign = flag_blanksign =
+ flag_alternateform = flag_zeropad = flag_center = 0;
+ do{
+ switch( c ){
+ case '-': flag_leftjustify = 1; c = 0; break;
+ case '+': flag_plussign = 1; c = 0; break;
+ case ' ': flag_blanksign = 1; c = 0; break;
+ case '#': flag_alternateform = 1; c = 0; break;
+ case '0': flag_zeropad = 1; c = 0; break;
+ case '=': flag_center = 1; c = 0; break;
+ default: break;
+ }
+ }while( c==0 && (c=(*++fmt))!=0 );
+ if( flag_center ) flag_leftjustify = 0;
+ /* Get the field width */
+ width = 0;
+ if( c=='*' ){
+ width = va_arg(ap,int);
+ if( width<0 ){
+ flag_leftjustify = 1;
+ width = -width;
+ }
+ c = *++fmt;
+ }else{
+ while( c>='0' && c<='9' ){
+ width = width*10 + c - '0';
+ c = *++fmt;
+ }
+ }
+ if( width > etBUFSIZE-10 ){
+ width = etBUFSIZE-10;
+ }
+ /* Get the precision */
+ if( c=='.' ){
+ precision = 0;
+ c = *++fmt;
+ if( c=='*' ){
+ precision = va_arg(ap,int);
+#ifndef etCOMPATIBILITY
+ /* This is sensible, but SUN OS 4.1 doesn't do it. */
+ if( precision<0 ) precision = -precision;
+#endif
+ c = *++fmt;
+ }else{
+ while( c>='0' && c<='9' ){
+ precision = precision*10 + c - '0';
+ c = *++fmt;
+ }
+ }
+ /* Limit the precision to prevent overflowing buf[] during conversion */
+ if( precision>etBUFSIZE-40 ) precision = etBUFSIZE-40;
+ }else{
+ precision = -1;
+ }
+ /* Get the conversion type modifier */
+ if( c=='l' ){
+ flag_long = 1;
+ c = *++fmt;
+ }else{
+ flag_long = 0;
+ }
+ /* Fetch the info entry for the field */
+ infop = 0;
+ for(idx=0; idx<etNINFO; idx++){
+ if( c==fmtinfo[idx].fmttype ){
+ infop = &fmtinfo[idx];
+ break;
+ }
+ }
+ /* No info entry found. It must be an error. */
+ if( infop==0 ){
+ xtype = etERROR;
+ }else{
+ xtype = infop->type;
+ }
+ zExtra = 0;
+
+ /*
+ ** At this point, variables are initialized as follows:
+ **
+ ** flag_alternateform TRUE if a '#' is present.
+ ** flag_plussign TRUE if a '+' is present.
+ ** flag_leftjustify TRUE if a '-' is present or if the
+ ** field width was negative.
+ ** flag_zeropad TRUE if the width began with 0.
+ ** flag_long TRUE if the letter 'l' (ell) prefixed
+ ** the conversion character.
+ ** flag_blanksign TRUE if a ' ' is present.
+ ** width The specified field width. This is
+ ** always non-negative. Zero is the default.
+ ** precision The specified precision. The default
+ ** is -1.
+ ** xtype The class of the conversion.
+ ** infop Pointer to the appropriate info struct.
+ */
+ switch( xtype ){
+ case etORDINAL:
+ case etRADIX:
+ if( flag_long ) longvalue = va_arg(ap,long);
+ else longvalue = va_arg(ap,int);
+#ifdef etCOMPATIBILITY
+ /* For the format %#x, the value zero is printed "0" not "0x0".
+ ** I think this is stupid. */
+ if( longvalue==0 ) flag_alternateform = 0;
+#else
+ /* More sensible: turn off the prefix for octal (to prevent "00"),
+ ** but leave the prefix for hex. */
+ if( longvalue==0 && infop->base==8 ) flag_alternateform = 0;
+#endif
+ if( infop->flag_signed ){
+ if( *(long*)&longvalue<0 ){
+ longvalue = -*(long*)&longvalue;
+ prefix = '-';
+ }else if( flag_plussign ) prefix = '+';
+ else if( flag_blanksign ) prefix = ' ';
+ else prefix = 0;
+ }else prefix = 0;
+ if( flag_zeropad && precision<width-(prefix!=0) ){
+ precision = width-(prefix!=0);
+ }
+ bufpt = &buf[etBUFSIZE];
+ if( xtype==etORDINAL ){
+ long a,b;
+ a = longvalue%10;
+ b = longvalue%100;
+ bufpt -= 2;
+ if( a==0 || a>3 || (b>10 && b<14) ){
+ bufpt[0] = 't';
+ bufpt[1] = 'h';
+ }else if( a==1 ){
+ bufpt[0] = 's';
+ bufpt[1] = 't';
+ }else if( a==2 ){
+ bufpt[0] = 'n';
+ bufpt[1] = 'd';
+ }else if( a==3 ){
+ bufpt[0] = 'r';
+ bufpt[1] = 'd';
+ }
+ }
+ {
+ register char *cset; /* Use registers for speed */
+ register int base;
+ cset = infop->charset;
+ base = infop->base;
+ do{ /* Convert to ascii */
+ *(--bufpt) = cset[longvalue%base];
+ longvalue = longvalue/base;
+ }while( longvalue>0 );
+ }
+ length = (long)&buf[etBUFSIZE]-(long)bufpt;
+ for(idx=precision-length; idx>0; idx--){
+ *(--bufpt) = '0'; /* Zero pad */
+ }
+ if( prefix ) *(--bufpt) = prefix; /* Add sign */
+ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
+ char *pre, x;
+ pre = infop->prefix;
+ if( *bufpt!=pre[0] ){
+ for(pre=infop->prefix; (x=(*pre))!=0; pre++) *(--bufpt) = x;
+ }
+ }
+ length = (long)&buf[etBUFSIZE]-(long)bufpt;
+ break;
+ case etFLOAT:
+ case etEXP:
+ case etGENERIC:
+ realvalue = va_arg(ap,double);
+#ifndef etNOFLOATINGPOINT
+ if( precision<0 ) precision = 6; /* Set default precision */
+ if( precision>etBUFSIZE-10 ) precision = etBUFSIZE-10;
+ if( realvalue<0.0 ){
+ realvalue = -realvalue;
+ prefix = '-';
+ }else{
+ if( flag_plussign ) prefix = '+';
+ else if( flag_blanksign ) prefix = ' ';
+ else prefix = 0;
+ }
+ if( infop->type==etGENERIC && precision>0 ) precision--;
+ rounder = 0.0;
+#ifdef COMPATIBILITY
+ /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
+ for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
+#else
+ /* It makes more sense to use 0.5 */
+ for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1);
+#endif
+ if( infop->type==etFLOAT ) realvalue += rounder;
+ /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
+ exp = 0;
+ if( realvalue>0.0 ){
+ int k = 0;
+ while( realvalue>=1e8 && k++<100 ){ realvalue *= 1e-8; exp+=8; }
+ while( realvalue>=10.0 && k++<100 ){ realvalue *= 0.1; exp++; }
+ while( realvalue<1e-8 && k++<100 ){ realvalue *= 1e8; exp-=8; }
+ while( realvalue<1.0 && k++<100 ){ realvalue *= 10.0; exp--; }
+ if( k>=100 ){
+ bufpt = "NaN";
+ length = 3;
+ break;
+ }
+ }
+ bufpt = buf;
+ /*
+ ** If the field type is etGENERIC, then convert to either etEXP
+ ** or etFLOAT, as appropriate.
+ */
+ flag_exp = xtype==etEXP;
+ if( xtype!=etFLOAT ){
+ realvalue += rounder;
+ if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
+ }
+ if( xtype==etGENERIC ){
+ flag_rtz = !flag_alternateform;
+ if( exp<-4 || exp>precision ){
+ xtype = etEXP;
+ }else{
+ precision = precision - exp;
+ xtype = etFLOAT;
+ }
+ }else{
+ flag_rtz = 0;
+ }
+ /*
+ ** The "exp+precision" test causes output to be of type etEXP if
+ ** the precision is too large to fit in buf[].
+ */
+ nsd = 0;
+ if( xtype==etFLOAT && exp+precision<etBUFSIZE-30 ){
+ flag_dp = (precision>0 || flag_alternateform);
+ if( prefix ) *(bufpt++) = prefix; /* Sign */
+ if( exp<0 ) *(bufpt++) = '0'; /* Digits before "." */
+ else for(; exp>=0; exp--) *(bufpt++) = et_getdigit(&realvalue,&nsd);
+ if( flag_dp ) *(bufpt++) = '.'; /* The decimal point */
+ for(exp++; exp<0 && precision>0; precision--, exp++){
+ *(bufpt++) = '0';
+ }
+ while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd);
+ *(bufpt--) = 0; /* Null terminate */
+ if( flag_rtz && flag_dp ){ /* Remove trailing zeros and "." */
+ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
+ if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
+ }
+ bufpt++; /* point to next free slot */
+ }else{ /* etEXP or etGENERIC */
+ flag_dp = (precision>0 || flag_alternateform);
+ if( prefix ) *(bufpt++) = prefix; /* Sign */
+ *(bufpt++) = et_getdigit(&realvalue,&nsd); /* First digit */
+ if( flag_dp ) *(bufpt++) = '.'; /* Decimal point */
+ while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd);
+ bufpt--; /* point to last digit */
+ if( flag_rtz && flag_dp ){ /* Remove tail zeros */
+ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
+ if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
+ }
+ bufpt++; /* point to next free slot */
+ if( exp || flag_exp ){
+ *(bufpt++) = infop->charset[0];
+ if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; } /* sign of exp */
+ else { *(bufpt++) = '+'; }
+ if( exp>=100 ){
+ *(bufpt++) = (exp/100)+'0'; /* 100's digit */
+ exp %= 100;
+ }
+ *(bufpt++) = exp/10+'0'; /* 10's digit */
+ *(bufpt++) = exp%10+'0'; /* 1's digit */
+ }
+ }
+ /* The converted number is in buf[] and zero terminated. Output it.
+ ** Note that the number is in the usual order, not reversed as with
+ ** integer conversions. */
+ length = (long)bufpt-(long)buf;
+ bufpt = buf;
+
+ /* Special case: Add leading zeros if the flag_zeropad flag is
+ ** set and we are not left justified */
+ if( flag_zeropad && !flag_leftjustify && length < width){
+ int i;
+ int nPad = width - length;
+ for(i=width; i>=nPad; i--){
+ bufpt[i] = bufpt[i-nPad];
+ }
+ i = prefix!=0;
+ while( nPad-- ) bufpt[i++] = '0';
+ length = width;
+ }
+#endif
+ break;
+ case etSIZE:
+ *(va_arg(ap,int*)) = count;
+ length = width = 0;
+ break;
+ case etPERCENT:
+ buf[0] = '%';
+ bufpt = buf;
+ length = 1;
+ break;
+ case etCHARLIT:
+ case etCHARX:
+ c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
+ if( precision>=0 ){
+ for(idx=1; idx<precision; idx++) buf[idx] = c;
+ length = precision;
+ }else{
+ length =1;
+ }
+ bufpt = buf;
+ break;
+ case etSTRING:
+ bufpt = va_arg(ap,char*);
+ if( bufpt==0 ) bufpt = "(null)";
+ length = strlen(bufpt);
+ if( precision>=0 && precision<length ) length = precision;
+ break;
+ case etSQLESCAPE:
+ case etSQLESCAPE2:
+ {
+ int i, j, n, c, isnull;
+ char *arg = va_arg(ap,char*);
+ isnull = arg==0;
+ if( isnull ) arg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
+ for(i=n=0; (c=arg[i])!=0; i++){
+ if( c=='\'' ) n++;
+ }
+ n += i + 1 + ((!isnull && xtype==etSQLESCAPE2) ? 2 : 0);
+ if( n>etBUFSIZE ){
+ bufpt = zExtra = sqliteMalloc( n );
+ if( bufpt==0 ) return -1;
+ }else{
+ bufpt = buf;
+ }
+ j = 0;
+ if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\'';
+ for(i=0; (c=arg[i])!=0; i++){
+ bufpt[j++] = c;
+ if( c=='\'' ) bufpt[j++] = c;
+ }
+ if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\'';
+ bufpt[j] = 0;
+ length = j;
+ if( precision>=0 && precision<length ) length = precision;
+ }
+ break;
+ case etERROR:
+ buf[0] = '%';
+ buf[1] = c;
+ errorflag = 0;
+ idx = 1+(c!=0);
+ (*func)(arg,"%",idx);
+ count += idx;
+ if( c==0 ) fmt--;
+ break;
+ }/* End switch over the format type */
+ /*
+ ** The text of the conversion is pointed to by "bufpt" and is
+ ** "length" characters long. The field width is "width". Do
+ ** the output.
+ */
+ if( !flag_leftjustify ){
+ register int nspace;
+ nspace = width-length;
+ if( nspace>0 ){
+ if( flag_center ){
+ nspace = nspace/2;
+ width -= nspace;
+ flag_leftjustify = 1;
+ }
+ count += nspace;
+ while( nspace>=etSPACESIZE ){
+ (*func)(arg,spaces,etSPACESIZE);
+ nspace -= etSPACESIZE;
+ }
+ if( nspace>0 ) (*func)(arg,spaces,nspace);
+ }
+ }
+ if( length>0 ){
+ (*func)(arg,bufpt,length);
+ count += length;
+ }
+ if( flag_leftjustify ){
+ register int nspace;
+ nspace = width-length;
+ if( nspace>0 ){
+ count += nspace;
+ while( nspace>=etSPACESIZE ){
+ (*func)(arg,spaces,etSPACESIZE);
+ nspace -= etSPACESIZE;
+ }
+ if( nspace>0 ) (*func)(arg,spaces,nspace);
+ }
+ }
+ if( zExtra ){
+ sqliteFree(zExtra);
+ }
+ }/* End for loop over the format string */
+ return errorflag ? -1 : count;
+} /* End of function */
+
+
+/* This structure is used to store state information about the
+** write to memory that is currently in progress.
+*/
+struct sgMprintf {
+ char *zBase; /* A base allocation */
+ char *zText; /* The string collected so far */
+ int nChar; /* Length of the string so far */
+ int nAlloc; /* Amount of space allocated in zText */
+};
+
+/*
+** This function implements the callback from vxprintf.
+**
+** This routine add nNewChar characters of text in zNewText to
+** the sgMprintf structure pointed to by "arg".
+*/
+static void mout(void *arg, char *zNewText, int nNewChar){
+ struct sgMprintf *pM = (struct sgMprintf*)arg;
+ if( pM->nChar + nNewChar + 1 > pM->nAlloc ){
+ pM->nAlloc = pM->nChar + nNewChar*2 + 1;
+ if( pM->zText==pM->zBase ){
+ pM->zText = sqliteMalloc(pM->nAlloc);
+ if( pM->zText && pM->nChar ) memcpy(pM->zText,pM->zBase,pM->nChar);
+ }else{
+ char *z = sqliteRealloc(pM->zText, pM->nAlloc);
+ if( z==0 ){
+ sqliteFree(pM->zText);
+ pM->nChar = 0;
+ pM->nAlloc = 0;
+ }
+ pM->zText = z;
+ }
+ }
+ if( pM->zText ){
+ memcpy(&pM->zText[pM->nChar], zNewText, nNewChar);
+ pM->nChar += nNewChar;
+ pM->zText[pM->nChar] = 0;
+ }
+}
+
+/*
+** sqlite_mprintf() works like printf(), but allocations memory to hold the
+** resulting string and returns a pointer to the allocated memory. Use
+** sqliteFree() to release the memory allocated.
+*/
+char *sqliteMPrintf(const char *zFormat, ...){
+ va_list ap;
+ struct sgMprintf sMprintf;
+ char *zNew;
+ char zBuf[200];
+
+ sMprintf.nChar = 0;
+ sMprintf.nAlloc = sizeof(zBuf);
+ sMprintf.zText = zBuf;
+ sMprintf.zBase = zBuf;
+ va_start(ap,zFormat);
+ vxprintf(mout,&sMprintf,zFormat,ap);
+ va_end(ap);
+ sMprintf.zText[sMprintf.nChar] = 0;
+ return sqliteRealloc(sMprintf.zText, sMprintf.nChar+1);
+}
+
+/*
+** sqlite_mprintf() works like printf(), but allocations memory to hold the
+** resulting string and returns a pointer to the allocated memory. Use
+** sqliteFree() to release the memory allocated.
+*/
+char *sqlite_mprintf(const char *zFormat, ...){
+ va_list ap;
+ struct sgMprintf sMprintf;
+ char *zNew;
+ char zBuf[200];
+
+ sMprintf.nChar = 0;
+ sMprintf.nAlloc = sizeof(zBuf);
+ sMprintf.zText = zBuf;
+ sMprintf.zBase = zBuf;
+ va_start(ap,zFormat);
+ vxprintf(mout,&sMprintf,zFormat,ap);
+ va_end(ap);
+ sMprintf.zText[sMprintf.nChar] = 0;
+ zNew = malloc( sMprintf.nChar+1 );
+ if( zNew ) strcpy(zNew,sMprintf.zText);
+ if( sMprintf.zText!=sMprintf.zBase ){
+ sqliteFree(sMprintf.zText);
+ }
+ return zNew;
+}
+
+/* This is the varargs version of sqlite_mprintf.
+*/
+char *sqlite_vmprintf(const char *zFormat, va_list ap){
+ struct sgMprintf sMprintf;
+ char *zNew;
+ char zBuf[200];
+ sMprintf.nChar = 0;
+ sMprintf.zText = zBuf;
+ sMprintf.nAlloc = sizeof(zBuf);
+ sMprintf.zBase = zBuf;
+ vxprintf(mout,&sMprintf,zFormat,ap);
+ sMprintf.zText[sMprintf.nChar] = 0;
+ zNew = malloc( sMprintf.nChar+1 );
+ if( zNew ) strcpy(zNew,sMprintf.zText);
+ if( sMprintf.zText!=sMprintf.zBase ){
+ sqliteFree(sMprintf.zText);
+ }
+ return zNew;
+}
+
+/*
+** The following four routines implement the varargs versions of the
+** sqlite_exec() and sqlite_get_table() interfaces. See the sqlite.h
+** header files for a more detailed description of how these interfaces
+** work.
+**
+** These routines are all just simple wrappers.
+*/
+int sqlite_exec_printf(
+ sqlite *db, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ sqlite_callback xCallback, /* Callback function */
+ void *pArg, /* 1st argument to callback function */
+ char **errmsg, /* Error msg written here */
+ ... /* Arguments to the format string. */
+){
+ va_list ap;
+ int rc;
+
+ va_start(ap, errmsg);
+ rc = sqlite_exec_vprintf(db, sqlFormat, xCallback, pArg, errmsg, ap);
+ va_end(ap);
+ return rc;
+}
+int sqlite_exec_vprintf(
+ sqlite *db, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ sqlite_callback xCallback, /* Callback function */
+ void *pArg, /* 1st argument to callback function */
+ char **errmsg, /* Error msg written here */
+ va_list ap /* Arguments to the format string. */
+){
+ char *zSql;
+ int rc;
+
+ zSql = sqlite_vmprintf(sqlFormat, ap);
+ rc = sqlite_exec(db, zSql, xCallback, pArg, errmsg);
+ free(zSql);
+ return rc;
+}
+int sqlite_get_table_printf(
+ sqlite *db, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ char ***resultp, /* Result written to a char *[] that this points to */
+ int *nrow, /* Number of result rows written here */
+ int *ncol, /* Number of result columns written here */
+ char **errmsg, /* Error msg written here */
+ ... /* Arguments to the format string */
+){
+ va_list ap;
+ int rc;
+
+ va_start(ap, errmsg);
+ rc = sqlite_get_table_vprintf(db, sqlFormat, resultp, nrow, ncol, errmsg, ap);
+ va_end(ap);
+ return rc;
+}
+int sqlite_get_table_vprintf(
+ sqlite *db, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ char ***resultp, /* Result written to a char *[] that this points to */
+ int *nrow, /* Number of result rows written here */
+ int *ncolumn, /* Number of result columns written here */
+ char **errmsg, /* Error msg written here */
+ va_list ap /* Arguments to the format string */
+){
+ char *zSql;
+ int rc;
+
+ zSql = sqlite_vmprintf(sqlFormat, ap);
+ rc = sqlite_get_table(db, zSql, resultp, nrow, ncolumn, errmsg);
+ free(zSql);
+ return rc;
+}
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code to implement a pseudo-random number
+** generator (PRNG) for SQLite.
+**
+** Random numbers are used by some of the database backends in order
+** to generate random integer keys for tables or random filenames.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+#include "os.h"
+
+
+/*
+** Get a single 8-bit random value from the RC4 PRNG. The Mutex
+** must be held while executing this routine.
+**
+** Why not just use a library random generator like lrand48() for this?
+** Because the OP_NewRecno opcode in the VDBE depends on having a very
+** good source of random numbers. The lrand48() library function may
+** well be good enough. But maybe not. Or maybe lrand48() has some
+** subtle problems on some systems that could cause problems. It is hard
+** to know. To minimize the risk of problems due to bad lrand48()
+** implementations, SQLite uses this random number generator based
+** on RC4, which we know works very well.
+*/
+static int randomByte(){
+ int t;
+
+ /* All threads share a single random number generator.
+ ** This structure is the current state of the generator.
+ */
+ static struct {
+ int isInit; /* True if initialized */
+ int i, j; /* State variables */
+ int s[256]; /* State variables */
+ } prng;
+
+ /* Initialize the state of the random number generator once,
+ ** the first time this routine is called. The seed value does
+ ** not need to contain a lot of randomness since we are not
+ ** trying to do secure encryption or anything like that...
+ **
+ ** Nothing in this file or anywhere else in SQLite does any kind of
+ ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
+ ** number generator) not as an encryption device.
+ */
+ if( !prng.isInit ){
+ int i;
+ char k[256];
+ prng.j = 0;
+ prng.i = 0;
+ sqliteOsRandomSeed(k);
+ for(i=0; i<256; i++){
+ prng.s[i] = i;
+ }
+ for(i=0; i<256; i++){
+ int t;
+ prng.j = (prng.j + prng.s[i] + k[i]) & 0xff;
+ t = prng.s[prng.j];
+ prng.s[prng.j] = prng.s[i];
+ prng.s[i] = t;
+ }
+ prng.isInit = 1;
+ }
+
+ /* Generate and return single random byte
+ */
+ prng.i = (prng.i + 1) & 0xff;
+ prng.j = (prng.j + prng.s[prng.i]) & 0xff;
+ t = prng.s[prng.i];
+ prng.s[prng.i] = prng.s[prng.j];
+ prng.s[prng.j] = t;
+ t = prng.s[prng.i] + prng.s[prng.j];
+ return prng.s[t & 0xff];
+}
+
+/*
+** Return an random 8-bit integer.
+*/
+int sqliteRandomByte(){
+ int r;
+ sqliteOsEnterMutex();
+ r = randomByte();
+ sqliteOsLeaveMutex();
+ return r;
+}
+
+/*
+** Return a random 32-bit integer. The integer is generated by making
+** 4 calls to sqliteRandomByte().
+*/
+int sqliteRandomInteger(){
+ int r;
+ int i;
+ sqliteOsEnterMutex();
+ r = randomByte();
+ for(i=1; i<4; i++){
+ r = (r<<8) + randomByte();
+ }
+ sqliteOsLeaveMutex();
+ return r;
+}
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle SELECT statements in SQLite.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+
+
+/*
+** Allocate a new Select structure and return a pointer to that
+** structure.
+*/
+Select *sqliteSelectNew(
+ ExprList *pEList, /* which columns to include in the result */
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */
+ Expr *pWhere, /* the WHERE clause */
+ ExprList *pGroupBy, /* the GROUP BY clause */
+ Expr *pHaving, /* the HAVING clause */
+ ExprList *pOrderBy, /* the ORDER BY clause */
+ int isDistinct, /* true if the DISTINCT keyword is present */
+ int nLimit, /* LIMIT value. -1 means not used */
+ int nOffset /* OFFSET value. -1 means not used */
+){
+ Select *pNew;
+ pNew = sqliteMalloc( sizeof(*pNew) );
+ if( pNew==0 ){
+ sqliteExprListDelete(pEList);
+ sqliteSrcListDelete(pSrc);
+ sqliteExprDelete(pWhere);
+ sqliteExprListDelete(pGroupBy);
+ sqliteExprDelete(pHaving);
+ sqliteExprListDelete(pOrderBy);
+ }else{
+ pNew->pEList = pEList;
+ pNew->pSrc = pSrc;
+ pNew->pWhere = pWhere;
+ pNew->pGroupBy = pGroupBy;
+ pNew->pHaving = pHaving;
+ pNew->pOrderBy = pOrderBy;
+ pNew->isDistinct = isDistinct;
+ pNew->op = TK_SELECT;
+ pNew->nLimit = nLimit;
+ pNew->nOffset = nOffset;
+ }
+ return pNew;
+}
+
+/*
+** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
+** type of join. Return an integer constant that expresses that type
+** in terms of the following bit values:
+**
+** JT_INNER
+** JT_OUTER
+** JT_NATURAL
+** JT_LEFT
+** JT_RIGHT
+**
+** A full outer join is the combination of JT_LEFT and JT_RIGHT.
+**
+** If an illegal or unsupported join type is seen, then still return
+** a join type, but put an error in the pParse structure.
+*/
+int sqliteJoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
+ int jointype = 0;
+ Token *apAll[3];
+ Token *p;
+ static struct {
+ const char *zKeyword;
+ int nChar;
+ int code;
+ } keywords[] = {
+ { "natural", 7, JT_NATURAL },
+ { "left", 4, JT_LEFT|JT_OUTER },
+ { "right", 5, JT_RIGHT|JT_OUTER },
+ { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
+ { "outer", 5, JT_OUTER },
+ { "inner", 5, JT_INNER },
+ { "cross", 5, JT_INNER },
+ };
+ int i, j;
+ apAll[0] = pA;
+ apAll[1] = pB;
+ apAll[2] = pC;
+ for(i=0; i<3 && apAll[i]; i++){
+ p = apAll[i];
+ for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
+ if( p->n==keywords[j].nChar
+ && sqliteStrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){
+ jointype |= keywords[j].code;
+ break;
+ }
+ }
+ if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
+ jointype |= JT_ERROR;
+ break;
+ }
+ }
+ if(
+ (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
+ (jointype & JT_ERROR)!=0
+ ){
+ static Token dummy = { 0, 0 };
+ char *zSp1 = " ", *zSp2 = " ";
+ if( pB==0 ){ pB = &dummy; zSp1 = 0; }
+ if( pC==0 ){ pC = &dummy; zSp2 = 0; }
+ sqliteSetNString(&pParse->zErrMsg, "unknown or unsupported join type: ", 0,
+ pA->z, pA->n, zSp1, 1, pB->z, pB->n, zSp2, 1, pC->z, pC->n, 0);
+ pParse->nErr++;
+ jointype = JT_INNER;
+ }else if( jointype & JT_RIGHT ){
+ sqliteSetString(&pParse->zErrMsg,
+ "RIGHT and FULL OUTER JOINs are not currently supported", 0);
+ pParse->nErr++;
+ jointype = JT_INNER;
+ }
+ return jointype;
+}
+
+/*
+** Return the index of a column in a table. Return -1 if the column
+** is not contained in the table.
+*/
+static int columnIndex(Table *pTab, const char *zCol){
+ int i;
+ for(i=0; i<pTab->nCol; i++){
+ if( sqliteStrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Add a term to the WHERE expression in *ppExpr that requires the
+** zCol column to be equal in the two tables pTab1 and pTab2.
+*/
+static void addWhereTerm(
+ const char *zCol, /* Name of the column */
+ const Table *pTab1, /* First table */
+ const Table *pTab2, /* Second table */
+ Expr **ppExpr /* Add the equality term to this expression */
+){
+ Token dummy;
+ Expr *pE1a, *pE1b, *pE1c;
+ Expr *pE2a, *pE2b, *pE2c;
+ Expr *pE;
+
+ dummy.z = zCol;
+ dummy.n = strlen(zCol);
+ dummy.dyn = 0;
+ pE1a = sqliteExpr(TK_ID, 0, 0, &dummy);
+ pE2a = sqliteExpr(TK_ID, 0, 0, &dummy);
+ dummy.z = pTab1->zName;
+ dummy.n = strlen(dummy.z);
+ pE1b = sqliteExpr(TK_ID, 0, 0, &dummy);
+ dummy.z = pTab2->zName;
+ dummy.n = strlen(dummy.z);
+ pE2b = sqliteExpr(TK_ID, 0, 0, &dummy);
+ pE1c = sqliteExpr(TK_DOT, pE1b, pE1a, 0);
+ pE2c = sqliteExpr(TK_DOT, pE2b, pE2a, 0);
+ pE = sqliteExpr(TK_EQ, pE1c, pE2c, 0);
+ ExprSetProperty(pE, EP_FromJoin);
+ if( *ppExpr ){
+ *ppExpr = sqliteExpr(TK_AND, *ppExpr, pE, 0);
+ }else{
+ *ppExpr = pE;
+ }
+}
+
+/*
+** Set the EP_FromJoin property on all terms of the given expression.
+**
+** The EP_FromJoin property is used on terms of an expression to tell
+** the LEFT OUTER JOIN processing logic that this term is part of the
+** join restriction specified in the ON or USING clause and not a part
+** of the more general WHERE clause. These terms are moved over to the
+** WHERE clause during join processing but we need to remember that they
+** originated in the ON or USING clause.
+*/
+static void setJoinExpr(Expr *p){
+ while( p ){
+ ExprSetProperty(p, EP_FromJoin);
+ setJoinExpr(p->pLeft);
+ p = p->pRight;
+ }
+}
+
+/*
+** This routine processes the join information for a SELECT statement.
+** ON and USING clauses are converted into extra terms of the WHERE clause.
+** NATURAL joins also create extra WHERE clause terms.
+**
+** This routine returns the number of errors encountered.
+*/
+static int sqliteProcessJoin(Parse *pParse, Select *p){
+ SrcList *pSrc;
+ int i, j;
+ pSrc = p->pSrc;
+ for(i=0; i<pSrc->nSrc-1; i++){
+ struct SrcList_item *pTerm = &pSrc->a[i];
+ struct SrcList_item *pOther = &pSrc->a[i+1];
+
+ if( pTerm->pTab==0 || pOther->pTab==0 ) continue;
+
+ /* When the NATURAL keyword is present, add WHERE clause terms for
+ ** every column that the two tables have in common.
+ */
+ if( pTerm->jointype & JT_NATURAL ){
+ Table *pTab;
+ if( pTerm->pOn || pTerm->pUsing ){
+ sqliteSetString(&pParse->zErrMsg, "a NATURAL join may not have "
+ "an ON or USING clause", 0);
+ pParse->nErr++;
+ return 1;
+ }
+ pTab = pTerm->pTab;
+ for(j=0; j<pTab->nCol; j++){
+ if( columnIndex(pOther->pTab, pTab->aCol[j].zName)>=0 ){
+ addWhereTerm(pTab->aCol[j].zName, pTab, pOther->pTab, &p->pWhere);
+ }
+ }
+ }
+
+ /* Disallow both ON and USING clauses in the same join
+ */
+ if( pTerm->pOn && pTerm->pUsing ){
+ sqliteSetString(&pParse->zErrMsg, "cannot have both ON and USING "
+ "clauses in the same join", 0);
+ pParse->nErr++;
+ return 1;
+ }
+
+ /* Add the ON clause to the end of the WHERE clause, connected by
+ ** and AND operator.
+ */
+ if( pTerm->pOn ){
+ setJoinExpr(pTerm->pOn);
+ if( p->pWhere==0 ){
+ p->pWhere = pTerm->pOn;
+ }else{
+ p->pWhere = sqliteExpr(TK_AND, p->pWhere, pTerm->pOn, 0);
+ }
+ pTerm->pOn = 0;
+ }
+
+ /* Create extra terms on the WHERE clause for each column named
+ ** in the USING clause. Example: If the two tables to be joined are
+ ** A and B and the USING clause names X, Y, and Z, then add this
+ ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
+ ** Report an error if any column mentioned in the USING clause is
+ ** not contained in both tables to be joined.
+ */
+ if( pTerm->pUsing ){
+ IdList *pList;
+ int j;
+ assert( i<pSrc->nSrc-1 );
+ pList = pTerm->pUsing;
+ for(j=0; j<pList->nId; j++){
+ if( columnIndex(pTerm->pTab, pList->a[j].zName)<0 ||
+ columnIndex(pOther->pTab, pList->a[j].zName)<0 ){
+ sqliteSetString(&pParse->zErrMsg, "cannot join using column ",
+ pList->a[j].zName, " - column not present in both tables", 0);
+ pParse->nErr++;
+ return 1;
+ }
+ addWhereTerm(pList->a[j].zName, pTerm->pTab, pOther->pTab, &p->pWhere);
+ }
+ }
+ }
+ return 0;
+}
+
+/*
+** This routine implements a minimal Oracle8 join syntax immulation.
+** The precise oracle8 syntax is not implemented - it is easy enough
+** to get this routine confused. But this routine does make it possible
+** to write a single SQL statement that does a left outer join in both
+** oracle8 and in SQLite.
+**
+** This routine looks for TK_COLUMN expression nodes that are marked
+** with the EP_Oracle8Join property. Such nodes are generated by a
+** column name (either "column" or "table.column") that is followed by
+** the special "(+)" operator. If the table of the column marked with
+** the (+) operator is the second are subsequent table in a join, then
+** that table becomes the left table in a LEFT OUTER JOIN. The expression
+** that uses that table becomes part of the ON clause for the join.
+**
+** It is important to enphasize that this is not exactly how oracle8
+** works. But it is close enough so that one can construct queries that
+** will work correctly for both SQLite and Oracle8.
+*/
+static int sqliteOracle8JoinFixup(
+ int base, /* VDBE cursor number for first table in pSrc */
+ SrcList *pSrc, /* List of tables being joined */
+ Expr *pWhere /* The WHERE clause of the SELECT statement */
+){
+ int rc = 0;
+ if( ExprHasProperty(pWhere, EP_Oracle8Join) && pWhere->op==TK_COLUMN ){
+ int idx = pWhere->iTable - base;
+ assert( idx>=0 && idx<pSrc->nSrc );
+ if( idx>0 ){
+ pSrc->a[idx-1].jointype &= ~JT_INNER;
+ pSrc->a[idx-1].jointype |= JT_OUTER|JT_LEFT;
+ return 1;
+ }
+ }
+ if( pWhere->pRight ){
+ rc = sqliteOracle8JoinFixup(base, pSrc, pWhere->pRight);
+ }
+ if( pWhere->pLeft ){
+ rc |= sqliteOracle8JoinFixup(base, pSrc, pWhere->pLeft);
+ }
+ if( pWhere->pList ){
+ int i;
+ ExprList *pList = pWhere->pList;
+ for(i=0; i<pList->nExpr && rc==0; i++){
+ rc |= sqliteOracle8JoinFixup(base, pSrc, pList->a[i].pExpr);
+ }
+ }
+ if( rc==1 && (pWhere->op==TK_AND || pWhere->op==TK_EQ) ){
+ setJoinExpr(pWhere);
+ rc = 0;
+ }
+ return rc;
+}
+
+/*
+** Delete the given Select structure and all of its substructures.
+*/
+void sqliteSelectDelete(Select *p){
+ if( p==0 ) return;
+ sqliteExprListDelete(p->pEList);
+ sqliteSrcListDelete(p->pSrc);
+ sqliteExprDelete(p->pWhere);
+ sqliteExprListDelete(p->pGroupBy);
+ sqliteExprDelete(p->pHaving);
+ sqliteExprListDelete(p->pOrderBy);
+ sqliteSelectDelete(p->pPrior);
+ sqliteFree(p->zSelect);
+ sqliteFree(p);
+}
+
+/*
+** Delete the aggregate information from the parse structure.
+*/
+static void sqliteAggregateInfoReset(Parse *pParse){
+ sqliteFree(pParse->aAgg);
+ pParse->aAgg = 0;
+ pParse->nAgg = 0;
+ pParse->useAgg = 0;
+}
+
+/*
+** Insert code into "v" that will push the record on the top of the
+** stack into the sorter.
+*/
+static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
+ char *zSortOrder;
+ int i;
+ zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
+ if( zSortOrder==0 ) return;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ int order = pOrderBy->a[i].sortOrder;
+ int type;
+ int c;
+ if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
+ type = SQLITE_SO_TEXT;
+ }else if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_NUM ){
+ type = SQLITE_SO_NUM;
+ }else if( pParse->db->file_format>=4 ){
+ type = sqliteExprType(pOrderBy->a[i].pExpr);
+ }else{
+ type = SQLITE_SO_NUM;
+ }
+ if( (order & SQLITE_SO_DIRMASK)==SQLITE_SO_ASC ){
+ c = type==SQLITE_SO_TEXT ? 'A' : '+';
+ }else{
+ c = type==SQLITE_SO_TEXT ? 'D' : '-';
+ }
+ zSortOrder[i] = c;
+ sqliteExprCode(pParse, pOrderBy->a[i].pExpr);
+ }
+ zSortOrder[pOrderBy->nExpr] = 0;
+ sqliteVdbeAddOp(v, OP_SortMakeKey, pOrderBy->nExpr, 0);
+ sqliteVdbeChangeP3(v, -1, zSortOrder, strlen(zSortOrder));
+ sqliteFree(zSortOrder);
+ sqliteVdbeAddOp(v, OP_SortPut, 0, 0);
+}
+
+/*
+** This routine adds a P3 argument to the last VDBE opcode that was
+** inserted. The P3 argument added is a string suitable for the
+** OP_MakeKey or OP_MakeIdxKey opcodes. The string consists of
+** characters 't' or 'n' depending on whether or not the various
+** fields of the key to be generated should be treated as numeric
+** or as text. See the OP_MakeKey and OP_MakeIdxKey opcode
+** documentation for additional information about the P3 string.
+** See also the sqliteAddIdxKeyType() routine.
+*/
+void sqliteAddKeyType(Vdbe *v, ExprList *pEList){
+ int nColumn = pEList->nExpr;
+ char *zType = sqliteMalloc( nColumn+1 );
+ int i;
+ if( zType==0 ) return;
+ for(i=0; i<nColumn; i++){
+ zType[i] = sqliteExprType(pEList->a[i].pExpr)==SQLITE_SO_NUM ? 'n' : 't';
+ }
+ zType[i] = 0;
+ sqliteVdbeChangeP3(v, -1, zType, nColumn);
+ sqliteFree(zType);
+}
+
+/*
+** This routine generates the code for the inside of the inner loop
+** of a SELECT.
+**
+** If srcTab and nColumn are both zero, then the pEList expressions
+** are evaluated in order to get the data for this row. If nColumn>0
+** then data is pulled from srcTab and pEList is used only to get the
+** datatypes for each column.
+*/
+static int selectInnerLoop(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The complete select statement being coded */
+ ExprList *pEList, /* List of values being extracted */
+ int srcTab, /* Pull data from this table */
+ int nColumn, /* Number of columns in the source table */
+ ExprList *pOrderBy, /* If not NULL, sort results using this key */
+ int distinct, /* If >=0, make sure results are distinct */
+ int eDest, /* How to dispose of the results */
+ int iParm, /* An argument to the disposal method */
+ int iContinue, /* Jump here to continue with next row */
+ int iBreak /* Jump here to break out of the inner loop */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+
+ if( v==0 ) return 0;
+ assert( pEList!=0 );
+
+ /* If there was a LIMIT clause on the SELECT statement, then do the check
+ ** to see if this row should be output.
+ */
+ if( pOrderBy==0 ){
+ if( p->nOffset>0 ){
+ int addr = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_MemIncr, p->nOffset, addr+2);
+ sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
+ }
+ if( p->nLimit>=0 ){
+ sqliteVdbeAddOp(v, OP_MemIncr, p->nLimit, iBreak);
+ }
+ }
+
+ /* Pull the requested columns.
+ */
+ if( nColumn>0 ){
+ for(i=0; i<nColumn; i++){
+ sqliteVdbeAddOp(v, OP_Column, srcTab, i);
+ }
+ }else{
+ nColumn = pEList->nExpr;
+ for(i=0; i<pEList->nExpr; i++){
+ sqliteExprCode(pParse, pEList->a[i].pExpr);
+ }
+ }
+
+ /* If the DISTINCT keyword was present on the SELECT statement
+ ** and this row has been seen before, then do not make this row
+ ** part of the result.
+ */
+ if( distinct>=0 && pEList && pEList->nExpr>0 ){
+#if NULL_ALWAYS_DISTINCT
+ sqliteVdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqliteVdbeCurrentAddr(v)+7);
+#endif
+ sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);
+ if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pEList);
+ sqliteVdbeAddOp(v, OP_Distinct, distinct, sqliteVdbeCurrentAddr(v)+3);
+ sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_PutStrKey, distinct, 0);
+ }
+
+ switch( eDest ){
+ /* In this mode, write each query result to the key of the temporary
+ ** table iParm.
+ */
+ case SRT_Union: {
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
+ break;
+ }
+
+ /* Store the result as data using a unique key.
+ */
+ case SRT_Table:
+ case SRT_TempTable: {
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+ if( pOrderBy ){
+ pushOntoSorter(pParse, v, pOrderBy);
+ }else{
+ sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
+ }
+ break;
+ }
+
+ /* Construct a record from the query result, but instead of
+ ** saving that record, use it as a key to delete elements from
+ ** the temporary table iParm.
+ */
+ case SRT_Except: {
+ int addr;
+ addr = sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
+ sqliteVdbeAddOp(v, OP_NotFound, iParm, addr+3);
+ sqliteVdbeAddOp(v, OP_Delete, iParm, 0);
+ break;
+ }
+
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+ ** then there should be a single item on the stack. Write this
+ ** item into the set table with bogus data.
+ */
+ case SRT_Set: {
+ int lbl = sqliteVdbeMakeLabel(v);
+ assert( nColumn==1 );
+ sqliteVdbeAddOp(v, OP_IsNull, -1, lbl);
+ if( pOrderBy ){
+ pushOntoSorter(pParse, v, pOrderBy);
+ }else{
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
+ }
+ sqliteVdbeResolveLabel(v, lbl);
+ break;
+ }
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell and break out
+ ** of the scan loop.
+ */
+ case SRT_Mem: {
+ assert( nColumn==1 );
+ if( pOrderBy ){
+ pushOntoSorter(pParse, v, pOrderBy);
+ }else{
+ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
+ sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
+ }
+ break;
+ }
+
+ /* Send the data to the callback function.
+ */
+ case SRT_Callback:
+ case SRT_Sorter: {
+ if( pOrderBy ){
+ sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0);
+ pushOntoSorter(pParse, v, pOrderBy);
+ }else{
+ assert( eDest==SRT_Callback );
+ sqliteVdbeAddOp(v, OP_Callback, nColumn, 0);
+ }
+ break;
+ }
+
+ /* Invoke a subroutine to handle the results. The subroutine itself
+ ** is responsible for popping the results off of the stack.
+ */
+ case SRT_Subroutine: {
+ if( pOrderBy ){
+ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+ pushOntoSorter(pParse, v, pOrderBy);
+ }else{
+ sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
+ }
+ break;
+ }
+
+ /* Discard the results. This is used for SELECT statements inside
+ ** the body of a TRIGGER. The purpose of such selects is to call
+ ** user-defined functions that have side effects. We do not care
+ ** about the actual results of the select.
+ */
+ default: {
+ assert( eDest==SRT_Discard );
+ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
+ break;
+ }
+ }
+ return 0;
+}
+
+/*
+** If the inner loop was generated using a non-null pOrderBy argument,
+** then the results were placed in a sorter. After the loop is terminated
+** we need to run the sorter and output the results. The following
+** routine generates the code needed to do that.
+*/
+static void generateSortTail(
+ Select *p, /* The SELECT statement */
+ Vdbe *v, /* Generate code into this VDBE */
+ int nColumn, /* Number of columns of data */
+ int eDest, /* Write the sorted results here */
+ int iParm /* Optional parameter associated with eDest */
+){
+ int end = sqliteVdbeMakeLabel(v);
+ int addr;
+ if( eDest==SRT_Sorter ) return;
+ sqliteVdbeAddOp(v, OP_Sort, 0, 0);
+ addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end);
+ if( p->nOffset>0 ){
+ sqliteVdbeAddOp(v, OP_MemIncr, p->nOffset, addr+4);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
+ }
+ if( p->nLimit>=0 ){
+ sqliteVdbeAddOp(v, OP_MemIncr, p->nLimit, end);
+ }
+ switch( eDest ){
+ case SRT_Callback: {
+ sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0);
+ break;
+ }
+ case SRT_Table:
+ case SRT_TempTable: {
+ sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
+ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
+ break;
+ }
+ case SRT_Set: {
+ assert( nColumn==1 );
+ sqliteVdbeAddOp(v, OP_IsNull, -1, sqliteVdbeCurrentAddr(v)+3);
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
+ break;
+ }
+ case SRT_Mem: {
+ assert( nColumn==1 );
+ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
+ sqliteVdbeAddOp(v, OP_Goto, 0, end);
+ break;
+ }
+ case SRT_Subroutine: {
+ int i;
+ for(i=0; i<nColumn; i++){
+ sqliteVdbeAddOp(v, OP_Column, -1-i, i);
+ }
+ sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
+ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
+ break;
+ }
+ default: {
+ /* Do nothing */
+ break;
+ }
+ }
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
+ sqliteVdbeResolveLabel(v, end);
+ sqliteVdbeAddOp(v, OP_SortReset, 0, 0);
+}
+
+/*
+** Generate code that will tell the VDBE the datatypes of
+** columns in the result set.
+**
+** This routine only generates code if the "PRAGMA show_datatypes=on"
+** has been executed. The datatypes are reported out in the azCol
+** parameter to the callback function. The first N azCol[] entries
+** are the names of the columns, and the second N entries are the
+** datatypes for the columns.
+**
+** The "datatype" for a result that is a column of a type is the
+** datatype definition extracted from the CREATE TABLE statement.
+** The datatype for an expression is either TEXT or NUMERIC. The
+** datatype for a ROWID field is INTEGER.
+*/
+static void generateColumnTypes(
+ Parse *pParse, /* Parser context */
+ int base, /* VDBE cursor corresponding to first entry in pTabList */
+ SrcList *pTabList, /* List of tables */
+ ExprList *pEList /* Expressions defining the result set */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ if( pParse->useCallback && (pParse->db->flags & SQLITE_ReportTypes)==0 ){
+ return;
+ }
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p = pEList->a[i].pExpr;
+ char *zType = 0;
+ if( p==0 ) continue;
+ if( p->op==TK_COLUMN && pTabList ){
+ Table *pTab = pTabList->a[p->iTable - base].pTab;
+ int iCol = p->iColumn;
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zType = "INTEGER";
+ }else{
+ zType = pTab->aCol[iCol].zType;
+ }
+ }else{
+ if( sqliteExprType(p)==SQLITE_SO_TEXT ){
+ zType = "TEXT";
+ }else{
+ zType = "NUMERIC";
+ }
+ }
+ sqliteVdbeAddOp(v, OP_ColumnName, i + pEList->nExpr, 0);
+ sqliteVdbeChangeP3(v, -1, zType, P3_STATIC);
+ }
+}
+
+/*
+** Generate code that will tell the VDBE the names of columns
+** in the result set. This information is used to provide the
+** azCol[] vaolues in the callback.
+*/
+static void generateColumnNames(
+ Parse *pParse, /* Parser context */
+ int base, /* VDBE cursor corresponding to first entry in pTabList */
+ SrcList *pTabList, /* List of tables */
+ ExprList *pEList /* Expressions defining the result set */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ if( pParse->colNamesSet || v==0 || sqlite_malloc_failed ) return;
+ pParse->colNamesSet = 1;
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p;
+ char *zType = 0;
+ int showFullNames;
+ p = pEList->a[i].pExpr;
+ if( p==0 ) continue;
+ if( pEList->a[i].zName ){
+ char *zName = pEList->a[i].zName;
+ sqliteVdbeAddOp(v, OP_ColumnName, i, 0);
+ sqliteVdbeChangeP3(v, -1, zName, strlen(zName));
+ continue;
+ }
+ showFullNames = (pParse->db->flags & SQLITE_FullColNames)!=0;
+ if( p->op==TK_COLUMN && pTabList ){
+ Table *pTab = pTabList->a[p->iTable - base].pTab;
+ char *zCol;
+ int iCol = p->iColumn;
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zCol = "_ROWID_";
+ zType = "INTEGER";
+ }else{
+ zCol = pTab->aCol[iCol].zName;
+ zType = pTab->aCol[iCol].zType;
+ }
+ if( p->span.z && p->span.z[0] && !showFullNames ){
+ int addr = sqliteVdbeAddOp(v,OP_ColumnName, i, 0);
+ sqliteVdbeChangeP3(v, -1, p->span.z, p->span.n);
+ sqliteVdbeCompressSpace(v, addr);
+ }else if( pTabList->nSrc>1 || showFullNames ){
+ char *zName = 0;
+ char *zTab;
+
+ zTab = pTabList->a[p->iTable - base].zAlias;
+ if( showFullNames || zTab==0 ) zTab = pTab->zName;
+ sqliteSetString(&zName, zTab, ".", zCol, 0);
+ sqliteVdbeAddOp(v, OP_ColumnName, i, 0);
+ sqliteVdbeChangeP3(v, -1, zName, strlen(zName));
+ sqliteFree(zName);
+ }else{
+ sqliteVdbeAddOp(v, OP_ColumnName, i, 0);
+ sqliteVdbeChangeP3(v, -1, zCol, 0);
+ }
+ }else if( p->span.z && p->span.z[0] ){
+ int addr = sqliteVdbeAddOp(v,OP_ColumnName, i, 0);
+ sqliteVdbeChangeP3(v, -1, p->span.z, p->span.n);
+ sqliteVdbeCompressSpace(v, addr);
+ }else{
+ char zName[30];
+ assert( p->op!=TK_COLUMN || pTabList==0 );
+ sprintf(zName, "column%d", i+1);
+ sqliteVdbeAddOp(v, OP_ColumnName, i, 0);
+ sqliteVdbeChangeP3(v, -1, zName, strlen(zName));
+ }
+ }
+}
+
+/*
+** Name of the connection operator, used for error messages.
+*/
+static const char *selectOpName(int id){
+ char *z;
+ switch( id ){
+ case TK_ALL: z = "UNION ALL"; break;
+ case TK_INTERSECT: z = "INTERSECT"; break;
+ case TK_EXCEPT: z = "EXCEPT"; break;
+ default: z = "UNION"; break;
+ }
+ return z;
+}
+
+/*
+** Forward declaration
+*/
+static int fillInColumnList(Parse*, Select*);
+
+/*
+** Given a SELECT statement, generate a Table structure that describes
+** the result set of that SELECT.
+*/
+Table *sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
+ Table *pTab;
+ int i;
+ ExprList *pEList;
+
+ if( fillInColumnList(pParse, pSelect) ){
+ return 0;
+ }
+ pTab = sqliteMalloc( sizeof(Table) );
+ if( pTab==0 ){
+ return 0;
+ }
+ pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
+ pEList = pSelect->pEList;
+ pTab->nCol = pEList->nExpr;
+ assert( pTab->nCol>0 );
+ pTab->aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
+ for(i=0; i<pTab->nCol; i++){
+ Expr *p;
+ if( pEList->a[i].zName ){
+ pTab->aCol[i].zName = sqliteStrDup(pEList->a[i].zName);
+ }else if( (p=pEList->a[i].pExpr)->span.z && p->span.z[0] ){
+ sqliteSetNString(&pTab->aCol[i].zName, p->span.z, p->span.n, 0);
+ }else if( p->op==TK_DOT && p->pRight && p->pRight->token.z &&
+ p->pRight->token.z[0] ){
+ sqliteSetNString(&pTab->aCol[i].zName,
+ p->pRight->token.z, p->pRight->token.n, 0);
+ }else{
+ char zBuf[30];
+ sprintf(zBuf, "column%d", i+1);
+ pTab->aCol[i].zName = sqliteStrDup(zBuf);
+ }
+ }
+ pTab->iPKey = -1;
+ return pTab;
+}
+
+/*
+** For the given SELECT statement, do three things.
+**
+** (1) Fill in the pTabList->a[].pTab fields in the SrcList that
+** defines the set of tables that should be scanned.
+**
+** (2) Add terms to the WHERE clause to accomodate the NATURAL keyword
+** on joins and the ON and USING clause of joins.
+**
+** (3) Scan the list of columns in the result set (pEList) looking
+** for instances of the "*" operator or the TABLE.* operator.
+** If found, expand each "*" to be every column in every table
+** and TABLE.* to be every column in TABLE.
+**
+** Return 0 on success. If there are problems, leave an error message
+** in pParse and return non-zero.
+*/
+static int fillInColumnList(Parse *pParse, Select *p){
+ int i, j, k, rc;
+ SrcList *pTabList;
+ ExprList *pEList;
+ Table *pTab;
+
+ if( p==0 || p->pSrc==0 ) return 1;
+ pTabList = p->pSrc;
+ pEList = p->pEList;
+
+ /* Look up every table in the table list.
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ if( pTabList->a[i].pTab ){
+ /* This routine has run before! No need to continue */
+ return 0;
+ }
+ if( pTabList->a[i].zName==0 ){
+ /* A sub-query in the FROM clause of a SELECT */
+ assert( pTabList->a[i].pSelect!=0 );
+ if( pTabList->a[i].zAlias==0 ){
+ char zFakeName[60];
+ sprintf(zFakeName, "sqlite_subquery_%p_",
+ (void*)pTabList->a[i].pSelect);
+ sqliteSetString(&pTabList->a[i].zAlias, zFakeName, 0);
+ }
+ pTabList->a[i].pTab = pTab =
+ sqliteResultSetOfSelect(pParse, pTabList->a[i].zAlias,
+ pTabList->a[i].pSelect);
+ if( pTab==0 ){
+ return 1;
+ }
+ pTab->isTransient = 1;
+ }else{
+ /* An ordinary table or view name in the FROM clause */
+ pTabList->a[i].pTab = pTab =
+ sqliteFindTable(pParse->db, pTabList->a[i].zName);
+ if( pTab==0 ){
+ sqliteSetString(&pParse->zErrMsg, "no such table: ",
+ pTabList->a[i].zName, 0);
+ pParse->nErr++;
+ return 1;
+ }
+ if( pTab->pSelect ){
+ if( sqliteViewGetColumnNames(pParse, pTab) ){
+ return 1;
+ }
+ sqliteSelectDelete(pTabList->a[i].pSelect);
+ pTabList->a[i].pSelect = sqliteSelectDup(pTab->pSelect);
+ }
+ }
+ }
+
+ /* Process NATURAL keywords, and ON and USING clauses of joins.
+ */
+ if( sqliteProcessJoin(pParse, p) ) return 1;
+
+ /* For every "*" that occurs in the column list, insert the names of
+ ** all columns in all tables. And for every TABLE.* insert the names
+ ** of all columns in TABLE. The parser inserted a special expression
+ ** with the TK_ALL operator for each "*" that it found in the column list.
+ ** The following code just has to locate the TK_ALL expressions and expand
+ ** each one to the list of all columns in all tables.
+ **
+ ** The first loop just checks to see if there are any "*" operators
+ ** that need expanding.
+ */
+ for(k=0; k<pEList->nExpr; k++){
+ Expr *pE = pEList->a[k].pExpr;
+ if( pE->op==TK_ALL ) break;
+ if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
+ && pE->pLeft && pE->pLeft->op==TK_ID ) break;
+ }
+ rc = 0;
+ if( k<pEList->nExpr ){
+ /*
+ ** If we get here it means the result set contains one or more "*"
+ ** operators that need to be expanded. Loop through each expression
+ ** in the result set and expand them one by one.
+ */
+ struct ExprList_item *a = pEList->a;
+ ExprList *pNew = 0;
+ for(k=0; k<pEList->nExpr; k++){
+ Expr *pE = a[k].pExpr;
+ if( pE->op!=TK_ALL &&
+ (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
+ /* This particular expression does not need to be expanded.
+ */
+ pNew = sqliteExprListAppend(pNew, a[k].pExpr, 0);
+ pNew->a[pNew->nExpr-1].zName = a[k].zName;
+ a[k].pExpr = 0;
+ a[k].zName = 0;
+ }else{
+ /* This expression is a "*" or a "TABLE.*" and needs to be
+ ** expanded. */
+ int tableSeen = 0; /* Set to 1 when TABLE matches */
+ Token *pName; /* text of name of TABLE */
+ if( pE->op==TK_DOT && pE->pLeft ){
+ pName = &pE->pLeft->token;
+ }else{
+ pName = 0;
+ }
+ for(i=0; i<pTabList->nSrc; i++){
+ Table *pTab = pTabList->a[i].pTab;
+ char *zTabName = pTabList->a[i].zAlias;
+ if( zTabName==0 || zTabName[0]==0 ){
+ zTabName = pTab->zName;
+ }
+ if( pName && (zTabName==0 || zTabName[0]==0 ||
+ sqliteStrNICmp(pName->z, zTabName, pName->n)!=0 ||
+ zTabName[pName->n]!=0) ){
+ continue;
+ }
+ tableSeen = 1;
+ for(j=0; j<pTab->nCol; j++){
+ Expr *pExpr, *pLeft, *pRight;
+ char *zName = pTab->aCol[j].zName;
+
+ if( i>0 && (pTabList->a[i-1].jointype & JT_NATURAL)!=0 &&
+ columnIndex(pTabList->a[i-1].pTab, zName)>=0 ){
+ /* In a NATURAL join, omit the join columns from the
+ ** table on the right */
+ continue;
+ }
+ if( i>0 && sqliteIdListIndex(pTabList->a[i-1].pUsing, zName)>=0 ){
+ /* In a join with a USING clause, omit columns in the
+ ** using clause from the table on the right. */
+ continue;
+ }
+ pRight = sqliteExpr(TK_ID, 0, 0, 0);
+ if( pRight==0 ) break;
+ pRight->token.z = zName;
+ pRight->token.n = strlen(zName);
+ pRight->token.dyn = 0;
+ if( zTabName && pTabList->nSrc>1 ){
+ pLeft = sqliteExpr(TK_ID, 0, 0, 0);
+ pExpr = sqliteExpr(TK_DOT, pLeft, pRight, 0);
+ if( pExpr==0 ) break;
+ pLeft->token.z = zTabName;
+ pLeft->token.n = strlen(zTabName);
+ pLeft->token.dyn = 0;
+ sqliteSetString((char**)&pExpr->span.z, zTabName, ".", zName, 0);
+ pExpr->span.n = strlen(pExpr->span.z);
+ pExpr->span.dyn = 1;
+ pExpr->token.z = 0;
+ pExpr->token.n = 0;
+ pExpr->token.dyn = 0;
+ }else{
+ pExpr = pRight;
+ pExpr->span = pExpr->token;
+ }
+ pNew = sqliteExprListAppend(pNew, pExpr, 0);
+ }
+ }
+ if( !tableSeen ){
+ if( pName ){
+ sqliteSetNString(&pParse->zErrMsg, "no such table: ", -1,
+ pName->z, pName->n, 0);
+ }else{
+ sqliteSetString(&pParse->zErrMsg, "no tables specified", 0);
+ }
+ rc = 1;
+ }
+ }
+ }
+ sqliteExprListDelete(pEList);
+ p->pEList = pNew;
+ }
+ return rc;
+}
+
+/*
+** This routine recursively unlinks the Select.pSrc.a[].pTab pointers
+** in a select structure. It just sets the pointers to NULL. This
+** routine is recursive in the sense that if the Select.pSrc.a[].pSelect
+** pointer is not NULL, this routine is called recursively on that pointer.
+**
+** This routine is called on the Select structure that defines a
+** VIEW in order to undo any bindings to tables. This is necessary
+** because those tables might be DROPed by a subsequent SQL command.
+*/
+void sqliteSelectUnbind(Select *p){
+ int i;
+ SrcList *pSrc = p->pSrc;
+ Table *pTab;
+ if( p==0 ) return;
+ for(i=0; i<pSrc->nSrc; i++){
+ if( (pTab = pSrc->a[i].pTab)!=0 ){
+ if( pTab->isTransient ){
+ sqliteDeleteTable(0, pTab);
+#if 0
+ sqliteSelectDelete(pSrc->a[i].pSelect);
+ pSrc->a[i].pSelect = 0;
+#endif
+ }
+ pSrc->a[i].pTab = 0;
+ if( pSrc->a[i].pSelect ){
+ sqliteSelectUnbind(pSrc->a[i].pSelect);
+ }
+ }
+ }
+}
+
+/*
+** This routine associates entries in an ORDER BY expression list with
+** columns in a result. For each ORDER BY expression, the opcode of
+** the top-level node is changed to TK_COLUMN and the iColumn value of
+** the top-level node is filled in with column number and the iTable
+** value of the top-level node is filled with iTable parameter.
+**
+** If there are prior SELECT clauses, they are processed first. A match
+** in an earlier SELECT takes precedence over a later SELECT.
+**
+** Any entry that does not match is flagged as an error. The number
+** of errors is returned.
+**
+** This routine does NOT correctly initialize the Expr.dataType field
+** of the ORDER BY expressions. The multiSelectSortOrder() routine
+** must be called to do that after the individual select statements
+** have all been analyzed. This routine is unable to compute Expr.dataType
+** because it must be called before the individual select statements
+** have been analyzed.
+*/
+static int matchOrderbyToColumn(
+ Parse *pParse, /* A place to leave error messages */
+ Select *pSelect, /* Match to result columns of this SELECT */
+ ExprList *pOrderBy, /* The ORDER BY values to match against columns */
+ int iTable, /* Insert this value in iTable */
+ int mustComplete /* If TRUE all ORDER BYs must match */
+){
+ int nErr = 0;
+ int i, j;
+ ExprList *pEList;
+
+ if( pSelect==0 || pOrderBy==0 ) return 1;
+ if( mustComplete ){
+ for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
+ }
+ if( fillInColumnList(pParse, pSelect) ){
+ return 1;
+ }
+ if( pSelect->pPrior ){
+ if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
+ return 1;
+ }
+ }
+ pEList = pSelect->pEList;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ Expr *pE = pOrderBy->a[i].pExpr;
+ int iCol = -1;
+ if( pOrderBy->a[i].done ) continue;
+ if( sqliteExprIsInteger(pE, &iCol) ){
+ if( iCol<=0 || iCol>pEList->nExpr ){
+ char zBuf[200];
+ sprintf(zBuf,"ORDER BY position %d should be between 1 and %d",
+ iCol, pEList->nExpr);
+ sqliteSetString(&pParse->zErrMsg, zBuf, 0);
+ pParse->nErr++;
+ nErr++;
+ break;
+ }
+ if( !mustComplete ) continue;
+ iCol--;
+ }
+ for(j=0; iCol<0 && j<pEList->nExpr; j++){
+ if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
+ char *zName, *zLabel;
+ zName = pEList->a[j].zName;
+ assert( pE->token.z );
+ zLabel = sqliteStrNDup(pE->token.z, pE->token.n);
+ sqliteDequote(zLabel);
+ if( sqliteStrICmp(zName, zLabel)==0 ){
+ iCol = j;
+ }
+ sqliteFree(zLabel);
+ }
+ if( iCol<0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){
+ iCol = j;
+ }
+ }
+ if( iCol>=0 ){
+ pE->op = TK_COLUMN;
+ pE->iColumn = iCol;
+ pE->iTable = iTable;
+ pOrderBy->a[i].done = 1;
+ }
+ if( iCol<0 && mustComplete ){
+ char zBuf[30];
+ sprintf(zBuf,"%d",i+1);
+ sqliteSetString(&pParse->zErrMsg, "ORDER BY term number ", zBuf,
+ " does not match any result column", 0);
+ pParse->nErr++;
+ nErr++;
+ break;
+ }
+ }
+ return nErr;
+}
+
+/*
+** Get a VDBE for the given parser context. Create a new one if necessary.
+** If an error occurs, return NULL and leave a message in pParse.
+*/
+Vdbe *sqliteGetVdbe(Parse *pParse){
+ Vdbe *v = pParse->pVdbe;
+ if( v==0 ){
+ v = pParse->pVdbe = sqliteVdbeCreate(pParse->db);
+ }
+ return v;
+}
+
+/*
+** This routine sets the Expr.dataType field on all elements of
+** the pOrderBy expression list. The pOrderBy list will have been
+** set up by matchOrderbyToColumn(). Hence each expression has
+** a TK_COLUMN as its root node. The Expr.iColumn refers to a
+** column in the result set. The datatype is set to SQLITE_SO_TEXT
+** if the corresponding column in p and every SELECT to the left of
+** p has a datatype of SQLITE_SO_TEXT. If the cooressponding column
+** in p or any of the left SELECTs is SQLITE_SO_NUM, then the datatype
+** of the order-by expression is set to SQLITE_SO_NUM.
+**
+** Examples:
+**
+** CREATE TABLE one(a INTEGER, b TEXT);
+** CREATE TABLE two(c VARCHAR(5), d FLOAT);
+**
+** SELECT b, b FROM one UNION SELECT d, c FROM two ORDER BY 1, 2;
+**
+** The primary sort key will use SQLITE_SO_NUM because the "d" in
+** the second SELECT is numeric. The 1st column of the first SELECT
+** is text but that does not matter because a numeric always overrides
+** a text.
+**
+** The secondary key will use the SQLITE_SO_TEXT sort order because
+** both the (second) "b" in the first SELECT and the "c" in the second
+** SELECT have a datatype of text.
+*/
+static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){
+ int i;
+ ExprList *pEList;
+ if( pOrderBy==0 ) return;
+ if( p==0 ){
+ for(i=0; i<pOrderBy->nExpr; i++){
+ pOrderBy->a[i].pExpr->dataType = SQLITE_SO_TEXT;
+ }
+ return;
+ }
+ multiSelectSortOrder(p->pPrior, pOrderBy);
+ pEList = p->pEList;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ Expr *pE = pOrderBy->a[i].pExpr;
+ if( pE->dataType==SQLITE_SO_NUM ) continue;
+ assert( pE->iColumn>=0 );
+ if( pEList->nExpr>pE->iColumn ){
+ pE->dataType = sqliteExprType(pEList->a[pE->iColumn].pExpr);
+ }
+ }
+}
+
+/*
+** This routine is called to process a query that is really the union
+** or intersection of two or more separate queries.
+**
+** "p" points to the right-most of the two queries. the query on the
+** left is p->pPrior. The left query could also be a compound query
+** in which case this routine will be called recursively.
+**
+** The results of the total query are to be written into a destination
+** of type eDest with parameter iParm.
+**
+** Example 1: Consider a three-way compound SQL statement.
+**
+** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
+**
+** This statement is parsed up as follows:
+**
+** SELECT c FROM t3
+** |
+** `-----> SELECT b FROM t2
+** |
+** `------> SELECT c FROM t1
+**
+** The arrows in the diagram above represent the Select.pPrior pointer.
+** So if this routine is called with p equal to the t3 query, then
+** pPrior will be the t2 query. p->op will be TK_UNION in this case.
+**
+** Notice that because of the way SQLite parses compound SELECTs, the
+** individual selects always group from left to right.
+*/
+static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){
+ int rc; /* Success code from a subroutine */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Vdbe *v; /* Generate code to this VDBE */
+
+ /* Make sure there is no ORDER BY clause on prior SELECTs. Only the
+ ** last SELECT in the series may have an ORDER BY.
+ */
+ if( p==0 || p->pPrior==0 ) return 1;
+ pPrior = p->pPrior;
+ if( pPrior->pOrderBy ){
+ sqliteSetString(&pParse->zErrMsg,"ORDER BY clause should come after ",
+ selectOpName(p->op), " not before", 0);
+ pParse->nErr++;
+ return 1;
+ }
+
+ /* Make sure we have a valid query engine. If not, create a new one.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) return 1;
+
+ /* Create the destination temporary table if necessary
+ */
+ if( eDest==SRT_TempTable ){
+ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
+ eDest = SRT_Table;
+ }
+
+ /* Generate code for the left and right SELECT statements.
+ */
+ switch( p->op ){
+ case TK_ALL: {
+ if( p->pOrderBy==0 ){
+ rc = sqliteSelect(pParse, pPrior, eDest, iParm, 0, 0, 0);
+ if( rc ) return rc;
+ p->pPrior = 0;
+ rc = sqliteSelect(pParse, p, eDest, iParm, 0, 0, 0);
+ p->pPrior = pPrior;
+ if( rc ) return rc;
+ break;
+ }
+ /* For UNION ALL ... ORDER BY fall through to the next case */
+ }
+ case TK_EXCEPT:
+ case TK_UNION: {
+ int unionTab; /* Cursor number of the temporary table holding result */
+ int op; /* One of the SRT_ operations to apply to self */
+ int priorOp; /* The SRT_ operation to apply to prior selects */
+ ExprList *pOrderBy; /* The ORDER BY clause for the right SELECT */
+
+ priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
+ if( eDest==priorOp && p->pOrderBy==0 ){
+ /* We can reuse a temporary table generated by a SELECT to our
+ ** right.
+ */
+ unionTab = iParm;
+ }else{
+ /* We will need to create our own temporary table to hold the
+ ** intermediate results.
+ */
+ unionTab = pParse->nTab++;
+ if( p->pOrderBy
+ && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
+ return 1;
+ }
+ if( p->op!=TK_ALL ){
+ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1);
+ sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1);
+ }else{
+ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0);
+ }
+ }
+
+ /* Code the SELECT statements to our left
+ */
+ rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0);
+ if( rc ) return rc;
+
+ /* Code the current SELECT statement
+ */
+ switch( p->op ){
+ case TK_EXCEPT: op = SRT_Except; break;
+ case TK_UNION: op = SRT_Union; break;
+ case TK_ALL: op = SRT_Table; break;
+ }
+ p->pPrior = 0;
+ pOrderBy = p->pOrderBy;
+ p->pOrderBy = 0;
+ rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0);
+ p->pPrior = pPrior;
+ p->pOrderBy = pOrderBy;
+ if( rc ) return rc;
+
+ /* Convert the data in the temporary table into whatever form
+ ** it is that we currently need.
+ */
+ if( eDest!=priorOp || unionTab!=iParm ){
+ int iCont, iBreak, iStart;
+ assert( p->pEList );
+ if( eDest==SRT_Callback ){
+ generateColumnNames(pParse, p->base, 0, p->pEList);
+ generateColumnTypes(pParse, p->base, p->pSrc, p->pEList);
+ }
+ iBreak = sqliteVdbeMakeLabel(v);
+ iCont = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak);
+ iStart = sqliteVdbeCurrentAddr(v);
+ multiSelectSortOrder(p, p->pOrderBy);
+ rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
+ p->pOrderBy, -1, eDest, iParm,
+ iCont, iBreak);
+ if( rc ) return 1;
+ sqliteVdbeResolveLabel(v, iCont);
+ sqliteVdbeAddOp(v, OP_Next, unionTab, iStart);
+ sqliteVdbeResolveLabel(v, iBreak);
+ sqliteVdbeAddOp(v, OP_Close, unionTab, 0);
+ if( p->pOrderBy ){
+ generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
+ }
+ }
+ break;
+ }
+ case TK_INTERSECT: {
+ int tab1, tab2;
+ int iCont, iBreak, iStart;
+
+ /* INTERSECT is different from the others since it requires
+ ** two temporary tables. Hence it has its own case. Begin
+ ** by allocating the tables we will need.
+ */
+ tab1 = pParse->nTab++;
+ tab2 = pParse->nTab++;
+ if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
+ return 1;
+ }
+ sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1);
+ sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1);
+
+ /* Code the SELECTs to our left into temporary table "tab1".
+ */
+ rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0);
+ if( rc ) return rc;
+
+ /* Code the current SELECT into temporary table "tab2"
+ */
+ sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1);
+ sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1);
+ p->pPrior = 0;
+ rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0);
+ p->pPrior = pPrior;
+ if( rc ) return rc;
+
+ /* Generate code to take the intersection of the two temporary
+ ** tables.
+ */
+ assert( p->pEList );
+ if( eDest==SRT_Callback ){
+ generateColumnNames(pParse, p->base, 0, p->pEList);
+ generateColumnTypes(pParse, p->base, p->pSrc, p->pEList);
+ }
+ iBreak = sqliteVdbeMakeLabel(v);
+ iCont = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak);
+ iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0);
+ sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont);
+ multiSelectSortOrder(p, p->pOrderBy);
+ rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
+ p->pOrderBy, -1, eDest, iParm,
+ iCont, iBreak);
+ if( rc ) return 1;
+ sqliteVdbeResolveLabel(v, iCont);
+ sqliteVdbeAddOp(v, OP_Next, tab1, iStart);
+ sqliteVdbeResolveLabel(v, iBreak);
+ sqliteVdbeAddOp(v, OP_Close, tab2, 0);
+ sqliteVdbeAddOp(v, OP_Close, tab1, 0);
+ if( p->pOrderBy ){
+ generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
+ }
+ break;
+ }
+ }
+ assert( p->pEList && pPrior->pEList );
+ if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
+ sqliteSetString(&pParse->zErrMsg, "SELECTs to the left and right of ",
+ selectOpName(p->op), " do not have the same number of result columns", 0);
+ pParse->nErr++;
+ return 1;
+ }
+
+ /* Issue a null callback if that is what the user wants.
+ */
+ if( eDest==SRT_Callback &&
+ (pParse->useCallback==0 || (pParse->db->flags & SQLITE_NullCallback)!=0)
+ ){
+ sqliteVdbeAddOp(v, OP_NullCallback, p->pEList->nExpr, 0);
+ }
+ return 0;
+}
+
+/*
+** Recursively scan through an expression tree. For every reference
+** to a column in table number iFrom, change that reference to the
+** same column in table number iTo.
+*/
+static void changeTablesInList(ExprList*, int, int); /* Forward Declaration */
+static void changeTables(Expr *pExpr, int iFrom, int iTo){
+ if( pExpr==0 ) return;
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==iFrom ){
+ pExpr->iTable = iTo;
+ }else{
+ changeTables(pExpr->pLeft, iFrom, iTo);
+ changeTables(pExpr->pRight, iFrom, iTo);
+ changeTablesInList(pExpr->pList, iFrom, iTo);
+ }
+}
+static void changeTablesInList(ExprList *pList, int iFrom, int iTo){
+ if( pList ){
+ int i;
+ for(i=0; i<pList->nExpr; i++){
+ changeTables(pList->a[i].pExpr, iFrom, iTo);
+ }
+ }
+}
+
+/*
+** Scan through the expression pExpr. Replace every reference to
+** a column in table number iTable with a copy of the corresponding
+** entry in pEList. (But leave references to the ROWID column
+** unchanged.) When making a copy of an expression in pEList, change
+** references to columns in table iSub into references to table iTable.
+**
+** This routine is part of the flattening procedure. A subquery
+** whose result set is defined by pEList appears as entry in the
+** FROM clause of a SELECT such that the VDBE cursor assigned to that
+** FORM clause entry is iTable. This routine make the necessary
+** changes to pExpr so that it refers directly to the source table
+** of the subquery rather the result set of the subquery.
+*/
+static void substExprList(ExprList*,int,ExprList*,int); /* Forward Decl */
+static void substExpr(Expr *pExpr, int iTable, ExprList *pEList, int iSub){
+ if( pExpr==0 ) return;
+ if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable && pExpr->iColumn>=0 ){
+ Expr *pNew;
+ assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
+ assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
+ pNew = pEList->a[pExpr->iColumn].pExpr;
+ assert( pNew!=0 );
+ pExpr->op = pNew->op;
+ pExpr->dataType = pNew->dataType;
+ assert( pExpr->pLeft==0 );
+ pExpr->pLeft = sqliteExprDup(pNew->pLeft);
+ assert( pExpr->pRight==0 );
+ pExpr->pRight = sqliteExprDup(pNew->pRight);
+ assert( pExpr->pList==0 );
+ pExpr->pList = sqliteExprListDup(pNew->pList);
+ pExpr->iTable = pNew->iTable;
+ pExpr->iColumn = pNew->iColumn;
+ pExpr->iAgg = pNew->iAgg;
+ sqliteTokenCopy(&pExpr->token, &pNew->token);
+ sqliteTokenCopy(&pExpr->span, &pNew->span);
+ if( iSub!=iTable ){
+ changeTables(pExpr, iSub, iTable);
+ }
+ }else{
+ substExpr(pExpr->pLeft, iTable, pEList, iSub);
+ substExpr(pExpr->pRight, iTable, pEList, iSub);
+ substExprList(pExpr->pList, iTable, pEList, iSub);
+ }
+}
+static void
+substExprList(ExprList *pList, int iTable, ExprList *pEList, int iSub){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nExpr; i++){
+ substExpr(pList->a[i].pExpr, iTable, pEList, iSub);
+ }
+}
+
+/*
+** This routine attempts to flatten subqueries in order to speed
+** execution. It returns 1 if it makes changes and 0 if no flattening
+** occurs.
+**
+** To understand the concept of flattening, consider the following
+** query:
+**
+** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
+**
+** The default way of implementing this query is to execute the
+** subquery first and store the results in a temporary table, then
+** run the outer query on that temporary table. This requires two
+** passes over the data. Furthermore, because the temporary table
+** has no indices, the WHERE clause on the outer query cannot be
+** optimized.
+**
+** This routine attempts to rewrite queries such as the above into
+** a single flat select, like this:
+**
+** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
+**
+** The code generated for this simpification gives the same result
+** but only has to scan the data once. And because indices might
+** exist on the table t1, a complete scan of the data might be
+** avoided.
+**
+** Flattening is only attempted if all of the following are true:
+**
+** (1) The subquery and the outer query do not both use aggregates.
+**
+** (2) The subquery is not an aggregate or the outer query is not a join.
+**
+** (3) The subquery is not a join.
+**
+** (4) The subquery is not DISTINCT or the outer query is not a join.
+**
+** (5) The subquery is not DISTINCT or the outer query does not use
+** aggregates.
+**
+** (6) The subquery does not use aggregates or the outer query is not
+** DISTINCT.
+**
+** (7) The subquery has a FROM clause.
+**
+** (8) The subquery does not use LIMIT or the outer query is not a join.
+**
+** (9) The subquery does not use LIMIT or the outer query does not use
+** aggregates.
+**
+** (10) The subquery does not use aggregates or the outer query does not
+** use LIMIT.
+**
+** (11) The subquery and the outer query do not both have ORDER BY clauses.
+**
+** In this routine, the "p" parameter is a pointer to the outer query.
+** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
+** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
+**
+** If flattening is not attempted, this routine is a no-op and return 0.
+** If flattening is attempted this routine returns 1.
+**
+** All of the expression analysis must occur on both the outer query and
+** the subquery before this routine runs.
+*/
+static int flattenSubquery(
+ Parse *pParse, /* The parsing context */
+ Select *p, /* The parent or outer SELECT statement */
+ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
+ int isAgg, /* True if outer SELECT uses aggregate functions */
+ int subqueryIsAgg /* True if the subquery uses aggregate functions */
+){
+ Select *pSub; /* The inner query or "subquery" */
+ SrcList *pSrc; /* The FROM clause of the outer query */
+ SrcList *pSubSrc; /* The FROM clause of the subquery */
+ ExprList *pList; /* The result set of the outer query */
+ int i;
+ int iParent, iSub;
+ Expr *pWhere;
+
+ /* Check to see if flattening is permitted. Return 0 if not.
+ */
+ if( p==0 ) return 0;
+ pSrc = p->pSrc;
+ assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
+ pSub = pSrc->a[iFrom].pSelect;
+ assert( pSub!=0 );
+ if( isAgg && subqueryIsAgg ) return 0;
+ if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;
+ pSubSrc = pSub->pSrc;
+ assert( pSubSrc );
+ if( pSubSrc->nSrc!=1 ) return 0;
+ if( (pSub->isDistinct || pSub->nLimit>=0) && (pSrc->nSrc>1 || isAgg) ){
+ return 0;
+ }
+ if( (p->isDistinct || p->nLimit>=0) && subqueryIsAgg ) return 0;
+ if( p->pOrderBy && pSub->pOrderBy ) return 0;
+
+ /* If we reach this point, it means flattening is permitted for the
+ ** i-th entry of the FROM clause in the outer query.
+ */
+ iParent = p->base + iFrom;
+ iSub = pSub->base;
+ substExprList(p->pEList, iParent, pSub->pEList, iSub);
+ pList = p->pEList;
+ for(i=0; i<pList->nExpr; i++){
+ Expr *pExpr;
+ if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
+ pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n);
+ }
+ }
+ if( isAgg ){
+ substExprList(p->pGroupBy, iParent, pSub->pEList, iSub);
+ substExpr(p->pHaving, iParent, pSub->pEList, iSub);
+ }
+ if( pSub->pOrderBy ){
+ assert( p->pOrderBy==0 );
+ p->pOrderBy = pSub->pOrderBy;
+ pSub->pOrderBy = 0;
+ changeTablesInList(p->pOrderBy, iSub, iParent);
+ }else if( p->pOrderBy ){
+ substExprList(p->pOrderBy, iParent, pSub->pEList, iSub);
+ }
+ if( pSub->pWhere ){
+ pWhere = sqliteExprDup(pSub->pWhere);
+ if( iParent!=iSub ){
+ changeTables(pWhere, iSub, iParent);
+ }
+ }else{
+ pWhere = 0;
+ }
+ if( subqueryIsAgg ){
+ assert( p->pHaving==0 );
+ p->pHaving = p->pWhere;
+ p->pWhere = pWhere;
+ substExpr(p->pHaving, iParent, pSub->pEList, iSub);
+ if( pSub->pHaving ){
+ Expr *pHaving = sqliteExprDup(pSub->pHaving);
+ if( iParent!=iSub ){
+ changeTables(pHaving, iSub, iParent);
+ }
+ if( p->pHaving ){
+ p->pHaving = sqliteExpr(TK_AND, p->pHaving, pHaving, 0);
+ }else{
+ p->pHaving = pHaving;
+ }
+ }
+ assert( p->pGroupBy==0 );
+ p->pGroupBy = sqliteExprListDup(pSub->pGroupBy);
+ if( iParent!=iSub ){
+ changeTablesInList(p->pGroupBy, iSub, iParent);
+ }
+ }else if( p->pWhere==0 ){
+ p->pWhere = pWhere;
+ }else{
+ substExpr(p->pWhere, iParent, pSub->pEList, iSub);
+ if( pWhere ){
+ p->pWhere = sqliteExpr(TK_AND, p->pWhere, pWhere, 0);
+ }
+ }
+ p->isDistinct = p->isDistinct || pSub->isDistinct;
+
+ if( pSub->nLimit>=0 ){
+ if( p->nLimit<0 ){
+ p->nLimit = pSub->nLimit;
+ }else if( p->nLimit+p->nOffset > pSub->nLimit+pSub->nOffset ){
+ p->nLimit = pSub->nLimit + pSub->nOffset - p->nOffset;
+ }
+ }
+ p->nOffset += pSub->nOffset;
+
+ /* If the subquery contains subqueries of its own, that were not
+ ** flattened, then code will have already been generated to put
+ ** the results of those sub-subqueries into VDBE cursors relative
+ ** to the subquery. We must translate the cursor number into values
+ ** suitable for use by the outer query.
+ */
+ for(i=0; i<pSubSrc->nSrc; i++){
+ Vdbe *v;
+ if( pSubSrc->a[i].pSelect==0 ) continue;
+ v = sqliteGetVdbe(pParse);
+ sqliteVdbeAddOp(v, OP_RenameCursor, pSub->base+i, p->base+i);
+ }
+
+ if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){
+ sqliteDeleteTable(0, pSrc->a[iFrom].pTab);
+ }
+ pSrc->a[iFrom].pTab = pSubSrc->a[0].pTab;
+ pSubSrc->a[0].pTab = 0;
+ assert( pSrc->a[iFrom].pSelect==pSub );
+ pSrc->a[iFrom].pSelect = pSubSrc->a[0].pSelect;
+ pSubSrc->a[0].pSelect = 0;
+ sqliteSelectDelete(pSub);
+ return 1;
+}
+
+/*
+** Analyze the SELECT statement passed in as an argument to see if it
+** is a simple min() or max() query. If it is and this query can be
+** satisfied using a single seek to the beginning or end of an index,
+** then generate the code for this SELECT and return 1. If this is not a
+** simple min() or max() query, then return 0;
+**
+** A simply min() or max() query looks like this:
+**
+** SELECT min(a) FROM table;
+** SELECT max(a) FROM table;
+**
+** The query may have only a single table in its FROM argument. There
+** can be no GROUP BY or HAVING or WHERE clauses. The result set must
+** be the min() or max() of a single column of the table. The column
+** in the min() or max() function must be indexed.
+**
+** The parameters to this routine are the same as for sqliteSelect().
+** See the header comment on that routine for additional information.
+*/
+static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
+ Expr *pExpr;
+ int iCol;
+ Table *pTab;
+ Index *pIdx;
+ int base;
+ Vdbe *v;
+ int openOp;
+ int seekOp;
+ int cont;
+ ExprList eList;
+ struct ExprList_item eListItem;
+
+ /* Check to see if this query is a simple min() or max() query. Return
+ ** zero if it is not.
+ */
+ if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
+ if( p->pSrc->nSrc!=1 ) return 0;
+ if( p->pEList->nExpr!=1 ) return 0;
+ pExpr = p->pEList->a[0].pExpr;
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
+ if( pExpr->pList==0 || pExpr->pList->nExpr!=1 ) return 0;
+ if( pExpr->token.n!=3 ) return 0;
+ if( sqliteStrNICmp(pExpr->token.z,"min",3)==0 ){
+ seekOp = OP_Rewind;
+ }else if( sqliteStrNICmp(pExpr->token.z,"max",3)==0 ){
+ seekOp = OP_Last;
+ }else{
+ return 0;
+ }
+ pExpr = pExpr->pList->a[0].pExpr;
+ if( pExpr->op!=TK_COLUMN ) return 0;
+ iCol = pExpr->iColumn;
+ pTab = p->pSrc->a[0].pTab;
+
+ /* If we get to here, it means the query is of the correct form.
+ ** Check to make sure we have an index and make pIdx point to the
+ ** appropriate index. If the min() or max() is on an INTEGER PRIMARY
+ ** key column, no index is necessary so set pIdx to NULL. If no
+ ** usable index is found, return 0.
+ */
+ if( iCol<0 ){
+ pIdx = 0;
+ }else{
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ assert( pIdx->nColumn>=1 );
+ if( pIdx->aiColumn[0]==iCol ) break;
+ }
+ if( pIdx==0 ) return 0;
+ }
+
+ /* Identify column names if we will be using the callback. This
+ ** step is skipped if the output is going to a table or a memory cell.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) return 0;
+ if( eDest==SRT_Callback ){
+ generateColumnNames(pParse, p->base, p->pSrc, p->pEList);
+ generateColumnTypes(pParse, p->base, p->pSrc, p->pEList);
+ }
+
+ /* Generating code to find the min or the max. Basically all we have
+ ** to do is find the first or the last entry in the chosen index. If
+ ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
+ ** or last entry in the main table.
+ */
+ if( !pParse->schemaVerified && (pParse->db->flags & SQLITE_InTrans)==0 ){
+ sqliteVdbeAddOp(v, OP_VerifyCookie, pParse->db->schema_cookie, 0);
+ pParse->schemaVerified = 1;
+ }
+ openOp = pTab->isTemp ? OP_OpenAux : OP_Open;
+ base = p->base;
+ sqliteVdbeAddOp(v, openOp, base, pTab->tnum);
+ sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
+ if( pIdx==0 ){
+ sqliteVdbeAddOp(v, seekOp, base, 0);
+ }else{
+ sqliteVdbeAddOp(v, openOp, base+1, pIdx->tnum);
+ sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC);
+ sqliteVdbeAddOp(v, seekOp, base+1, 0);
+ sqliteVdbeAddOp(v, OP_IdxRecno, base+1, 0);
+ sqliteVdbeAddOp(v, OP_Close, base+1, 0);
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
+ }
+ eList.nExpr = 1;
+ memset(&eListItem, 0, sizeof(eListItem));
+ eList.a = &eListItem;
+ eList.a[0].pExpr = pExpr;
+ cont = sqliteVdbeMakeLabel(v);
+ selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont);
+ sqliteVdbeResolveLabel(v, cont);
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ return 1;
+}
+
+/*
+** Generate code for the given SELECT statement.
+**
+** The results are distributed in various ways depending on the
+** value of eDest and iParm.
+**
+** eDest Value Result
+** ------------ -------------------------------------------
+** SRT_Callback Invoke the callback for each row of the result.
+**
+** SRT_Mem Store first result in memory cell iParm
+**
+** SRT_Set Store results as keys of a table with cursor iParm
+**
+** SRT_Union Store results as a key in a temporary table iParm
+**
+** SRT_Except Remove results form the temporary table iParm.
+**
+** SRT_Table Store results in temporary table iParm
+**
+** The table above is incomplete. Additional eDist value have be added
+** since this comment was written. See the selectInnerLoop() function for
+** a complete listing of the allowed values of eDest and their meanings.
+**
+** This routine returns the number of errors. If any errors are
+** encountered, then an appropriate error message is left in
+** pParse->zErrMsg.
+**
+** This routine does NOT free the Select structure passed in. The
+** calling function needs to do that.
+**
+** The pParent, parentTab, and *pParentAgg fields are filled in if this
+** SELECT is a subquery. This routine may try to combine this SELECT
+** with its parent to form a single flat query. In so doing, it might
+** change the parent query from a non-aggregate to an aggregate query.
+** For that reason, the pParentAgg flag is passed as a pointer, so it
+** can be changed.
+**
+** Example 1: The meaning of the pParent parameter.
+**
+** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
+** \ \_______ subquery _______/ /
+** \ /
+** \____________________ outer query ___________________/
+**
+** This routine is called for the outer query first. For that call,
+** pParent will be NULL. During the processing of the outer query, this
+** routine is called recursively to handle the subquery. For the recursive
+** call, pParent will point to the outer query. Because the subquery is
+** the second element in a three-way join, the parentTab parameter will
+** be 1 (the 2nd value of a 0-indexed array.)
+*/
+int sqliteSelect(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ int eDest, /* How to dispose of the results */
+ int iParm, /* A parameter used by the eDest disposal method */
+ Select *pParent, /* Another SELECT for which this is a sub-query */
+ int parentTab, /* Index in pParent->pSrc of this query */
+ int *pParentAgg /* True if pParent uses aggregate functions */
+){
+ int i;
+ WhereInfo *pWInfo;
+ Vdbe *v;
+ int isAgg = 0; /* True for select lists like "count(*)" */
+ ExprList *pEList; /* List of columns to extract. */
+ SrcList *pTabList; /* List of tables to select from */
+ Expr *pWhere; /* The WHERE clause. May be NULL */
+ ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
+ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
+ Expr *pHaving; /* The HAVING clause. May be NULL */
+ int isDistinct; /* True if the DISTINCT keyword is present */
+ int distinct; /* Table to use for the distinct set */
+ int base; /* First cursor available for use */
+ int rc = 1; /* Value to return from this function */
+
+ if( sqlite_malloc_failed || pParse->nErr || p==0 ) return 1;
+ if( sqliteAuthCheck(pParse, SQLITE_SELECT, 0, 0) ) return 1;
+
+ /* If there is are a sequence of queries, do the earlier ones first.
+ */
+ if( p->pPrior ){
+ return multiSelect(pParse, p, eDest, iParm);
+ }
+
+ /* Make local copies of the parameters for this query.
+ */
+ pTabList = p->pSrc;
+ pWhere = p->pWhere;
+ pOrderBy = p->pOrderBy;
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ isDistinct = p->isDistinct;
+
+ /* Allocate a block of VDBE cursors, one for each table in the FROM clause.
+ ** The WHERE processing requires that the cursors for the tables in the
+ ** FROM clause be consecutive.
+ */
+ base = p->base = pParse->nTab;
+ pParse->nTab += pTabList->nSrc;
+
+ /*
+ ** Do not even attempt to generate any code if we have already seen
+ ** errors before this routine starts.
+ */
+ if( pParse->nErr>0 ) goto select_end;
+
+ /* Expand any "*" terms in the result set. (For example the "*" in
+ ** "SELECT * FROM t1") The fillInColumnlist() routine also does some
+ ** other housekeeping - see the header comment for details.
+ */
+ if( fillInColumnList(pParse, p) ){
+ goto select_end;
+ }
+ pWhere = p->pWhere;
+ pEList = p->pEList;
+ if( pEList==0 ) goto select_end;
+
+ /* If writing to memory or generating a set
+ ** only a single column may be output.
+ */
+ if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
+ sqliteSetString(&pParse->zErrMsg, "only a single result allowed for "
+ "a SELECT that is part of an expression", 0);
+ pParse->nErr++;
+ goto select_end;
+ }
+
+ /* ORDER BY is ignored for some destinations.
+ */
+ switch( eDest ){
+ case SRT_Union:
+ case SRT_Except:
+ case SRT_Discard:
+ pOrderBy = 0;
+ break;
+ default:
+ break;
+ }
+
+ /* At this point, we should have allocated all the cursors that we
+ ** need to handle subquerys and temporary tables.
+ **
+ ** Resolve the column names and do a semantics check on all the expressions.
+ */
+ for(i=0; i<pEList->nExpr; i++){
+ if( sqliteExprResolveIds(pParse, base, pTabList, 0, pEList->a[i].pExpr) ){
+ goto select_end;
+ }
+ if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
+ goto select_end;
+ }
+ }
+ if( pWhere ){
+ if( sqliteExprResolveIds(pParse, base, pTabList, pEList, pWhere) ){
+ goto select_end;
+ }
+ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
+ goto select_end;
+ }
+ sqliteOracle8JoinFixup(base, pTabList, pWhere);
+ }
+ if( pHaving ){
+ if( pGroupBy==0 ){
+ sqliteSetString(&pParse->zErrMsg, "a GROUP BY clause is required "
+ "before HAVING", 0);
+ pParse->nErr++;
+ goto select_end;
+ }
+ if( sqliteExprResolveIds(pParse, base, pTabList, pEList, pHaving) ){
+ goto select_end;
+ }
+ if( sqliteExprCheck(pParse, pHaving, 1, &isAgg) ){
+ goto select_end;
+ }
+ }
+ if( pOrderBy ){
+ for(i=0; i<pOrderBy->nExpr; i++){
+ int iCol;
+ Expr *pE = pOrderBy->a[i].pExpr;
+ if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
+ sqliteExprDelete(pE);
+ pE = pOrderBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
+ }
+ if( sqliteExprResolveIds(pParse, base, pTabList, pEList, pE) ){
+ goto select_end;
+ }
+ if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
+ goto select_end;
+ }
+ if( sqliteExprIsConstant(pE) ){
+ if( sqliteExprIsInteger(pE, &iCol)==0 ){
+ sqliteSetString(&pParse->zErrMsg,
+ "ORDER BY terms must not be non-integer constants", 0);
+ pParse->nErr++;
+ goto select_end;
+ }else if( iCol<=0 || iCol>pEList->nExpr ){
+ char zBuf[2000];
+ sprintf(zBuf,"ORDER BY column number %d out of range - should be "
+ "between 1 and %d", iCol, pEList->nExpr);
+ sqliteSetString(&pParse->zErrMsg, zBuf, 0);
+ pParse->nErr++;
+ goto select_end;
+ }
+ }
+ }
+ }
+ if( pGroupBy ){
+ for(i=0; i<pGroupBy->nExpr; i++){
+ int iCol;
+ Expr *pE = pGroupBy->a[i].pExpr;
+ if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
+ sqliteExprDelete(pE);
+ pE = pGroupBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
+ }
+ if( sqliteExprResolveIds(pParse, base, pTabList, pEList, pE) ){
+ goto select_end;
+ }
+ if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
+ goto select_end;
+ }
+ if( sqliteExprIsConstant(pE) ){
+ if( sqliteExprIsInteger(pE, &iCol)==0 ){
+ sqliteSetString(&pParse->zErrMsg,
+ "GROUP BY terms must not be non-integer constants", 0);
+ pParse->nErr++;
+ goto select_end;
+ }else if( iCol<=0 || iCol>pEList->nExpr ){
+ char zBuf[2000];
+ sprintf(zBuf,"GROUP BY column number %d out of range - should be "
+ "between 1 and %d", iCol, pEList->nExpr);
+ sqliteSetString(&pParse->zErrMsg, zBuf, 0);
+ pParse->nErr++;
+ goto select_end;
+ }
+ }
+ }
+ }
+
+ /* Check for the special case of a min() or max() function by itself
+ ** in the result set.
+ */
+ if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
+ rc = 0;
+ goto select_end;
+ }
+
+ /* Begin generating code.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) goto select_end;
+
+ /* Identify column names if we will be using them in a callback. This
+ ** step is skipped if the output is going to some other destination.
+ */
+ if( eDest==SRT_Callback ){
+ generateColumnNames(pParse, p->base, pTabList, pEList);
+ }
+
+ /* Set the limiter
+ */
+ if( p->nLimit<=0 ){
+ p->nLimit = -1;
+ p->nOffset = 0;
+ }else{
+ int iMem = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_Integer, -p->nLimit, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
+ p->nLimit = iMem;
+ if( p->nOffset<=0 ){
+ p->nOffset = 0;
+ }else{
+ iMem = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_Integer, -p->nOffset, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
+ p->nOffset = iMem;
+ }
+ }
+
+ /* Generate code for all sub-queries in the FROM clause
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ if( pTabList->a[i].pSelect==0 ) continue;
+ sqliteSelect(pParse, pTabList->a[i].pSelect, SRT_TempTable, base+i,
+ p, i, &isAgg);
+ pTabList = p->pSrc;
+ pWhere = p->pWhere;
+ if( eDest==SRT_Callback ){
+ pOrderBy = p->pOrderBy;
+ }
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ isDistinct = p->isDistinct;
+ }
+
+ /* Check to see if this is a subquery that can be "flattened" into its parent.
+ ** If flattening is a possiblity, do so and return immediately.
+ */
+ if( pParent && pParentAgg &&
+ flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){
+ if( isAgg ) *pParentAgg = 1;
+ return rc;
+ }
+
+ /* Identify column types if we will be using a callback. This
+ ** step is skipped if the output is going to a destination other
+ ** than a callback.
+ */
+ if( eDest==SRT_Callback ){
+ generateColumnTypes(pParse, p->base, pTabList, pEList);
+ }
+
+ /* If the output is destined for a temporary table, open that table.
+ */
+ if( eDest==SRT_TempTable ){
+ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
+ }
+
+ /* Do an analysis of aggregate expressions.
+ */
+ sqliteAggregateInfoReset(pParse);
+ if( isAgg || pGroupBy ){
+ assert( pParse->nAgg==0 );
+ isAgg = 1;
+ for(i=0; i<pEList->nExpr; i++){
+ if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){
+ goto select_end;
+ }
+ }
+ if( pGroupBy ){
+ for(i=0; i<pGroupBy->nExpr; i++){
+ if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){
+ goto select_end;
+ }
+ }
+ }
+ if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){
+ goto select_end;
+ }
+ if( pOrderBy ){
+ for(i=0; i<pOrderBy->nExpr; i++){
+ if( sqliteExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){
+ goto select_end;
+ }
+ }
+ }
+ }
+
+ /* Reset the aggregator
+ */
+ if( isAgg ){
+ sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg);
+ for(i=0; i<pParse->nAgg; i++){
+ FuncDef *pFunc;
+ if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
+ sqliteVdbeAddOp(v, OP_AggInit, 0, i);
+ sqliteVdbeChangeP3(v, -1, (char*)pFunc, P3_POINTER);
+ }
+ }
+ if( pGroupBy==0 ){
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_AggFocus, 0, 0);
+ }
+ }
+
+ /* Initialize the memory cell to NULL
+ */
+ if( eDest==SRT_Mem ){
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
+ }
+
+ /* Open a temporary table to use for the distinct set.
+ */
+ if( isDistinct ){
+ distinct = pParse->nTab++;
+ sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 1);
+ }else{
+ distinct = -1;
+ }
+
+ /* Begin the database scan
+ */
+ pWInfo = sqliteWhereBegin(pParse, p->base, pTabList, pWhere, 0,
+ pGroupBy ? 0 : &pOrderBy);
+ if( pWInfo==0 ) goto select_end;
+
+ /* Use the standard inner loop if we are not dealing with
+ ** aggregates
+ */
+ if( !isAgg ){
+ if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
+ iParm, pWInfo->iContinue, pWInfo->iBreak) ){
+ goto select_end;
+ }
+ }
+
+ /* If we are dealing with aggregates, then do the special aggregate
+ ** processing.
+ */
+ else{
+ if( pGroupBy ){
+ int lbl1;
+ for(i=0; i<pGroupBy->nExpr; i++){
+ sqliteExprCode(pParse, pGroupBy->a[i].pExpr);
+ }
+ sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);
+ if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pGroupBy);
+ lbl1 = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1);
+ for(i=0; i<pParse->nAgg; i++){
+ if( pParse->aAgg[i].isAgg ) continue;
+ sqliteExprCode(pParse, pParse->aAgg[i].pExpr);
+ sqliteVdbeAddOp(v, OP_AggSet, 0, i);
+ }
+ sqliteVdbeResolveLabel(v, lbl1);
+ }
+ for(i=0; i<pParse->nAgg; i++){
+ Expr *pE;
+ int j;
+ if( !pParse->aAgg[i].isAgg ) continue;
+ pE = pParse->aAgg[i].pExpr;
+ assert( pE->op==TK_AGG_FUNCTION );
+ if( pE->pList ){
+ for(j=0; j<pE->pList->nExpr; j++){
+ sqliteExprCode(pParse, pE->pList->a[j].pExpr);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_Integer, i, 0);
+ sqliteVdbeAddOp(v, OP_AggFunc, 0, pE->pList ? pE->pList->nExpr : 0);
+ assert( pParse->aAgg[i].pFunc!=0 );
+ assert( pParse->aAgg[i].pFunc->xStep!=0 );
+ sqliteVdbeChangeP3(v, -1, (char*)pParse->aAgg[i].pFunc, P3_POINTER);
+ }
+ }
+
+ /* End the database scan loop.
+ */
+ sqliteWhereEnd(pWInfo);
+
+ /* If we are processing aggregates, we need to set up a second loop
+ ** over all of the aggregate values and process them.
+ */
+ if( isAgg ){
+ int endagg = sqliteVdbeMakeLabel(v);
+ int startagg;
+ startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg);
+ pParse->useAgg = 1;
+ if( pHaving ){
+ sqliteExprIfFalse(pParse, pHaving, startagg, 1);
+ }
+ if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
+ iParm, startagg, endagg) ){
+ goto select_end;
+ }
+ sqliteVdbeAddOp(v, OP_Goto, 0, startagg);
+ sqliteVdbeResolveLabel(v, endagg);
+ sqliteVdbeAddOp(v, OP_Noop, 0, 0);
+ pParse->useAgg = 0;
+ }
+
+ /* If there is an ORDER BY clause, then we need to sort the results
+ ** and send them to the callback one by one.
+ */
+ if( pOrderBy ){
+ generateSortTail(p, v, pEList->nExpr, eDest, iParm);
+ }
+
+
+ /* Issue a null callback if that is what the user wants.
+ */
+ if( eDest==SRT_Callback &&
+ (pParse->useCallback==0 || (pParse->db->flags & SQLITE_NullCallback)!=0)
+ ){
+ sqliteVdbeAddOp(v, OP_NullCallback, pEList->nExpr, 0);
+ }
+
+ /* The SELECT was successfully coded. Set the return code to 0
+ ** to indicate no errors.
+ */
+ rc = 0;
+
+ /* Control jumps to here if an error is encountered above, or upon
+ ** successful coding of the SELECT.
+ */
+select_end:
+ sqliteAggregateInfoReset(pParse);
+ return rc;
+}
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface that the SQLite library
+** presents to client programs.
+**
+** @(#) $Id$
+*/
+#ifndef _SQLITE_H_
+#define _SQLITE_H_
+#include <stdarg.h> /* Needed for the definition of va_list */
+
+/*
+** Make sure we can call this stuff from C++.
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+** The version of the SQLite library.
+*/
+#define SQLITE_VERSION "--VERS--"
+
+/*
+** The version string is also compiled into the library so that a program
+** can check to make sure that the lib*.a file and the *.h file are from
+** the same version.
+*/
+extern const char sqlite_version[];
+
+/*
+** The SQLITE_UTF8 macro is defined if the library expects to see
+** UTF-8 encoded data. The SQLITE_ISO8859 macro is defined if the
+** iso8859 encoded should be used.
+*/
+#define SQLITE_--ENCODING-- 1
+
+/*
+** The following constant holds one of two strings, "UTF-8" or "iso8859",
+** depending on which character encoding the SQLite library expects to
+** see. The character encoding makes a difference for the LIKE and GLOB
+** operators and for the LENGTH() and SUBSTR() functions.
+*/
+extern const char sqlite_encoding[];
+
+/*
+** Each open sqlite database is represented by an instance of the
+** following opaque structure.
+*/
+typedef struct sqlite sqlite;
+
+/*
+** A function to open a new sqlite database.
+**
+** If the database does not exist and mode indicates write
+** permission, then a new database is created. If the database
+** does not exist and mode does not indicate write permission,
+** then the open fails, an error message generated (if errmsg!=0)
+** and the function returns 0.
+**
+** If mode does not indicates user write permission, then the
+** database is opened read-only.
+**
+** The Truth: As currently implemented, all databases are opened
+** for writing all the time. Maybe someday we will provide the
+** ability to open a database readonly. The mode parameters is
+** provided in anticipation of that enhancement.
+*/
+sqlite *sqlite_open(const char *filename, int mode, char **errmsg);
+
+/*
+** A function to close the database.
+**
+** Call this function with a pointer to a structure that was previously
+** returned from sqlite_open() and the corresponding database will by closed.
+*/
+void sqlite_close(sqlite *);
+
+/*
+** The type for a callback function.
+*/
+typedef int (*sqlite_callback)(void*,int,char**, char**);
+
+/*
+** A function to executes one or more statements of SQL.
+**
+** If one or more of the SQL statements are queries, then
+** the callback function specified by the 3rd parameter is
+** invoked once for each row of the query result. This callback
+** should normally return 0. If the callback returns a non-zero
+** value then the query is aborted, all subsequent SQL statements
+** are skipped and the sqlite_exec() function returns the SQLITE_ABORT.
+**
+** The 4th parameter is an arbitrary pointer that is passed
+** to the callback function as its first parameter.
+**
+** The 2nd parameter to the callback function is the number of
+** columns in the query result. The 3rd parameter to the callback
+** is an array of strings holding the values for each column.
+** The 4th parameter to the callback is an array of strings holding
+** the names of each column.
+**
+** The callback function may be NULL, even for queries. A NULL
+** callback is not an error. It just means that no callback
+** will be invoked.
+**
+** If an error occurs while parsing or evaluating the SQL (but
+** not while executing the callback) then an appropriate error
+** message is written into memory obtained from malloc() and
+** *errmsg is made to point to that message. The calling function
+** is responsible for freeing the memory that holds the error
+** message. Use sqlite_freemem() for this. If errmsg==NULL,
+** then no error message is ever written.
+**
+** The return value is is SQLITE_OK if there are no errors and
+** some other return code if there is an error. The particular
+** return value depends on the type of error.
+**
+** If the query could not be executed because a database file is
+** locked or busy, then this function returns SQLITE_BUSY. (This
+** behavior can be modified somewhat using the sqlite_busy_handler()
+** and sqlite_busy_timeout() functions below.)
+*/
+int sqlite_exec(
+ sqlite*, /* An open database */
+ const char *sql, /* SQL to be executed */
+ sqlite_callback, /* Callback function */
+ void *, /* 1st argument to callback function */
+ char **errmsg /* Error msg written here */
+);
+
+/*
+** Return values for sqlite_exec() and sqlite_step()
+*/
+#define SQLITE_OK 0 /* Successful result */
+#define SQLITE_ERROR 1 /* SQL error or missing database */
+#define SQLITE_INTERNAL 2 /* An internal logic error in SQLite */
+#define SQLITE_PERM 3 /* Access permission denied */
+#define SQLITE_ABORT 4 /* Callback routine requested an abort */
+#define SQLITE_BUSY 5 /* The database file is locked */
+#define SQLITE_LOCKED 6 /* A table in the database is locked */
+#define SQLITE_NOMEM 7 /* A malloc() failed */
+#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
+#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite_interrupt() */
+#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
+#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
+#define SQLITE_NOTFOUND 12 /* (Internal Only) Table or record not found */
+#define SQLITE_FULL 13 /* Insertion failed because database is full */
+#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
+#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
+#define SQLITE_EMPTY 16 /* (Internal Only) Database table is empty */
+#define SQLITE_SCHEMA 17 /* The database schema changed */
+#define SQLITE_TOOBIG 18 /* Too much data for one row of a table */
+#define SQLITE_CONSTRAINT 19 /* Abort due to contraint violation */
+#define SQLITE_MISMATCH 20 /* Data type mismatch */
+#define SQLITE_MISUSE 21 /* Library used incorrectly */
+#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
+#define SQLITE_AUTH 23 /* Authorization denied */
+#define SQLITE_ROW 100 /* sqlite_step() has another row ready */
+#define SQLITE_DONE 101 /* sqlite_step() has finished executing */
+
+/*
+** Each entry in an SQLite table has a unique integer key. (The key is
+** the value of the INTEGER PRIMARY KEY column if there is such a column,
+** otherwise the key is generated at random. The unique key is always
+** available as the ROWID, OID, or _ROWID_ column.) The following routine
+** returns the integer key of the most recent insert in the database.
+**
+** This function is similar to the mysql_insert_id() function from MySQL.
+*/
+int sqlite_last_insert_rowid(sqlite*);
+
+/*
+** This function returns the number of database rows that were changed
+** (or inserted or deleted) by the most recent called sqlite_exec().
+**
+** All changes are counted, even if they were later undone by a
+** ROLLBACK or ABORT. Except, changes associated with creating and
+** dropping tables are not counted.
+**
+** If a callback invokes sqlite_exec() recursively, then the changes
+** in the inner, recursive call are counted together with the changes
+** in the outer call.
+**
+** SQLite implements the command "DELETE FROM table" without a WHERE clause
+** by dropping and recreating the table. (This is much faster than going
+** through and deleting individual elements form the table.) Because of
+** this optimization, the change count for "DELETE FROM table" will be
+** zero regardless of the number of elements that were originally in the
+** table. To get an accurate count of the number of rows deleted, use
+** "DELETE FROM table WHERE 1" instead.
+*/
+int sqlite_changes(sqlite*);
+
+/* If the parameter to this routine is one of the return value constants
+** defined above, then this routine returns a constant text string which
+** descripts (in English) the meaning of the return value.
+*/
+const char *sqlite_error_string(int);
+#define sqliteErrStr sqlite_error_string /* Legacy. Do not use in new code. */
+
+/* This function causes any pending database operation to abort and
+** return at its earliest opportunity. This routine is typically
+** called in response to a user action such as pressing "Cancel"
+** or Ctrl-C where the user wants a long query operation to halt
+** immediately.
+*/
+void sqlite_interrupt(sqlite*);
+
+
+/* This function returns true if the given input string comprises
+** one or more complete SQL statements.
+**
+** The algorithm is simple. If the last token other than spaces
+** and comments is a semicolon, then return true. otherwise return
+** false.
+*/
+int sqlite_complete(const char *sql);
+
+/*
+** This routine identifies a callback function that is invoked
+** whenever an attempt is made to open a database table that is
+** currently locked by another process or thread. If the busy callback
+** is NULL, then sqlite_exec() returns SQLITE_BUSY immediately if
+** it finds a locked table. If the busy callback is not NULL, then
+** sqlite_exec() invokes the callback with three arguments. The
+** second argument is the name of the locked table and the third
+** argument is the number of times the table has been busy. If the
+** busy callback returns 0, then sqlite_exec() immediately returns
+** SQLITE_BUSY. If the callback returns non-zero, then sqlite_exec()
+** tries to open the table again and the cycle repeats.
+**
+** The default busy callback is NULL.
+**
+** Sqlite is re-entrant, so the busy handler may start a new query.
+** (It is not clear why anyone would every want to do this, but it
+** is allowed, in theory.) But the busy handler may not close the
+** database. Closing the database from a busy handler will delete
+** data structures out from under the executing query and will
+** probably result in a coredump.
+*/
+void sqlite_busy_handler(sqlite*, int(*)(void*,const char*,int), void*);
+
+/*
+** This routine sets a busy handler that sleeps for a while when a
+** table is locked. The handler will sleep multiple times until
+** at least "ms" milleseconds of sleeping have been done. After
+** "ms" milleseconds of sleeping, the handler returns 0 which
+** causes sqlite_exec() to return SQLITE_BUSY.
+**
+** Calling this routine with an argument less than or equal to zero
+** turns off all busy handlers.
+*/
+void sqlite_busy_timeout(sqlite*, int ms);
+
+/*
+** This next routine is really just a wrapper around sqlite_exec().
+** Instead of invoking a user-supplied callback for each row of the
+** result, this routine remembers each row of the result in memory
+** obtained from malloc(), then returns all of the result after the
+** query has finished.
+**
+** As an example, suppose the query result where this table:
+**
+** Name | Age
+** -----------------------
+** Alice | 43
+** Bob | 28
+** Cindy | 21
+**
+** If the 3rd argument were &azResult then after the function returns
+** azResult will contain the following data:
+**
+** azResult[0] = "Name";
+** azResult[1] = "Age";
+** azResult[2] = "Alice";
+** azResult[3] = "43";
+** azResult[4] = "Bob";
+** azResult[5] = "28";
+** azResult[6] = "Cindy";
+** azResult[7] = "21";
+**
+** Notice that there is an extra row of data containing the column
+** headers. But the *nrow return value is still 3. *ncolumn is
+** set to 2. In general, the number of values inserted into azResult
+** will be ((*nrow) + 1)*(*ncolumn).
+**
+** After the calling function has finished using the result, it should
+** pass the result data pointer to sqlite_free_table() in order to
+** release the memory that was malloc-ed. Because of the way the
+** malloc() happens, the calling function must not try to call
+** malloc() directly. Only sqlite_free_table() is able to release
+** the memory properly and safely.
+**
+** The return value of this routine is the same as from sqlite_exec().
+*/
+int sqlite_get_table(
+ sqlite*, /* An open database */
+ const char *sql, /* SQL to be executed */
+ char ***resultp, /* Result written to a char *[] that this points to */
+ int *nrow, /* Number of result rows written here */
+ int *ncolumn, /* Number of result columns written here */
+ char **errmsg /* Error msg written here */
+);
+
+/*
+** Call this routine to free the memory that sqlite_get_table() allocated.
+*/
+void sqlite_free_table(char **result);
+
+/*
+** The following routines are wrappers around sqlite_exec() and
+** sqlite_get_table(). The only difference between the routines that
+** follow and the originals is that the second argument to the
+** routines that follow is really a printf()-style format
+** string describing the SQL to be executed. Arguments to the format
+** string appear at the end of the argument list.
+**
+** All of the usual printf formatting options apply. In addition, there
+** is a "%q" option. %q works like %s in that it substitutes a null-terminated
+** string from the argument list. But %q also doubles every '\'' character.
+** %q is designed for use inside a string literal. By doubling each '\''
+** character it escapes that character and allows it to be inserted into
+** the string.
+**
+** For example, so some string variable contains text as follows:
+**
+** char *zText = "It's a happy day!";
+**
+** We can use this text in an SQL statement as follows:
+**
+** sqlite_exec_printf(db, "INSERT INTO table VALUES('%q')",
+** callback1, 0, 0, zText);
+**
+** Because the %q format string is used, the '\'' character in zText
+** is escaped and the SQL generated is as follows:
+**
+** INSERT INTO table1 VALUES('It''s a happy day!')
+**
+** This is correct. Had we used %s instead of %q, the generated SQL
+** would have looked like this:
+**
+** INSERT INTO table1 VALUES('It's a happy day!');
+**
+** This second example is an SQL syntax error. As a general rule you
+** should always use %q instead of %s when inserting text into a string
+** literal.
+*/
+int sqlite_exec_printf(
+ sqlite*, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ sqlite_callback, /* Callback function */
+ void *, /* 1st argument to callback function */
+ char **errmsg, /* Error msg written here */
+ ... /* Arguments to the format string. */
+);
+int sqlite_exec_vprintf(
+ sqlite*, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ sqlite_callback, /* Callback function */
+ void *, /* 1st argument to callback function */
+ char **errmsg, /* Error msg written here */
+ va_list ap /* Arguments to the format string. */
+);
+int sqlite_get_table_printf(
+ sqlite*, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ char ***resultp, /* Result written to a char *[] that this points to */
+ int *nrow, /* Number of result rows written here */
+ int *ncolumn, /* Number of result columns written here */
+ char **errmsg, /* Error msg written here */
+ ... /* Arguments to the format string */
+);
+int sqlite_get_table_vprintf(
+ sqlite*, /* An open database */
+ const char *sqlFormat, /* printf-style format string for the SQL */
+ char ***resultp, /* Result written to a char *[] that this points to */
+ int *nrow, /* Number of result rows written here */
+ int *ncolumn, /* Number of result columns written here */
+ char **errmsg, /* Error msg written here */
+ va_list ap /* Arguments to the format string */
+);
+char *sqlite_mprintf(const char*,...);
+
+/*
+** Windows systems should call this routine to free memory that
+** is returned in the in the errmsg parameter of sqlite_open() when
+** SQLite is a DLL. For some reason, it does not work to call free()
+** directly.
+*/
+void sqlite_freemem(void *p);
+
+/*
+** Windows systems need functions to call to return the sqlite_version
+** and sqlite_encoding strings.
+*/
+const char *sqlite_libversion(void);
+const char *sqlite_libencoding(void);
+
+/*
+** A pointer to the following structure is used to communicate with
+** the implementations of user-defined functions.
+*/
+typedef struct sqlite_func sqlite_func;
+
+/*
+** Use the following routines to create new user-defined functions. See
+** the documentation for details.
+*/
+int sqlite_create_function(
+ sqlite*, /* Database where the new function is registered */
+ const char *zName, /* Name of the new function */
+ int nArg, /* Number of arguments. -1 means any number */
+ void (*xFunc)(sqlite_func*,int,const char**), /* C code to implement */
+ void *pUserData /* Available via the sqlite_user_data() call */
+);
+int sqlite_create_aggregate(
+ sqlite*, /* Database where the new function is registered */
+ const char *zName, /* Name of the function */
+ int nArg, /* Number of arguments */
+ void (*xStep)(sqlite_func*,int,const char**), /* Called for each row */
+ void (*xFinalize)(sqlite_func*), /* Called once to get final result */
+ void *pUserData /* Available via the sqlite_user_data() call */
+);
+
+/*
+** Use the following routine to define the datatype returned by a
+** user-defined function. The second argument can be one of the
+** constants SQLITE_NUMERIC, SQLITE_TEXT, or SQLITE_ARGS or it
+** can be an integer greater than or equal to zero. The datatype
+** will be numeric or text (the only two types supported) if the
+** argument is SQLITE_NUMERIC or SQLITE_TEXT. If the argument is
+** SQLITE_ARGS, then the datatype is numeric if any argument to the
+** function is numeric and is text otherwise. If the second argument
+** is an integer, then the datatype of the result is the same as the
+** parameter to the function that corresponds to that integer.
+*/
+int sqlite_function_type(
+ sqlite *db, /* The database there the function is registered */
+ const char *zName, /* Name of the function */
+ int datatype /* The datatype for this function */
+);
+#define SQLITE_NUMERIC (-1)
+#define SQLITE_TEXT (-2)
+#define SQLITE_ARGS (-3)
+
+/*
+** The user function implementations call one of the following four routines
+** in order to return their results. The first parameter to each of these
+** routines is a copy of the first argument to xFunc() or xFinialize().
+** The second parameter to these routines is the result to be returned.
+** A NULL can be passed as the second parameter to sqlite_set_result_string()
+** in order to return a NULL result.
+**
+** The 3rd argument to _string and _error is the number of characters to
+** take from the string. If this argument is negative, then all characters
+** up to and including the first '\000' are used.
+**
+** The sqlite_set_result_string() function allocates a buffer to hold the
+** result and returns a pointer to this buffer. The calling routine
+** (that is, the implmentation of a user function) can alter the content
+** of this buffer if desired.
+*/
+char *sqlite_set_result_string(sqlite_func*,const char*,int);
+void sqlite_set_result_int(sqlite_func*,int);
+void sqlite_set_result_double(sqlite_func*,double);
+void sqlite_set_result_error(sqlite_func*,const char*,int);
+
+/*
+** The pUserData parameter to the sqlite_create_function() and
+** sqlite_create_aggregate() routines used to register user functions
+** is available to the implementation of the function using this
+** call.
+*/
+void *sqlite_user_data(sqlite_func*);
+
+/*
+** Aggregate functions use the following routine to allocate
+** a structure for storing their state. The first time this routine
+** is called for a particular aggregate, a new structure of size nBytes
+** is allocated, zeroed, and returned. On subsequent calls (for the
+** same aggregate instance) the same buffer is returned. The implementation
+** of the aggregate can use the returned buffer to accumulate data.
+**
+** The buffer allocated is freed automatically be SQLite.
+*/
+void *sqlite_aggregate_context(sqlite_func*, int nBytes);
+
+/*
+** The next routine returns the number of calls to xStep for a particular
+** aggregate function instance. The current call to xStep counts so this
+** routine always returns at least 1.
+*/
+int sqlite_aggregate_count(sqlite_func*);
+
+/*
+** This routine registers a callback with the SQLite library. The
+** callback is invoked (at compile-time, not at run-time) for each
+** attempt to access a column of a table in the database. The callback
+** returns SQLITE_OK if access is allowed, SQLITE_DENY if the entire
+** SQL statement should be aborted with an error and SQLITE_IGNORE
+** if the column should be treated as a NULL value.
+*/
+int sqlite_set_authorizer(
+ sqlite*,
+ int (*xAuth)(void*,int,const char*,const char*),
+ void *pUserData
+);
+
+/*
+** The second parameter to the access authorization function above will
+** be one of the values below. These values signify what kind of operation
+** is to be authorized. The 3rd and 4th parameters to the authorization
+** function will be parameters or NULL depending on which of the following
+** codes is used as the second parameter.
+**
+** Arg-3 Arg-4
+*/
+#define SQLITE_COPY 0 /* Table Name File Name */
+#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
+#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
+#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
+#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
+#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
+#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
+#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
+#define SQLITE_DELETE 9 /* Table Name NULL */
+#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
+#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
+#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
+#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
+#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
+#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
+#define SQLITE_DROP_VIEW 17 /* View Name NULL */
+#define SQLITE_INSERT 18 /* Table Name NULL */
+#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
+#define SQLITE_READ 20 /* Table Name Column Name */
+#define SQLITE_SELECT 21 /* NULL NULL */
+#define SQLITE_TRANSACTION 22 /* NULL NULL */
+#define SQLITE_UPDATE 23 /* Table Name Column Name */
+
+/*
+** The return value of the authorization function should be one of the
+** following constants:
+*/
+/* #define SQLITE_OK 0 // Allow access (This is actually defined above) */
+#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
+#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
+
+/*
+** Register a function that is called at every invocation of sqlite_exec()
+** or sqlite_compile(). This function can be used (for example) to generate
+** a log file of all SQL executed against a database.
+*/
+void *sqlite_trace(sqlite*, void(*xTrace)(void*,const char*), void*);
+
+/*** The Callback-Free API
+**
+** The following routines implement a new way to access SQLite that does not
+** involve the use of callbacks.
+**
+** An sqlite_vm is an opaque object that represents a single SQL statement
+** that is ready to be executed.
+*/
+typedef struct sqlite_vm sqlite_vm;
+
+/*
+** To execute an SQLite query without the use of callbacks, you first have
+** to compile the SQL using this routine. The 1st parameter "db" is a pointer
+** to an sqlite object obtained from sqlite_open(). The 2nd parameter
+** "zSql" is the text of the SQL to be compiled. The remaining parameters
+** are all outputs.
+**
+** *pzTail is made to point to the first character past the end of the first
+** SQL statement in zSql. This routine only compiles the first statement
+** in zSql, so *pzTail is left pointing to what remains uncompiled.
+**
+** *ppVm is left pointing to a "virtual machine" that can be used to execute
+** the compiled statement. Or if there is an error, *ppVm may be set to NULL.
+** If the input text contained no SQL (if the input is and empty string or
+** a comment) then *ppVm is set to NULL.
+**
+** If any errors are detected during compilation, an error message is written
+** into space obtained from malloc() and *pzErrMsg is made to point to that
+** error message. The calling routine is responsible for freeing the text
+** of this message when it has finished with it. Use sqlite_freemem() to
+** free the message. pzErrMsg may be NULL in which case no error message
+** will be generated.
+**
+** On success, SQLITE_OK is returned. Otherwise and error code is returned.
+*/
+int sqlite_compile(
+ sqlite *db, /* The open database */
+ const char *zSql, /* SQL statement to be compiled */
+ const char **pzTail, /* OUT: uncompiled tail of zSql */
+ sqlite_vm **ppVm, /* OUT: the virtual machine to execute zSql */
+ char **pzErrmsg /* OUT: Error message. */
+);
+
+/*
+** After an SQL statement has been compiled, it is handed to this routine
+** to be executed. This routine executes the statement as far as it can
+** go then returns. The return value will be one of SQLITE_DONE,
+** SQLITE_ERROR, SQLITE_BUSY, SQLITE_ROW, or SQLITE_MISUSE.
+**
+** SQLITE_DONE means that the execute of the SQL statement is complete
+** an no errors have occurred. sqlite_step() should not be called again
+** for the same virtual machine. *pN is set to the number of columns in
+** the result set and *pazColName is set to an array of strings that
+** describe the column names and datatypes. The name of the i-th column
+** is (*pazColName)[i] and the datatype of the i-th column is
+** (*pazColName)[i+*pN]. *pazValue is set to NULL.
+**
+** SQLITE_ERROR means that the virtual machine encountered a run-time
+** error. sqlite_step() should not be called again for the same
+** virtual machine. *pN is set to 0 and *pazColName and *pazValue are set
+** to NULL. Use sqlite_finalize() to obtain the specific error code
+** and the error message text for the error.
+**
+** SQLITE_BUSY means that an attempt to open the database failed because
+** another thread or process is holding a lock. The calling routine
+** can try again to open the database by calling sqlite_step() again.
+** The return code will only be SQLITE_BUSY if no busy handler is registered
+** using the sqlite_busy_handler() or sqlite_busy_timeout() routines. If
+** a busy handler callback has been registered but returns 0, then this
+** routine will return SQLITE_ERROR and sqltie_finalize() will return
+** SQLITE_BUSY when it is called.
+**
+** SQLITE_ROW means that a single row of the result is now available.
+** The data is contained in *pazValue. The value of the i-th column is
+** (*azValue)[i]. *pN and *pazColName are set as described in SQLITE_DONE.
+** Invoke sqlite_step() again to advance to the next row.
+**
+** SQLITE_MISUSE is returned if sqlite_step() is called incorrectly.
+** For example, if you call sqlite_step() after the virtual machine
+** has halted (after a prior call to sqlite_step() has returned SQLITE_DONE)
+** or if you call sqlite_step() with an incorrectly initialized virtual
+** machine or a virtual machine that has been deleted or that is associated
+** with an sqlite structure that has been closed.
+*/
+int sqlite_step(
+ sqlite_vm *pVm, /* The virtual machine to execute */
+ int *pN, /* OUT: Number of columns in result */
+ const char ***pazValue, /* OUT: Column data */
+ const char ***pazColName /* OUT: Column names and datatypes */
+);
+
+/*
+** This routine is called to delete a virtual machine after it has finished
+** executing. The return value is the result code. SQLITE_OK is returned
+** if the statement executed successfully and some other value is returned if
+** there was any kind of error. If an error occurred and pzErrMsg is not
+** NULL, then an error message is written into memory obtained from malloc()
+** and *pzErrMsg is made to point to that error message. The calling routine
+** should use sqlite_freemem() to delete this message when it has finished
+** with it.
+**
+** This routine can be called at any point during the execution of the
+** virtual machine. If the virtual machine has not completed execution
+** when this routine is called, that is like encountering an error or
+** an interrupt. (See sqlite_interrupt().) Incomplete updates may be
+** rolled back and transactions cancelled, depending on the circumstances,
+** and the result code returned will be SQLITE_ABORT.
+*/
+int sqlite_finalize(sqlite_vm*, char **pzErrMsg);
+
+/*
+** Attempt to open the file named in the argument as the auxiliary database
+** file. The auxiliary database file is used to store TEMP tables. But
+** by using this API, it is possible to trick SQLite into opening two
+** separate databases and acting on them as if they were one.
+**
+****** THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE. ******
+*/
+int sqlite_open_aux_file(sqlite *db, const char *zName, char **pzErrMsg);
+
+#ifdef __cplusplus
+} /* End of the 'extern "C"' block */
+#endif
+
+#endif /* _SQLITE_H_ */
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Internal interface definitions for SQLite.
+**
+** @(#) $Id$
+*/
+#include "config.h"
+#include "sqlite.h"
+#include "hash.h"
+#include "vdbe.h"
+#include "parse.h"
+#include "btree.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+
+/*
+** The maximum number of in-memory pages to use for the main database
+** table and for temporary tables.
+*/
+#define MAX_PAGES 2000
+#define TEMP_PAGES 500
+
+/*
+** If the following macro is set to 1, then NULL values are considered
+** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT
+** compound queries. No other SQL database engine (among those tested)
+** works this way except for OCELOT. But the SQL92 spec implies that
+** this is how things should work.
+**
+** If the following macro is set to 0, then NULLs are indistinct for
+** SELECT DISTINCT and for UNION.
+*/
+#define NULL_ALWAYS_DISTINCT 0
+
+/*
+** If the following macro is set to 1, then NULL values are considered
+** distinct when determining whether or not two entries are the same
+** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL,
+** OCELOT, and Firebird all work. The SQL92 spec explicitly says this
+** is the way things are suppose to work.
+**
+** If the following macro is set to 0, the NULLs are indistinct for
+** a UNIQUE index. In this mode, you can only have a single NULL entry
+** for a column declared UNIQUE. This is the way Informix and SQL Server
+** work.
+*/
+#define NULL_DISTINCT_FOR_UNIQUE 1
+
+/*
+** Integers of known sizes. These typedefs might change for architectures
+** where the sizes very. Preprocessor macros are available so that the
+** types can be conveniently redefined at compile-type. Like this:
+**
+** cc '-DUINTPTR_TYPE=long long int' ...
+*/
+#ifndef UINT32_TYPE
+# define UINT32_TYPE unsigned int
+#endif
+#ifndef UINT16_TYPE
+# define UINT16_TYPE unsigned short int
+#endif
+#ifndef UINT8_TYPE
+# define UINT8_TYPE unsigned char
+#endif
+#ifndef INTPTR_TYPE
+# if SQLITE_PTR_SZ==4
+# define INTPTR_TYPE int
+# else
+# define INTPTR_TYPE long long
+# endif
+#endif
+typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
+typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
+typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
+typedef INTPTR_TYPE ptr; /* Big enough to hold a pointer */
+typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */
+
+/*
+** This macro casts a pointer to an integer. Useful for doing
+** pointer arithmetic.
+*/
+#define Addr(X) ((uptr)X)
+
+/*
+** The maximum number of bytes of data that can be put into a single
+** row of a single table. The upper bound on this limit is 16777215
+** bytes (or 16MB-1). We have arbitrarily set the limit to just 1MB
+** here because the overflow page chain is inefficient for really big
+** records and we want to discourage people from thinking that
+** multi-megabyte records are OK. If your needs are different, you can
+** change this define and recompile to increase or decrease the record
+** size.
+*/
+#define MAX_BYTES_PER_ROW 1048576
+
+/*
+** If memory allocation problems are found, recompile with
+**
+** -DMEMORY_DEBUG=1
+**
+** to enable some sanity checking on malloc() and free(). To
+** check for memory leaks, recompile with
+**
+** -DMEMORY_DEBUG=2
+**
+** and a line of text will be written to standard error for
+** each malloc() and free(). This output can be analyzed
+** by an AWK script to determine if there are any leaks.
+*/
+#ifdef MEMORY_DEBUG
+# define sqliteMalloc(X) sqliteMalloc_(X,1,__FILE__,__LINE__)
+# define sqliteMallocRaw(X) sqliteMalloc_(X,0,__FILE__,__LINE__)
+# define sqliteFree(X) sqliteFree_(X,__FILE__,__LINE__)
+# define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__)
+# define sqliteStrDup(X) sqliteStrDup_(X,__FILE__,__LINE__)
+# define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__)
+ void sqliteStrRealloc(char**);
+#else
+# define sqliteStrRealloc(X)
+#endif
+
+/*
+** This variable gets set if malloc() ever fails. After it gets set,
+** the SQLite library shuts down permanently.
+*/
+extern int sqlite_malloc_failed;
+
+/*
+** The following global variables are used for testing and debugging
+** only. They only work if MEMORY_DEBUG is defined.
+*/
+#ifdef MEMORY_DEBUG
+extern int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
+extern int sqlite_nFree; /* Number of sqliteFree() calls */
+extern int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
+#endif
+
+/*
+** Name of the master database table. The master database table
+** is a special table that holds the names and attributes of all
+** user tables and indices.
+*/
+#define MASTER_NAME "sqlite_master"
+#define TEMP_MASTER_NAME "sqlite_temp_master"
+
+/*
+** The name of the schema table.
+*/
+#define SCHEMA_TABLE(x) (x?TEMP_MASTER_NAME:MASTER_NAME)
+
+/*
+** A convenience macro that returns the number of elements in
+** an array.
+*/
+#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
+
+/*
+** Forward references to structures
+*/
+typedef struct Column Column;
+typedef struct Table Table;
+typedef struct Index Index;
+typedef struct Instruction Instruction;
+typedef struct Expr Expr;
+typedef struct ExprList ExprList;
+typedef struct Parse Parse;
+typedef struct Token Token;
+typedef struct IdList IdList;
+typedef struct SrcList SrcList;
+typedef struct WhereInfo WhereInfo;
+typedef struct WhereLevel WhereLevel;
+typedef struct Select Select;
+typedef struct AggExpr AggExpr;
+typedef struct FuncDef FuncDef;
+typedef struct Trigger Trigger;
+typedef struct TriggerStep TriggerStep;
+typedef struct TriggerStack TriggerStack;
+typedef struct FKey FKey;
+
+/*
+** Each database is an instance of the following structure.
+**
+** The sqlite.file_format is initialized by the database file
+** and helps determines how the data in the database file is
+** represented. This field allows newer versions of the library
+** to read and write older databases. The various file formats
+** are as follows:
+**
+** file_format==1 Version 2.1.0.
+** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY.
+** file_format==3 Version 2.6.0. Fix empty-string index bug.
+** file_format==4 Version 2.7.0. Add support for separate numeric and
+** text datatypes.
+*/
+struct sqlite {
+ Btree *pBe; /* The B*Tree backend */
+ Btree *pBeTemp; /* Backend for session temporary tables */
+ int flags; /* Miscellanous flags. See below */
+ u8 file_format; /* What file format version is this database? */
+ u8 safety_level; /* How aggressive at synching data to disk */
+ u8 want_to_close; /* Close after all VDBEs are deallocated */
+ int schema_cookie; /* Magic number that changes with the schema */
+ int next_cookie; /* Value of schema_cookie after commit */
+ int cache_size; /* Number of pages to use in the cache */
+ int nTable; /* Number of tables in the database */
+ void *pBusyArg; /* 1st Argument to the busy callback */
+ int (*xBusyCallback)(void *,const char*,int); /* The busy callback */
+ Hash tblHash; /* All tables indexed by name */
+ Hash idxHash; /* All (named) indices indexed by name */
+ Hash trigHash; /* All triggers indexed by name */
+ Hash aFunc; /* All functions that can be in SQL exprs */
+ Hash aFKey; /* Foreign keys indexed by to-table */
+ int lastRowid; /* ROWID of most recent insert */
+ int priorNewRowid; /* Last randomly generated ROWID */
+ int onError; /* Default conflict algorithm */
+ int magic; /* Magic number for detect library misuse */
+ int nChange; /* Number of rows changed */
+ struct Vdbe *pVdbe; /* List of active virtual machines */
+#ifndef SQLITE_OMIT_TRACE
+ void (*xTrace)(void*,const char*); /* Trace function */
+ void *pTraceArg; /* Argument to the trace function */
+#endif
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ int (*xAuth)(void*,int,const char*,const char*); /* Access Auth function */
+ void *pAuthArg; /* 1st argument to the access auth function */
+#endif
+};
+
+/*
+** Possible values for the sqlite.flags.
+*/
+#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
+#define SQLITE_Initialized 0x00000002 /* True after initialization */
+#define SQLITE_Interrupt 0x00000004 /* Cancel current operation */
+#define SQLITE_InTrans 0x00000008 /* True if in a transaction */
+#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */
+#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
+#define SQLITE_CountRows 0x00000040 /* Count rows changed by INSERT, */
+ /* DELETE, or UPDATE and return */
+ /* the count using a callback. */
+#define SQLITE_NullCallback 0x00000080 /* Invoke the callback once if the */
+ /* result set is empty */
+#define SQLITE_ResultDetails 0x00000100 /* Details added to result set */
+#define SQLITE_UnresetViews 0x00000200 /* True if one or more views have */
+ /* defined column names */
+#define SQLITE_ReportTypes 0x00000400 /* Include information on datatypes */
+ /* in 4th argument of callback */
+
+/*
+** Possible values for the sqlite.magic field.
+** The numbers are obtained at random and have no special meaning, other
+** than being distinct from one another.
+*/
+#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
+#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
+#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
+#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
+
+/*
+** Each SQL function is defined by an instance of the following
+** structure. A pointer to this structure is stored in the sqlite.aFunc
+** hash table. When multiple functions have the same name, the hash table
+** points to a linked list of these structures.
+*/
+struct FuncDef {
+ void (*xFunc)(sqlite_func*,int,const char**); /* Regular function */
+ void (*xStep)(sqlite_func*,int,const char**); /* Aggregate function step */
+ void (*xFinalize)(sqlite_func*); /* Aggregate function finializer */
+ int nArg; /* Number of arguments */
+ int dataType; /* Datatype of the result */
+ void *pUserData; /* User data parameter */
+ FuncDef *pNext; /* Next function with same name */
+};
+
+/*
+** information about each column of an SQL table is held in an instance
+** of this structure.
+*/
+struct Column {
+ char *zName; /* Name of this column */
+ char *zDflt; /* Default value of this column */
+ char *zType; /* Data type for this column */
+ u8 notNull; /* True if there is a NOT NULL constraint */
+ u8 isPrimKey; /* True if this column is an INTEGER PRIMARY KEY */
+ u8 sortOrder; /* Some combination of SQLITE_SO_... values */
+};
+
+/*
+** The allowed sort orders.
+**
+** The TEXT and NUM values use bits that do not overlap with DESC and ASC.
+** That way the two can be combined into a single number.
+*/
+#define SQLITE_SO_UNK 0 /* Use the default collating type. (SCT_NUM) */
+#define SQLITE_SO_TEXT 2 /* Sort using memcmp() */
+#define SQLITE_SO_NUM 4 /* Sort using sqliteCompare() */
+#define SQLITE_SO_TYPEMASK 6 /* Mask to extract the collating sequence */
+#define SQLITE_SO_ASC 0 /* Sort in ascending order */
+#define SQLITE_SO_DESC 1 /* Sort in descending order */
+#define SQLITE_SO_DIRMASK 1 /* Mask to extract the sort direction */
+
+/*
+** Each SQL table is represented in memory by an instance of the
+** following structure.
+**
+** Expr.zName is the name of the table. The case of the original
+** CREATE TABLE statement is stored, but case is not significant for
+** comparisons.
+**
+** Expr.nCol is the number of columns in this table. Expr.aCol is a
+** pointer to an array of Column structures, one for each column.
+**
+** If the table has an INTEGER PRIMARY KEY, then Expr.iPKey is the index of
+** the column that is that key. Otherwise Expr.iPKey is negative. Note
+** that the datatype of the PRIMARY KEY must be INTEGER for this field to
+** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
+** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
+** is generated for each row of the table. Expr.hasPrimKey is true if
+** the table has any PRIMARY KEY, INTEGER or otherwise.
+**
+** Expr.tnum is the page number for the root BTree page of the table in the
+** database file. If Expr.isTemp is true, then this page occurs in the
+** auxiliary database file, not the main database file. If Expr.isTransient
+** is true, then the table is stored in a file that is automatically deleted
+** when the VDBE cursor to the table is closed. In this case Expr.tnum
+** refers VDBE cursor number that holds the table open, not to the root
+** page number. Transient tables are used to hold the results of a
+** sub-query that appears instead of a real table name in the FROM clause
+** of a SELECT statement.
+*/
+struct Table {
+ char *zName; /* Name of the table */
+ int nCol; /* Number of columns in this table */
+ Column *aCol; /* Information about each column */
+ int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */
+ Index *pIndex; /* List of SQL indexes on this table. */
+ int tnum; /* Root BTree node for this table (see note above) */
+ Select *pSelect; /* NULL for tables. Points to definition if a view. */
+ u8 readOnly; /* True if this table should not be written by the user */
+ u8 isTemp; /* True if stored in db->pBeTemp instead of db->pBe */
+ u8 isTransient; /* True if automatically deleted when VDBE finishes */
+ u8 hasPrimKey; /* True if there exists a primary key */
+ u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
+ Trigger *pTrigger; /* List of SQL triggers on this table */
+ FKey *pFKey; /* Linked list of all foreign keys in this table */
+};
+
+/*
+** Each foreign key constraint is an instance of the following structure.
+**
+** A foreign key is associated with two tables. The "from" table is
+** the table that contains the REFERENCES clause that creates the foreign
+** key. The "to" table is the table that is named in the REFERENCES clause.
+** Consider this example:
+**
+** CREATE TABLE ex1(
+** a INTEGER PRIMARY KEY,
+** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
+** );
+**
+** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
+**
+** Each REFERENCES clause generates an instance of the following structure
+** which is attached to the from-table. The to-table need not exist when
+** the from-table is created. The existance of the to-table is not checked
+** until an attempt is made to insert data into the from-table.
+**
+** The sqlite.aFKey hash table stores pointers to to this structure
+** given the name of a to-table. For each to-table, all foreign keys
+** associated with that table are on a linked list using the FKey.pNextTo
+** field.
+*/
+struct FKey {
+ Table *pFrom; /* The table that constains the REFERENCES clause */
+ FKey *pNextFrom; /* Next foreign key in pFrom */
+ char *zTo; /* Name of table that the key points to */
+ FKey *pNextTo; /* Next foreign key that points to zTo */
+ int nCol; /* Number of columns in this key */
+ struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
+ int iFrom; /* Index of column in pFrom */
+ char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
+ } *aCol; /* One entry for each of nCol column s */
+ u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
+ u8 updateConf; /* How to resolve conflicts that occur on UPDATE */
+ u8 deleteConf; /* How to resolve conflicts that occur on DELETE */
+ u8 insertConf; /* How to resolve conflicts that occur on INSERT */
+};
+
+/*
+** SQLite supports many different ways to resolve a contraint
+** error. ROLLBACK processing means that a constraint violation
+** causes the operation in process to fail and for the current transaction
+** to be rolled back. ABORT processing means the operation in process
+** fails and any prior changes from that one operation are backed out,
+** but the transaction is not rolled back. FAIL processing means that
+** the operation in progress stops and returns an error code. But prior
+** changes due to the same operation are not backed out and no rollback
+** occurs. IGNORE means that the particular row that caused the constraint
+** error is not inserted or updated. Processing continues and no error
+** is returned. REPLACE means that preexisting database rows that caused
+** a UNIQUE constraint violation are removed so that the new insert or
+** update can proceed. Processing continues and no error is reported.
+**
+** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
+** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
+** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
+** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
+** referenced table row is propagated into the row that holds the
+** foreign key.
+**
+** The following symbolic values are used to record which type
+** of action to take.
+*/
+#define OE_None 0 /* There is no constraint to check */
+#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
+#define OE_Abort 2 /* Back out changes but do no rollback transaction */
+#define OE_Fail 3 /* Stop the operation but leave all prior changes */
+#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
+#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
+
+#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
+#define OE_SetNull 7 /* Set the foreign key value to NULL */
+#define OE_SetDflt 8 /* Set the foreign key value to its default */
+#define OE_Cascade 9 /* Cascade the changes */
+
+#define OE_Default 99 /* Do whatever the default action is */
+
+/*
+** Each SQL index is represented in memory by an
+** instance of the following structure.
+**
+** The columns of the table that are to be indexed are described
+** by the aiColumn[] field of this structure. For example, suppose
+** we have the following table and index:
+**
+** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
+** CREATE INDEX Ex2 ON Ex1(c3,c1);
+**
+** In the Table structure describing Ex1, nCol==3 because there are
+** three columns in the table. In the Index structure describing
+** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
+** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
+** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
+** The second column to be indexed (c1) has an index of 0 in
+** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
+*/
+struct Index {
+ char *zName; /* Name of this index */
+ int nColumn; /* Number of columns in the table used by this index */
+ int *aiColumn; /* Which columns are used by this index. 1st is 0 */
+ Table *pTable; /* The SQL table being indexed */
+ int tnum; /* Page containing root of this index in database file */
+ u8 isUnique; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
+ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
+ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
+ Index *pNext; /* The next index associated with the same table */
+};
+
+/*
+** Each token coming out of the lexer is an instance of
+** this structure. Tokens are also used as part of an expression.
+*/
+struct Token {
+ const char *z; /* Text of the token. Not NULL-terminated! */
+ unsigned dyn : 1; /* True for malloced memory, false for static */
+ unsigned n : 31; /* Number of characters in this token */
+};
+
+/*
+** Each node of an expression in the parse tree is an instance
+** of this structure.
+**
+** Expr.op is the opcode. The integer parser token codes are reused
+** as opcodes here. For example, the parser defines TK_GE to be an integer
+** code representing the ">=" operator. This same integer code is reused
+** to represent the greater-than-or-equal-to operator in the expression
+** tree.
+**
+** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list
+** of argument if the expression is a function.
+**
+** Expr.token is the operator token for this node. For some expressions
+** that have subexpressions, Expr.token can be the complete text that gave
+** rise to the Expr. In the latter case, the token is marked as being
+** a compound token.
+**
+** An expression of the form ID or ID.ID refers to a column in a table.
+** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
+** the integer cursor number of a VDBE cursor pointing to that table and
+** Expr.iColumn is the column number for the specific column. If the
+** expression is used as a result in an aggregate SELECT, then the
+** value is also stored in the Expr.iAgg column in the aggregate so that
+** it can be accessed after all aggregates are computed.
+**
+** If the expression is a function, the Expr.iTable is an integer code
+** representing which function.
+**
+** The Expr.pSelect field points to a SELECT statement. The SELECT might
+** be the right operand of an IN operator. Or, if a scalar SELECT appears
+** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
+** operand.
+*/
+struct Expr {
+ u8 op; /* Operation performed by this node */
+ u8 dataType; /* Either SQLITE_SO_TEXT or SQLITE_SO_NUM */
+ u16 flags; /* Various flags. See below */
+ Expr *pLeft, *pRight; /* Left and right subnodes */
+ ExprList *pList; /* A list of expressions used as function arguments
+ ** or in "<expr> IN (<expr-list)" */
+ Token token; /* An operand token */
+ Token span; /* Complete text of the expression */
+ int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the
+ ** iColumn-th field of the iTable-th table. */
+ int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull
+ ** result from the iAgg-th element of the aggregator */
+ Select *pSelect; /* When the expression is a sub-select. Also the
+ ** right side of "<expr> IN (<select>)" */
+};
+
+/*
+** The following are the meanings of bits in the Expr.flags field.
+*/
+#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
+#define EP_Oracle8Join 0x0002 /* Carries the Oracle8 "(+)" join operator */
+
+/*
+** These macros can be used to test, set, or clear bits in the
+** Expr.flags field.
+*/
+#define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
+#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
+#define ExprSetProperty(E,P) (E)->flags|=(P)
+#define ExprClearProperty(E,P) (E)->flags&=~(P)
+
+/*
+** A list of expressions. Each expression may optionally have a
+** name. An expr/name combination can be used in several ways, such
+** as the list of "expr AS ID" fields following a "SELECT" or in the
+** list of "ID = expr" items in an UPDATE. A list of expressions can
+** also be used as the argument to a function, in which case the a.zName
+** field is not used.
+*/
+struct ExprList {
+ int nExpr; /* Number of expressions on the list */
+ struct ExprList_item {
+ Expr *pExpr; /* The list of expressions */
+ char *zName; /* Token associated with this expression */
+ u8 sortOrder; /* 1 for DESC or 0 for ASC */
+ u8 isAgg; /* True if this is an aggregate like count(*) */
+ u8 done; /* A flag to indicate when processing is finished */
+ } *a; /* One entry for each expression */
+};
+
+/*
+** An instance of this structure can hold a simple list of identifiers,
+** such as the list "a,b,c" in the following statements:
+**
+** INSERT INTO t(a,b,c) VALUES ...;
+** CREATE INDEX idx ON t(a,b,c);
+** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
+**
+** The IdList.a.idx field is used when the IdList represents the list of
+** column names after a table name in an INSERT statement. In the statement
+**
+** INSERT INTO t(a,b,c) ...
+**
+** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
+*/
+struct IdList {
+ int nId; /* Number of identifiers on the list */
+ struct IdList_item {
+ char *zName; /* Name of the identifier */
+ int idx; /* Index in some Table.aCol[] of a column named zName */
+ } *a;
+};
+
+/*
+** The following structure describes the FROM clause of a SELECT statement.
+** Each table or subquery in the FROM clause is a separate element of
+** the SrcList.a[] array.
+*/
+struct SrcList {
+ int nSrc; /* Number of tables or subqueries in the FROM clause */
+ struct SrcList_item {
+ char *zName; /* Name of the table */
+ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
+ Table *pTab; /* An SQL table corresponding to zName */
+ Select *pSelect; /* A SELECT statement used in place of a table name */
+ int jointype; /* Type of join between this table and the next */
+ Expr *pOn; /* The ON clause of a join */
+ IdList *pUsing; /* The USING clause of a join */
+ } *a; /* One entry for each identifier on the list */
+};
+
+/*
+** Permitted values of the SrcList.a.jointype field
+*/
+#define JT_INNER 0x0001 /* Any kind of inner or cross join */
+#define JT_NATURAL 0x0002 /* True for a "natural" join */
+#define JT_LEFT 0x0004 /* Left outer join */
+#define JT_RIGHT 0x0008 /* Right outer join */
+#define JT_OUTER 0x0010 /* The "OUTER" keyword is present */
+#define JT_ERROR 0x0020 /* unknown or unsupported join type */
+
+/*
+** For each nested loop in a WHERE clause implementation, the WhereInfo
+** structure contains a single instance of this structure. This structure
+** is intended to be private the the where.c module and should not be
+** access or modified by other modules.
+*/
+struct WhereLevel {
+ int iMem; /* Memory cell used by this level */
+ Index *pIdx; /* Index used */
+ int iCur; /* Cursor number used for this index */
+ int score; /* How well this indexed scored */
+ int brk; /* Jump here to break out of the loop */
+ int cont; /* Jump here to continue with the next loop cycle */
+ int op, p1, p2; /* Opcode used to terminate the loop */
+ int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
+ int top; /* First instruction of interior of the loop */
+ int inOp, inP1, inP2;/* Opcode used to implement an IN operator */
+ int bRev; /* Do the scan in the reverse direction */
+};
+
+/*
+** The WHERE clause processing routine has two halves. The
+** first part does the start of the WHERE loop and the second
+** half does the tail of the WHERE loop. An instance of
+** this structure is returned by the first half and passed
+** into the second half to give some continuity.
+*/
+struct WhereInfo {
+ Parse *pParse;
+ SrcList *pTabList; /* List of tables in the join */
+ int iContinue; /* Jump here to continue with next record */
+ int iBreak; /* Jump here to break out of the loop */
+ int base; /* Index of first Open opcode */
+ int nLevel; /* Number of nested loop */
+ int savedNTab; /* Value of pParse->nTab before WhereBegin() */
+ int peakNTab; /* Value of pParse->nTab after WhereBegin() */
+ WhereLevel a[1]; /* Information about each nest loop in the WHERE */
+};
+
+/*
+** An instance of the following structure contains all information
+** needed to generate code for a single SELECT statement.
+**
+** The zSelect field is used when the Select structure must be persistent.
+** Normally, the expression tree points to tokens in the original input
+** string that encodes the select. But if the Select structure must live
+** longer than its input string (for example when it is used to describe
+** a VIEW) we have to make a copy of the input string so that the nodes
+** of the expression tree will have something to point to. zSelect is used
+** to hold that copy.
+**
+** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
+** If there is a LIMIT clause, the parser sets nLimit to the value of the
+** limit and nOffset to the value of the offset (or 0 if there is not
+** offset). But later on, nLimit and nOffset become the memory locations
+** in the VDBE that record the limit and offset counters.
+*/
+struct Select {
+ int isDistinct; /* True if the DISTINCT keyword is present */
+ ExprList *pEList; /* The fields of the result */
+ SrcList *pSrc; /* The FROM clause */
+ Expr *pWhere; /* The WHERE clause */
+ ExprList *pGroupBy; /* The GROUP BY clause */
+ Expr *pHaving; /* The HAVING clause */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ int op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
+ Select *pPrior; /* Prior select in a compound select statement */
+ int nLimit, nOffset; /* LIMIT and OFFSET values. -1 means not used */
+ char *zSelect; /* Complete text of the SELECT command */
+ int base; /* Index of VDBE cursor for left-most FROM table */
+};
+
+/*
+** The results of a select can be distributed in several ways.
+*/
+#define SRT_Callback 1 /* Invoke a callback with each row of result */
+#define SRT_Mem 2 /* Store result in a memory cell */
+#define SRT_Set 3 /* Store result as unique keys in a table */
+#define SRT_Union 5 /* Store result as keys in a table */
+#define SRT_Except 6 /* Remove result from a UNION table */
+#define SRT_Table 7 /* Store result as data with a unique key */
+#define SRT_TempTable 8 /* Store result in a trasient table */
+#define SRT_Discard 9 /* Do not save the results anywhere */
+#define SRT_Sorter 10 /* Store results in the sorter */
+#define SRT_Subroutine 11 /* Call a subroutine to handle results */
+
+/*
+** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)")
+** we have to do some additional analysis of expressions. An instance
+** of the following structure holds information about a single subexpression
+** somewhere in the SELECT statement. An array of these structures holds
+** all the information we need to generate code for aggregate
+** expressions.
+**
+** Note that when analyzing a SELECT containing aggregates, both
+** non-aggregate field variables and aggregate functions are stored
+** in the AggExpr array of the Parser structure.
+**
+** The pExpr field points to an expression that is part of either the
+** field list, the GROUP BY clause, the HAVING clause or the ORDER BY
+** clause. The expression will be freed when those clauses are cleaned
+** up. Do not try to delete the expression attached to AggExpr.pExpr.
+**
+** If AggExpr.pExpr==0, that means the expression is "count(*)".
+*/
+struct AggExpr {
+ int isAgg; /* if TRUE contains an aggregate function */
+ Expr *pExpr; /* The expression */
+ FuncDef *pFunc; /* Information about the aggregate function */
+};
+
+/*
+** An SQL parser context. A copy of this structure is passed through
+** the parser and down into all the parser action routine in order to
+** carry around information that is global to the entire parse.
+*/
+struct Parse {
+ sqlite *db; /* The main database structure */
+ Btree *pBe; /* The database backend */
+ int rc; /* Return code from execution */
+ sqlite_callback xCallback; /* The callback function */
+ void *pArg; /* First argument to the callback function */
+ char *zErrMsg; /* An error message */
+ Token sErrToken; /* The token at which the error occurred */
+ Token sFirstToken; /* The first token parsed */
+ Token sLastToken; /* The last token parsed */
+ const char *zTail; /* All SQL text past the last semicolon parsed */
+ Table *pNewTable; /* A table being constructed by CREATE TABLE */
+ Vdbe *pVdbe; /* An engine for executing database bytecode */
+ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
+ u8 explain; /* True if the EXPLAIN flag is found on the query */
+ u8 initFlag; /* True if reparsing CREATE TABLEs */
+ u8 nameClash; /* A permanent table name clashes with temp table name */
+ u8 useAgg; /* If true, extract field values from the aggregator
+ ** while generating expressions. Normally false */
+ u8 schemaVerified; /* True if an OP_VerifySchema has been coded someplace
+ ** other than after an OP_Transaction */
+ u8 isTemp; /* True if parsing temporary tables */
+ u8 useCallback; /* True if callbacks should be used to report results */
+ int newTnum; /* Table number to use when reparsing CREATE TABLEs */
+ int nErr; /* Number of errors seen */
+ int nTab; /* Number of previously allocated VDBE cursors */
+ int nMem; /* Number of memory cells used so far */
+ int nSet; /* Number of sets used so far */
+ int nAgg; /* Number of aggregate expressions */
+ AggExpr *aAgg; /* An array of aggregate expressions */
+ TriggerStack *trigStack;
+};
+
+/*
+ * Each trigger present in the database schema is stored as an instance of
+ * struct Trigger.
+ *
+ * Pointers to instances of struct Trigger are stored in two ways.
+ * 1. In the "trigHash" hash table (part of the sqlite* that represents the
+ * database). This allows Trigger structures to be retrieved by name.
+ * 2. All triggers associated with a single table form a linked list, using the
+ * pNext member of struct Trigger. A pointer to the first element of the
+ * linked list is stored as the "pTrigger" member of the associated
+ * struct Table.
+ *
+ * The "step_list" member points to the first element of a linked list
+ * containing the SQL statements specified as the trigger program.
+ *
+ * When a trigger is initially created, the "isCommit" member is set to FALSE.
+ * When a transaction is rolled back, any Trigger structures with "isCommit" set
+ * to FALSE are deleted by the logic in sqliteRollbackInternalChanges(). When
+ * a transaction is commited, the "isCommit" member is set to TRUE for any
+ * Trigger structures for which it is FALSE.
+ *
+ * When a trigger is dropped, using the sqliteDropTrigger() interfaced, it is
+ * removed from the trigHash hash table and added to the trigDrop hash table.
+ * If the transaction is rolled back, the trigger is re-added into the trigHash
+ * hash table (and hence the database schema). If the transaction is commited,
+ * then the Trigger structure is deleted permanently.
+ */
+struct Trigger {
+ char *name; /* The name of the trigger */
+ char *table; /* The table or view to which the trigger applies */
+ int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
+ int tr_tm; /* One of TK_BEFORE, TK_AFTER */
+ Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */
+ IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
+ the <column-list> is stored here */
+ int foreach; /* One of TK_ROW or TK_STATEMENT */
+
+ TriggerStep *step_list; /* Link list of trigger program steps */
+ Trigger *pNext; /* Next trigger associated with the table */
+};
+
+/*
+ * An instance of struct TriggerStep is used to store a single SQL statement
+ * that is a part of a trigger-program.
+ *
+ * Instances of struct TriggerStep are stored in a singly linked list (linked
+ * using the "pNext" member) referenced by the "step_list" member of the
+ * associated struct Trigger instance. The first element of the linked list is
+ * the first step of the trigger-program.
+ *
+ * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
+ * "SELECT" statement. The meanings of the other members is determined by the
+ * value of "op" as follows:
+ *
+ * (op == TK_INSERT)
+ * orconf -> stores the ON CONFLICT algorithm
+ * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
+ * this stores a pointer to the SELECT statement. Otherwise NULL.
+ * target -> A token holding the name of the table to insert into.
+ * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
+ * this stores values to be inserted. Otherwise NULL.
+ * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
+ * statement, then this stores the column-names to be
+ * inserted into.
+ *
+ * (op == TK_DELETE)
+ * target -> A token holding the name of the table to delete from.
+ * pWhere -> The WHERE clause of the DELETE statement if one is specified.
+ * Otherwise NULL.
+ *
+ * (op == TK_UPDATE)
+ * target -> A token holding the name of the table to update rows of.
+ * pWhere -> The WHERE clause of the UPDATE statement if one is specified.
+ * Otherwise NULL.
+ * pExprList -> A list of the columns to update and the expressions to update
+ * them to. See sqliteUpdate() documentation of "pChanges"
+ * argument.
+ *
+ */
+struct TriggerStep {
+ int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
+ int orconf; /* OE_Rollback etc. */
+
+ Select *pSelect; /* Valid for SELECT and sometimes
+ INSERT steps (when pExprList == 0) */
+ Token target; /* Valid for DELETE, UPDATE, INSERT steps */
+ Expr *pWhere; /* Valid for DELETE, UPDATE steps */
+ ExprList *pExprList; /* Valid for UPDATE statements and sometimes
+ INSERT steps (when pSelect == 0) */
+ IdList *pIdList; /* Valid for INSERT statements only */
+
+ TriggerStep * pNext; /* Next in the link-list */
+};
+
+/*
+ * An instance of struct TriggerStack stores information required during code
+ * generation of a single trigger program. While the trigger program is being
+ * coded, its associated TriggerStack instance is pointed to by the
+ * "pTriggerStack" member of the Parse structure.
+ *
+ * The pTab member points to the table that triggers are being coded on. The
+ * newIdx member contains the index of the vdbe cursor that points at the temp
+ * table that stores the new.* references. If new.* references are not valid
+ * for the trigger being coded (for example an ON DELETE trigger), then newIdx
+ * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
+ *
+ * The ON CONFLICT policy to be used for the trigger program steps is stored
+ * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
+ * specified for individual triggers steps is used.
+ *
+ * struct TriggerStack has a "pNext" member, to allow linked lists to be
+ * constructed. When coding nested triggers (triggers fired by other triggers)
+ * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
+ * pointer. Once the nested trigger has been coded, the pNext value is restored
+ * to the pTriggerStack member of the Parse stucture and coding of the parent
+ * trigger continues.
+ *
+ * Before a nested trigger is coded, the linked list pointed to by the
+ * pTriggerStack is scanned to ensure that the trigger is not about to be coded
+ * recursively. If this condition is detected, the nested trigger is not coded.
+ */
+struct TriggerStack {
+ Table *pTab; /* Table that triggers are currently being coded on */
+ int newIdx; /* Index of vdbe cursor to "new" temp table */
+ int oldIdx; /* Index of vdbe cursor to "old" temp table */
+ int orconf; /* Current orconf policy */
+ int ignoreJump; /* where to jump to for a RAISE(IGNORE) */
+ Trigger *pTrigger;
+
+ TriggerStack *pNext;
+};
+
+/*
+ * This global flag is set for performance testing of triggers. When it is set
+ * SQLite will perform the overhead of building new and old trigger references
+ * even when no triggers exist
+ */
+extern int always_code_trigger_setup;
+
+/*
+** Internal function prototypes
+*/
+int sqliteStrICmp(const char *, const char *);
+int sqliteStrNICmp(const char *, const char *, int);
+int sqliteHashNoCase(const char *, int);
+int sqliteCompare(const char *, const char *);
+int sqliteSortCompare(const char *, const char *);
+void sqliteRealToSortable(double r, char *);
+#ifdef MEMORY_DEBUG
+ void *sqliteMalloc_(int,int,char*,int);
+ void sqliteFree_(void*,char*,int);
+ void *sqliteRealloc_(void*,int,char*,int);
+ char *sqliteStrDup_(const char*,char*,int);
+ char *sqliteStrNDup_(const char*, int,char*,int);
+ void sqliteCheckMemory(void*,int);
+#else
+ void *sqliteMalloc(int);
+ void *sqliteMallocRaw(int);
+ void sqliteFree(void*);
+ void *sqliteRealloc(void*,int);
+ char *sqliteStrDup(const char*);
+ char *sqliteStrNDup(const char*, int);
+# define sqliteCheckMemory(a,b)
+#endif
+char *sqliteMPrintf(const char *,...);
+void sqliteSetString(char **, const char *, ...);
+void sqliteSetNString(char **, ...);
+void sqliteDequote(char*);
+int sqliteKeywordCode(const char*, int);
+int sqliteRunParser(Parse*, const char*, char **);
+void sqliteExec(Parse*);
+Expr *sqliteExpr(int, Expr*, Expr*, Token*);
+void sqliteExprSpan(Expr*,Token*,Token*);
+Expr *sqliteExprFunction(ExprList*, Token*);
+void sqliteExprDelete(Expr*);
+ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*);
+void sqliteExprListDelete(ExprList*);
+void sqlitePragma(Parse*,Token*,Token*,int);
+void sqliteResetInternalSchema(sqlite*);
+int sqliteInit(sqlite*, char**);
+void sqliteBeginParse(Parse*,int);
+void sqliteRollbackInternalChanges(sqlite*);
+void sqliteCommitInternalChanges(sqlite*);
+Table *sqliteResultSetOfSelect(Parse*,char*,Select*);
+void sqliteOpenMasterTable(Vdbe *v, int);
+void sqliteStartTable(Parse*,Token*,Token*,int,int);
+void sqliteAddColumn(Parse*,Token*);
+void sqliteAddNotNull(Parse*, int);
+void sqliteAddPrimaryKey(Parse*, IdList*, int);
+void sqliteAddColumnType(Parse*,Token*,Token*);
+void sqliteAddDefaultValue(Parse*,Token*,int);
+int sqliteCollateType(const char*, int);
+void sqliteAddCollateType(Parse*, int);
+void sqliteEndTable(Parse*,Token*,Select*);
+void sqliteCreateView(Parse*,Token*,Token*,Select*,int);
+int sqliteViewGetColumnNames(Parse*,Table*);
+void sqliteViewResetAll(sqlite*);
+void sqliteDropTable(Parse*, Token*, int);
+void sqliteDeleteTable(sqlite*, Table*);
+void sqliteInsert(Parse*, Token*, ExprList*, Select*, IdList*, int);
+IdList *sqliteIdListAppend(IdList*, Token*);
+int sqliteIdListIndex(IdList*,const char*);
+SrcList *sqliteSrcListAppend(SrcList*, Token*);
+void sqliteSrcListAddAlias(SrcList*, Token*);
+void sqliteIdListDelete(IdList*);
+void sqliteSrcListDelete(SrcList*);
+void sqliteCreateIndex(Parse*, Token*, Token*, IdList*, int, Token*, Token*);
+void sqliteDropIndex(Parse*, Token*);
+void sqliteAddKeyType(Vdbe*, ExprList*);
+void sqliteAddIdxKeyType(Vdbe*, Index*);
+int sqliteSelect(Parse*, Select*, int, int, Select*, int, int*);
+Select *sqliteSelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*,
+ int,int,int);
+void sqliteSelectDelete(Select*);
+void sqliteSelectUnbind(Select*);
+Table *sqliteTableNameToTable(Parse*, const char*);
+SrcList *sqliteTableTokenToSrcList(Parse*, Token*);
+void sqliteDeleteFrom(Parse*, Token*, Expr*);
+void sqliteUpdate(Parse*, Token*, ExprList*, Expr*, int);
+WhereInfo *sqliteWhereBegin(Parse*, int, SrcList*, Expr*, int, ExprList**);
+void sqliteWhereEnd(WhereInfo*);
+void sqliteExprCode(Parse*, Expr*);
+void sqliteExprIfTrue(Parse*, Expr*, int, int);
+void sqliteExprIfFalse(Parse*, Expr*, int, int);
+Table *sqliteFindTable(sqlite*,const char*);
+Index *sqliteFindIndex(sqlite*,const char*);
+void sqliteUnlinkAndDeleteIndex(sqlite*,Index*);
+void sqliteCopy(Parse*, Token*, Token*, Token*, int);
+void sqliteVacuum(Parse*, Token*);
+int sqliteGlobCompare(const unsigned char*,const unsigned char*);
+int sqliteLikeCompare(const unsigned char*,const unsigned char*);
+char *sqliteTableNameFromToken(Token*);
+int sqliteExprCheck(Parse*, Expr*, int, int*);
+int sqliteExprType(Expr*);
+int sqliteExprCompare(Expr*, Expr*);
+int sqliteFuncId(Token*);
+int sqliteExprResolveIds(Parse*, int, SrcList*, ExprList*, Expr*);
+int sqliteExprAnalyzeAggregates(Parse*, Expr*);
+Vdbe *sqliteGetVdbe(Parse*);
+int sqliteRandomByte(void);
+int sqliteRandomInteger(void);
+void sqliteBeginTransaction(Parse*, int);
+void sqliteCommitTransaction(Parse*);
+void sqliteRollbackTransaction(Parse*);
+int sqliteExprIsConstant(Expr*);
+int sqliteExprIsInteger(Expr*, int*);
+int sqliteIsRowid(const char*);
+void sqliteGenerateRowDelete(sqlite*, Vdbe*, Table*, int, int);
+void sqliteGenerateRowIndexDelete(sqlite*, Vdbe*, Table*, int, char*);
+void sqliteGenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int);
+void sqliteCompleteInsertion(Parse*, Table*, int, char*, int, int);
+void sqliteBeginWriteOperation(Parse*, int, int);
+void sqliteEndWriteOperation(Parse*);
+Expr *sqliteExprDup(Expr*);
+void sqliteTokenCopy(Token*, Token*);
+ExprList *sqliteExprListDup(ExprList*);
+SrcList *sqliteSrcListDup(SrcList*);
+IdList *sqliteIdListDup(IdList*);
+Select *sqliteSelectDup(Select*);
+FuncDef *sqliteFindFunction(sqlite*,const char*,int,int,int);
+void sqliteRegisterBuiltinFunctions(sqlite*);
+int sqliteSafetyOn(sqlite*);
+int sqliteSafetyOff(sqlite*);
+int sqliteSafetyCheck(sqlite*);
+void sqliteChangeCookie(sqlite*, Vdbe*);
+void sqliteCreateTrigger(Parse*, Token*, int, int, IdList*, Token*,
+ int, Expr*, TriggerStep*, Token*);
+void sqliteDropTrigger(Parse*, Token*, int);
+int sqliteTriggersExist(Parse* , Trigger* , int , int , int, ExprList*);
+int sqliteCodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
+ int, int);
+void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
+TriggerStep *sqliteTriggerSelectStep(Select*);
+TriggerStep *sqliteTriggerInsertStep(Token*, IdList*, ExprList*, Select*, int);
+TriggerStep *sqliteTriggerUpdateStep(Token*, ExprList*, Expr*, int);
+TriggerStep *sqliteTriggerDeleteStep(Token*, Expr*);
+void sqliteDeleteTrigger(Trigger*);
+int sqliteJoinType(Parse*, Token*, Token*, Token*);
+void sqliteCreateForeignKey(Parse*, IdList*, Token*, IdList*, int);
+void sqliteDeferForeignKey(Parse*, int);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ void sqliteAuthRead(Parse*,Expr*,SrcList*,int);
+ int sqliteAuthCheck(Parse*,int, const char*, const char*);
+#else
+# define sqliteAuthRead(a,b,c,d)
+# define sqliteAuthCheck(a,b,c,d) SQLITE_OK
+#endif
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the sqlite_get_table() and sqlite_free_table()
+** interface routines. These are just wrappers around the main
+** interface routine of sqlite_exec().
+**
+** These routines are in a separate files so that they will not be linked
+** if they are not used.
+*/
+#include <stdlib.h>
+#include <string.h>
+#include "sqliteInt.h"
+
+/*
+** This structure is used to pass data from sqlite_get_table() through
+** to the callback function is uses to build the result.
+*/
+typedef struct TabResult {
+ char **azResult;
+ char *zErrMsg;
+ int nResult;
+ int nAlloc;
+ int nRow;
+ int nColumn;
+ int nData;
+ int rc;
+} TabResult;
+
+/*
+** This routine is called once for each row in the result table. Its job
+** is to fill in the TabResult structure appropriately, allocating new
+** memory as necessary.
+*/
+static int sqlite_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
+ TabResult *p = (TabResult*)pArg;
+ int need;
+ int i;
+ char *z;
+
+ /* Make sure there is enough space in p->azResult to hold everything
+ ** we need to remember from this invocation of the callback.
+ */
+ if( p->nRow==0 && argv!=0 ){
+ need = nCol*2;
+ }else{
+ need = nCol;
+ }
+ if( p->nData + need >= p->nAlloc ){
+ char **azNew;
+ p->nAlloc = p->nAlloc*2 + need + 1;
+ azNew = realloc( p->azResult, sizeof(char*)*p->nAlloc );
+ if( azNew==0 ){
+ p->rc = SQLITE_NOMEM;
+ return 1;
+ }
+ p->azResult = azNew;
+ }
+
+ /* If this is the first row, then generate an extra row containing
+ ** the names of all columns.
+ */
+ if( p->nRow==0 ){
+ p->nColumn = nCol;
+ for(i=0; i<nCol; i++){
+ if( colv[i]==0 ){
+ z = 0;
+ }else{
+ z = malloc( strlen(colv[i])+1 );
+ if( z==0 ){
+ p->rc = SQLITE_NOMEM;
+ return 1;
+ }
+ strcpy(z, colv[i]);
+ }
+ p->azResult[p->nData++] = z;
+ }
+ }else if( p->nColumn!=nCol ){
+ sqliteSetString(&p->zErrMsg,
+ "sqlite_get_table() called with two or more incompatible queries", 0);
+ p->rc = SQLITE_ERROR;
+ return 1;
+ }
+
+ /* Copy over the row data
+ */
+ if( argv!=0 ){
+ for(i=0; i<nCol; i++){
+ if( argv[i]==0 ){
+ z = 0;
+ }else{
+ z = malloc( strlen(argv[i])+1 );
+ if( z==0 ){
+ p->rc = SQLITE_NOMEM;
+ return 1;
+ }
+ strcpy(z, argv[i]);
+ }
+ p->azResult[p->nData++] = z;
+ }
+ p->nRow++;
+ }
+ return 0;
+}
+
+/*
+** Query the database. But instead of invoking a callback for each row,
+** malloc() for space to hold the result and return the entire results
+** at the conclusion of the call.
+**
+** The result that is written to ***pazResult is held in memory obtained
+** from malloc(). But the caller cannot free this memory directly.
+** Instead, the entire table should be passed to sqlite_free_table() when
+** the calling procedure is finished using it.
+*/
+int sqlite_get_table(
+ sqlite *db, /* The database on which the SQL executes */
+ const char *zSql, /* The SQL to be executed */
+ char ***pazResult, /* Write the result table here */
+ int *pnRow, /* Write the number of rows in the result here */
+ int *pnColumn, /* Write the number of columns of result here */
+ char **pzErrMsg /* Write error messages here */
+){
+ int rc;
+ TabResult res;
+ if( pazResult==0 ){ return SQLITE_ERROR; }
+ *pazResult = 0;
+ if( pnColumn ) *pnColumn = 0;
+ if( pnRow ) *pnRow = 0;
+ res.zErrMsg = 0;
+ res.nResult = 0;
+ res.nRow = 0;
+ res.nColumn = 0;
+ res.nData = 1;
+ res.nAlloc = 20;
+ res.rc = SQLITE_OK;
+ res.azResult = malloc( sizeof(char*)*res.nAlloc );
+ if( res.azResult==0 ){
+ return SQLITE_NOMEM;
+ }
+ res.azResult[0] = 0;
+ rc = sqlite_exec(db, zSql, sqlite_get_table_cb, &res, pzErrMsg);
+ if( res.azResult ){
+ res.azResult[0] = (char*)res.nData;
+ }
+ if( rc==SQLITE_ABORT ){
+ sqlite_free_table(&res.azResult[1]);
+ if( res.zErrMsg ){
+ if( pzErrMsg ){
+ free(*pzErrMsg);
+ *pzErrMsg = res.zErrMsg;
+ sqliteStrRealloc(pzErrMsg);
+ }else{
+ sqliteFree(res.zErrMsg);
+ }
+ }
+ return res.rc;
+ }
+ sqliteFree(res.zErrMsg);
+ if( rc!=SQLITE_OK ){
+ sqlite_free_table(&res.azResult[1]);
+ return rc;
+ }
+ if( res.nAlloc>res.nData ){
+ char **azNew;
+ azNew = realloc( res.azResult, sizeof(char*)*(res.nData+1) );
+ if( res.azResult==0 ){
+ sqlite_free_table(&res.azResult[1]);
+ return SQLITE_NOMEM;
+ }
+ res.azResult = azNew;
+ }
+ *pazResult = &res.azResult[1];
+ if( pnColumn ) *pnColumn = res.nColumn;
+ if( pnRow ) *pnRow = res.nRow;
+ return rc;
+}
+
+/*
+** This routine frees the space the sqlite_get_table() malloced.
+*/
+void sqlite_free_table(
+ char **azResult /* Result returned from from sqlite_get_table() */
+){
+ if( azResult ){
+ int i, n;
+ azResult--;
+ n = (int)azResult[0];
+ for(i=1; i<n; i++){ if( azResult[i] ) free(azResult[i]); }
+ free(azResult);
+ }
+}
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** An tokenizer for SQL
+**
+** This file contains C code that splits an SQL input string up into
+** individual tokens and sends those tokens one-by-one over to the
+** parser for analysis.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+#include "os.h"
+#include <ctype.h>
+#include <stdlib.h>
+
+/*
+** All the keywords of the SQL language are stored as in a hash
+** table composed of instances of the following structure.
+*/
+typedef struct Keyword Keyword;
+struct Keyword {
+ char *zName; /* The keyword name */
+ int len; /* Number of characters in the keyword */
+ int tokenType; /* The token value for this keyword */
+ Keyword *pNext; /* Next keyword with the same hash */
+};
+
+/*
+** These are the keywords
+*/
+static Keyword aKeywordTable[] = {
+ { "ABORT", 0, TK_ABORT, 0 },
+ { "AFTER", 0, TK_AFTER, 0 },
+ { "ALL", 0, TK_ALL, 0 },
+ { "AND", 0, TK_AND, 0 },
+ { "AS", 0, TK_AS, 0 },
+ { "ASC", 0, TK_ASC, 0 },
+ { "BEFORE", 0, TK_BEFORE, 0 },
+ { "BEGIN", 0, TK_BEGIN, 0 },
+ { "BETWEEN", 0, TK_BETWEEN, 0 },
+ { "BY", 0, TK_BY, 0 },
+ { "CASCADE", 0, TK_CASCADE, 0 },
+ { "CASE", 0, TK_CASE, 0 },
+ { "CHECK", 0, TK_CHECK, 0 },
+ { "CLUSTER", 0, TK_CLUSTER, 0 },
+ { "COLLATE", 0, TK_COLLATE, 0 },
+ { "COMMIT", 0, TK_COMMIT, 0 },
+ { "CONFLICT", 0, TK_CONFLICT, 0 },
+ { "CONSTRAINT", 0, TK_CONSTRAINT, 0 },
+ { "COPY", 0, TK_COPY, 0 },
+ { "CREATE", 0, TK_CREATE, 0 },
+ { "CROSS", 0, TK_JOIN_KW, 0 },
+ { "DEFAULT", 0, TK_DEFAULT, 0 },
+ { "DEFERRED", 0, TK_DEFERRED, 0 },
+ { "DEFERRABLE", 0, TK_DEFERRABLE, 0 },
+ { "DELETE", 0, TK_DELETE, 0 },
+ { "DELIMITERS", 0, TK_DELIMITERS, 0 },
+ { "DESC", 0, TK_DESC, 0 },
+ { "DISTINCT", 0, TK_DISTINCT, 0 },
+ { "DROP", 0, TK_DROP, 0 },
+ { "END", 0, TK_END, 0 },
+ { "EACH", 0, TK_EACH, 0 },
+ { "ELSE", 0, TK_ELSE, 0 },
+ { "EXCEPT", 0, TK_EXCEPT, 0 },
+ { "EXPLAIN", 0, TK_EXPLAIN, 0 },
+ { "FAIL", 0, TK_FAIL, 0 },
+ { "FOR", 0, TK_FOR, 0 },
+ { "FOREIGN", 0, TK_FOREIGN, 0 },
+ { "FROM", 0, TK_FROM, 0 },
+ { "FULL", 0, TK_JOIN_KW, 0 },
+ { "GLOB", 0, TK_GLOB, 0 },
+ { "GROUP", 0, TK_GROUP, 0 },
+ { "HAVING", 0, TK_HAVING, 0 },
+ { "IGNORE", 0, TK_IGNORE, 0 },
+ { "IMMEDIATE", 0, TK_IMMEDIATE, 0 },
+ { "IN", 0, TK_IN, 0 },
+ { "INDEX", 0, TK_INDEX, 0 },
+ { "INITIALLY", 0, TK_INITIALLY, 0 },
+ { "INNER", 0, TK_JOIN_KW, 0 },
+ { "INSERT", 0, TK_INSERT, 0 },
+ { "INSTEAD", 0, TK_INSTEAD, 0 },
+ { "INTERSECT", 0, TK_INTERSECT, 0 },
+ { "INTO", 0, TK_INTO, 0 },
+ { "IS", 0, TK_IS, 0 },
+ { "ISNULL", 0, TK_ISNULL, 0 },
+ { "JOIN", 0, TK_JOIN, 0 },
+ { "KEY", 0, TK_KEY, 0 },
+ { "LEFT", 0, TK_JOIN_KW, 0 },
+ { "LIKE", 0, TK_LIKE, 0 },
+ { "LIMIT", 0, TK_LIMIT, 0 },
+ { "MATCH", 0, TK_MATCH, 0 },
+ { "NATURAL", 0, TK_JOIN_KW, 0 },
+ { "NOT", 0, TK_NOT, 0 },
+ { "NOTNULL", 0, TK_NOTNULL, 0 },
+ { "NULL", 0, TK_NULL, 0 },
+ { "OF", 0, TK_OF, 0 },
+ { "OFFSET", 0, TK_OFFSET, 0 },
+ { "ON", 0, TK_ON, 0 },
+ { "OR", 0, TK_OR, 0 },
+ { "ORDER", 0, TK_ORDER, 0 },
+ { "OUTER", 0, TK_JOIN_KW, 0 },
+ { "PRAGMA", 0, TK_PRAGMA, 0 },
+ { "PRIMARY", 0, TK_PRIMARY, 0 },
+ { "RAISE", 0, TK_RAISE, 0 },
+ { "REFERENCES", 0, TK_REFERENCES, 0 },
+ { "REPLACE", 0, TK_REPLACE, 0 },
+ { "RESTRICT", 0, TK_RESTRICT, 0 },
+ { "RIGHT", 0, TK_JOIN_KW, 0 },
+ { "ROLLBACK", 0, TK_ROLLBACK, 0 },
+ { "ROW", 0, TK_ROW, 0 },
+ { "SELECT", 0, TK_SELECT, 0 },
+ { "SET", 0, TK_SET, 0 },
+ { "STATEMENT", 0, TK_STATEMENT, 0 },
+ { "TABLE", 0, TK_TABLE, 0 },
+ { "TEMP", 0, TK_TEMP, 0 },
+ { "TEMPORARY", 0, TK_TEMP, 0 },
+ { "THEN", 0, TK_THEN, 0 },
+ { "TRANSACTION", 0, TK_TRANSACTION, 0 },
+ { "TRIGGER", 0, TK_TRIGGER, 0 },
+ { "UNION", 0, TK_UNION, 0 },
+ { "UNIQUE", 0, TK_UNIQUE, 0 },
+ { "UPDATE", 0, TK_UPDATE, 0 },
+ { "USING", 0, TK_USING, 0 },
+ { "VACUUM", 0, TK_VACUUM, 0 },
+ { "VALUES", 0, TK_VALUES, 0 },
+ { "VIEW", 0, TK_VIEW, 0 },
+ { "WHEN", 0, TK_WHEN, 0 },
+ { "WHERE", 0, TK_WHERE, 0 },
+};
+
+/*
+** This is the hash table
+*/
+#define KEY_HASH_SIZE 71
+static Keyword *apHashTable[KEY_HASH_SIZE];
+
+
+/*
+** This function looks up an identifier to determine if it is a
+** keyword. If it is a keyword, the token code of that keyword is
+** returned. If the input is not a keyword, TK_ID is returned.
+*/
+int sqliteKeywordCode(const char *z, int n){
+ int h;
+ Keyword *p;
+ if( aKeywordTable[0].len==0 ){
+ /* Initialize the keyword hash table */
+ sqliteOsEnterMutex();
+ if( aKeywordTable[0].len==0 ){
+ int i;
+ int n;
+ n = sizeof(aKeywordTable)/sizeof(aKeywordTable[0]);
+ for(i=0; i<n; i++){
+ aKeywordTable[i].len = strlen(aKeywordTable[i].zName);
+ h = sqliteHashNoCase(aKeywordTable[i].zName, aKeywordTable[i].len);
+ h %= KEY_HASH_SIZE;
+ aKeywordTable[i].pNext = apHashTable[h];
+ apHashTable[h] = &aKeywordTable[i];
+ }
+ }
+ sqliteOsLeaveMutex();
+ }
+ h = sqliteHashNoCase(z, n) % KEY_HASH_SIZE;
+ for(p=apHashTable[h]; p; p=p->pNext){
+ if( p->len==n && sqliteStrNICmp(p->zName, z, n)==0 ){
+ return p->tokenType;
+ }
+ }
+ return TK_ID;
+}
+
+
+/*
+** If X is a character that can be used in an identifier then
+** isIdChar[X] will be 1. Otherwise isIdChar[X] will be 0.
+**
+** In this implementation, an identifier can be a string of
+** alphabetic characters, digits, and "_" plus any character
+** with the high-order bit set. The latter rule means that
+** any sequence of UTF-8 characters or characters taken from
+** an extended ISO8859 character set can form an identifier.
+*/
+static const char isIdChar[] = {
+/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 8x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 9x */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* Ax */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* Bx */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* Cx */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* Dx */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* Ex */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* Fx */
+};
+
+
+/*
+** Return the length of the token that begins at z[0]. Return
+** -1 if the token is (or might be) incomplete. Store the token
+** type in *tokenType before returning.
+*/
+static int sqliteGetToken(const unsigned char *z, int *tokenType){
+ int i;
+ switch( *z ){
+ case ' ': case '\t': case '\n': case '\f': case '\r': {
+ for(i=1; isspace(z[i]); i++){}
+ *tokenType = TK_SPACE;
+ return i;
+ }
+ case '-': {
+ if( z[1]==0 ) return -1;
+ if( z[1]=='-' ){
+ for(i=2; z[i] && z[i]!='\n'; i++){}
+ *tokenType = TK_COMMENT;
+ return i;
+ }
+ *tokenType = TK_MINUS;
+ return 1;
+ }
+ case '(': {
+ if( z[1]=='+' && z[2]==')' ){
+ *tokenType = TK_ORACLE_OUTER_JOIN;
+ return 3;
+ }else{
+ *tokenType = TK_LP;
+ return 1;
+ }
+ }
+ case ')': {
+ *tokenType = TK_RP;
+ return 1;
+ }
+ case ';': {
+ *tokenType = TK_SEMI;
+ return 1;
+ }
+ case '+': {
+ *tokenType = TK_PLUS;
+ return 1;
+ }
+ case '*': {
+ *tokenType = TK_STAR;
+ return 1;
+ }
+ case '/': {
+ if( z[1]!='*' || z[2]==0 ){
+ *tokenType = TK_SLASH;
+ return 1;
+ }
+ for(i=3; z[i] && (z[i]!='/' || z[i-1]!='*'); i++){}
+ if( z[i] ) i++;
+ *tokenType = TK_COMMENT;
+ return i;
+ }
+ case '%': {
+ *tokenType = TK_REM;
+ return 1;
+ }
+ case '=': {
+ *tokenType = TK_EQ;
+ return 1 + (z[1]=='=');
+ }
+ case '<': {
+ if( z[1]=='=' ){
+ *tokenType = TK_LE;
+ return 2;
+ }else if( z[1]=='>' ){
+ *tokenType = TK_NE;
+ return 2;
+ }else if( z[1]=='<' ){
+ *tokenType = TK_LSHIFT;
+ return 2;
+ }else{
+ *tokenType = TK_LT;
+ return 1;
+ }
+ }
+ case '>': {
+ if( z[1]=='=' ){
+ *tokenType = TK_GE;
+ return 2;
+ }else if( z[1]=='>' ){
+ *tokenType = TK_RSHIFT;
+ return 2;
+ }else{
+ *tokenType = TK_GT;
+ return 1;
+ }
+ }
+ case '!': {
+ if( z[1]!='=' ){
+ *tokenType = TK_ILLEGAL;
+ return 2;
+ }else{
+ *tokenType = TK_NE;
+ return 2;
+ }
+ }
+ case '|': {
+ if( z[1]!='|' ){
+ *tokenType = TK_BITOR;
+ return 1;
+ }else{
+ *tokenType = TK_CONCAT;
+ return 2;
+ }
+ }
+ case ',': {
+ *tokenType = TK_COMMA;
+ return 1;
+ }
+ case '&': {
+ *tokenType = TK_BITAND;
+ return 1;
+ }
+ case '~': {
+ *tokenType = TK_BITNOT;
+ return 1;
+ }
+ case '\'': case '"': {
+ int delim = z[0];
+ for(i=1; z[i]; i++){
+ if( z[i]==delim ){
+ if( z[i+1]==delim ){
+ i++;
+ }else{
+ break;
+ }
+ }
+ }
+ if( z[i] ) i++;
+ *tokenType = TK_STRING;
+ return i;
+ }
+ case '.': {
+ if( !isdigit(z[1]) ){
+ *tokenType = TK_DOT;
+ return 1;
+ }
+ /* Fall thru into the next case */
+ }
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9': {
+ *tokenType = TK_INTEGER;
+ for(i=1; isdigit(z[i]); i++){}
+ if( z[i]=='.' ){
+ i++;
+ while( isdigit(z[i]) ){ i++; }
+ *tokenType = TK_FLOAT;
+ }
+ if( (z[i]=='e' || z[i]=='E') &&
+ ( isdigit(z[i+1])
+ || ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2]))
+ )
+ ){
+ i += 2;
+ while( isdigit(z[i]) ){ i++; }
+ *tokenType = TK_FLOAT;
+ }else if( z[0]=='.' ){
+ *tokenType = TK_FLOAT;
+ }
+ return i;
+ }
+ case '[': {
+ for(i=1; z[i] && z[i-1]!=']'; i++){}
+ *tokenType = TK_ID;
+ return i;
+ }
+ default: {
+ if( !isIdChar[*z] ){
+ break;
+ }
+ for(i=1; isIdChar[z[i]]; i++){}
+ *tokenType = sqliteKeywordCode((char*)z, i);
+ return i;
+ }
+ }
+ *tokenType = TK_ILLEGAL;
+ return 1;
+}
+
+/*
+** Run the parser on the given SQL string. The parser structure is
+** passed in. An SQLITE_ status code is returned. If an error occurs
+** and pzErrMsg!=NULL then an error message might be written into
+** memory obtained from malloc() and *pzErrMsg made to point to that
+** error message. Or maybe not.
+*/
+int sqliteRunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
+ int nErr = 0;
+ int i;
+ void *pEngine;
+ int tokenType;
+ int lastTokenParsed = -1;
+ sqlite *db = pParse->db;
+ extern void *sqliteParserAlloc(void*(*)(int));
+ extern void sqliteParserFree(void*, void(*)(void*));
+ extern int sqliteParser(void*, int, Token, Parse*);
+
+ db->flags &= ~SQLITE_Interrupt;
+ pParse->rc = SQLITE_OK;
+ i = 0;
+ pEngine = sqliteParserAlloc((void*(*)(int))malloc);
+ if( pEngine==0 ){
+ sqliteSetString(pzErrMsg, "out of memory", 0);
+ return 1;
+ }
+ pParse->sLastToken.dyn = 0;
+ pParse->zTail = zSql;
+ while( sqlite_malloc_failed==0 && zSql[i]!=0 ){
+
+ assert( i>=0 );
+ pParse->sLastToken.z = &zSql[i];
+ assert( pParse->sLastToken.dyn==0 );
+ pParse->sLastToken.n = sqliteGetToken((unsigned char*)&zSql[i], &tokenType);
+ i += pParse->sLastToken.n;
+ switch( tokenType ){
+ case TK_SPACE:
+ case TK_COMMENT: {
+ if( (db->flags & SQLITE_Interrupt)!=0 ){
+ pParse->rc = SQLITE_INTERRUPT;
+ sqliteSetString(pzErrMsg, "interrupt", 0);
+ goto abort_parse;
+ }
+ break;
+ }
+ case TK_ILLEGAL: {
+ sqliteSetNString(pzErrMsg, "unrecognized token: \"", -1,
+ pParse->sLastToken.z, pParse->sLastToken.n, "\"", 1, 0);
+ nErr++;
+ goto abort_parse;
+ }
+ case TK_SEMI: {
+ pParse->zTail = &zSql[i];
+ /* Fall thru into the default case */
+ }
+ default: {
+ sqliteParser(pEngine, tokenType, pParse->sLastToken, pParse);
+ lastTokenParsed = tokenType;
+ if( pParse->rc!=SQLITE_OK ){
+ goto abort_parse;
+ }
+ break;
+ }
+ }
+ }
+abort_parse:
+ if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
+ if( lastTokenParsed!=TK_SEMI ){
+ sqliteParser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
+ pParse->zTail = &zSql[i];
+ }
+ sqliteParser(pEngine, 0, pParse->sLastToken, pParse);
+ }
+ sqliteParserFree(pEngine, free);
+ if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
+ sqliteSetString(&pParse->zErrMsg, sqlite_error_string(pParse->rc), 0);
+ }
+ if( pParse->zErrMsg ){
+ if( pzErrMsg && *pzErrMsg==0 ){
+ *pzErrMsg = pParse->zErrMsg;
+ }else{
+ sqliteFree(pParse->zErrMsg);
+ }
+ pParse->zErrMsg = 0;
+ if( !nErr ) nErr++;
+ }
+ if( pParse->pVdbe && (pParse->useCallback || pParse->nErr>0) ){
+ sqliteVdbeDelete(pParse->pVdbe);
+ pParse->pVdbe = 0;
+ }
+ if( pParse->pNewTable ){
+ sqliteDeleteTable(pParse->db, pParse->pNewTable);
+ pParse->pNewTable = 0;
+ }
+ if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
+ pParse->rc = SQLITE_ERROR;
+ }
+ return nErr;
+}
--- /dev/null
+/*
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+*
+*/
+#include "sqliteInt.h"
+
+/*
+** Delete a linked list of TriggerStep structures.
+*/
+static void sqliteDeleteTriggerStep(TriggerStep *pTriggerStep){
+ while( pTriggerStep ){
+ TriggerStep * pTmp = pTriggerStep;
+ pTriggerStep = pTriggerStep->pNext;
+
+ if( pTmp->target.dyn ) sqliteFree((char*)pTmp->target.z);
+ sqliteExprDelete(pTmp->pWhere);
+ sqliteExprListDelete(pTmp->pExprList);
+ sqliteSelectDelete(pTmp->pSelect);
+ sqliteIdListDelete(pTmp->pIdList);
+
+ sqliteFree(pTmp);
+ }
+}
+
+/*
+** This is called by the parser when it sees a CREATE TRIGGER statement. See
+** comments surrounding struct Trigger in sqliteInt.h for a description of
+** how triggers are stored.
+*/
+void sqliteCreateTrigger(
+ Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
+ Token *pName, /* The name of the trigger */
+ int tr_tm, /* One of TK_BEFORE, TK_AFTER , TK_INSTEAD */
+ int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
+ IdList *pColumns, /* column list if this is an UPDATE OF trigger */
+ Token *pTableName, /* The name of the table/view the trigger applies to */
+ int foreach, /* One of TK_ROW or TK_STATEMENT */
+ Expr *pWhen, /* WHEN clause */
+ TriggerStep *pStepList, /* The triggered program */
+ Token *pAll /* Token that describes the complete CREATE TRIGGER */
+){
+ Trigger *nt;
+ Table *tab;
+ char *zName = 0; /* Name of the trigger */
+
+ /* Check that:
+ ** 1. the trigger name does not already exist.
+ ** 2. the table (or view) does exist.
+ ** 3. that we are not trying to create a trigger on the sqlite_master table
+ ** 4. That we are not trying to create an INSTEAD OF trigger on a table.
+ ** 5. That we are not trying to create a BEFORE or AFTER trigger on a view.
+ */
+ zName = sqliteStrNDup(pName->z, pName->n);
+ if( sqliteHashFind(&(pParse->db->trigHash), zName, pName->n + 1) ){
+ sqliteSetNString(&pParse->zErrMsg, "trigger ", -1,
+ pName->z, pName->n, " already exists", -1, 0);
+ pParse->nErr++;
+ goto trigger_cleanup;
+ }
+ {
+ char *tmp_str = sqliteStrNDup(pTableName->z, pTableName->n);
+ if( tmp_str==0 ) goto trigger_cleanup;
+ tab = sqliteFindTable(pParse->db, tmp_str);
+ sqliteFree(tmp_str);
+ if( !tab ){
+ sqliteSetNString(&pParse->zErrMsg, "no such table: ", -1,
+ pTableName->z, pTableName->n, 0);
+ pParse->nErr++;
+ goto trigger_cleanup;
+ }
+ if( sqliteStrICmp(tab->zName, MASTER_NAME)==0 ){
+ sqliteSetString(&pParse->zErrMsg, "cannot create trigger on system "
+ "table: " MASTER_NAME, 0);
+ pParse->nErr++;
+ goto trigger_cleanup;
+ }
+ if( sqliteStrICmp(tab->zName, TEMP_MASTER_NAME)==0 ){
+ sqliteSetString(&pParse->zErrMsg, "cannot create trigger on system "
+ "table: " TEMP_MASTER_NAME, 0);
+ pParse->nErr++;
+ goto trigger_cleanup;
+ }
+ if( tab->pSelect && tr_tm != TK_INSTEAD ){
+ sqliteSetNString(&pParse->zErrMsg, "cannot create ", -1,
+ (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", -1, " trigger on view: ", -1
+ , pTableName->z, pTableName->n, 0);
+ goto trigger_cleanup;
+ }
+ if( !tab->pSelect && tr_tm == TK_INSTEAD ){
+ sqliteSetNString(&pParse->zErrMsg, "cannot create INSTEAD OF", -1,
+ " trigger on table: ", -1, pTableName->z, pTableName->n, 0);
+ goto trigger_cleanup;
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code = SQLITE_CREATE_TRIGGER;
+ if( tab->isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
+ if( sqliteAuthCheck(pParse, code, zName, tab->zName) ){
+ goto trigger_cleanup;
+ }
+ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(tab->isTemp), 0)){
+ goto trigger_cleanup;
+ }
+ }
+#endif
+ }
+
+ if (tr_tm == TK_INSTEAD){
+ tr_tm = TK_BEFORE;
+ }
+
+ /* Build the Trigger object */
+ nt = (Trigger*)sqliteMalloc(sizeof(Trigger));
+ if( nt==0 ) goto trigger_cleanup;
+ nt->name = zName;
+ zName = 0;
+ nt->table = sqliteStrNDup(pTableName->z, pTableName->n);
+ if( sqlite_malloc_failed ) goto trigger_cleanup;
+ nt->op = op;
+ nt->tr_tm = tr_tm;
+ nt->pWhen = sqliteExprDup(pWhen);
+ sqliteExprDelete(pWhen);
+ nt->pColumns = sqliteIdListDup(pColumns);
+ sqliteIdListDelete(pColumns);
+ nt->foreach = foreach;
+ nt->step_list = pStepList;
+
+ /* if we are not initializing, and this trigger is not on a TEMP table,
+ ** build the sqlite_master entry
+ */
+ if( !pParse->initFlag ){
+ static VdbeOp insertTrig[] = {
+ { OP_NewRecno, 0, 0, 0 },
+ { OP_String, 0, 0, "trigger" },
+ { OP_String, 0, 0, 0 }, /* 2: trigger name */
+ { OP_String, 0, 0, 0 }, /* 3: table name */
+ { OP_Integer, 0, 0, 0 },
+ { OP_String, 0, 0, 0 }, /* 5: SQL */
+ { OP_MakeRecord, 5, 0, 0 },
+ { OP_PutIntKey, 0, 0, 0 },
+ };
+ int addr;
+ Vdbe *v;
+
+ /* Make an entry in the sqlite_master table */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) goto trigger_cleanup;
+ sqliteBeginWriteOperation(pParse, 0, 0);
+ sqliteOpenMasterTable(v, tab->isTemp);
+ addr = sqliteVdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
+ sqliteVdbeChangeP3(v, addr, tab->isTemp ? TEMP_MASTER_NAME : MASTER_NAME,
+ P3_STATIC);
+ sqliteVdbeChangeP3(v, addr+2, nt->name, 0);
+ sqliteVdbeChangeP3(v, addr+3, nt->table, 0);
+ sqliteVdbeChangeP3(v, addr+5, pAll->z, pAll->n);
+ if( !tab->isTemp ){
+ sqliteChangeCookie(pParse->db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ sqliteEndWriteOperation(pParse);
+ }
+
+ if( !pParse->explain ){
+ /* Stick it in the hash-table */
+ sqliteHashInsert(&(pParse->db->trigHash), nt->name, pName->n + 1, nt);
+
+ /* Attach it to the table object */
+ nt->pNext = tab->pTrigger;
+ tab->pTrigger = nt;
+ return;
+ }else{
+ sqliteFree(nt->name);
+ sqliteFree(nt->table);
+ sqliteFree(nt);
+ }
+
+trigger_cleanup:
+
+ sqliteFree(zName);
+ sqliteIdListDelete(pColumns);
+ sqliteExprDelete(pWhen);
+ sqliteDeleteTriggerStep(pStepList);
+}
+
+/*
+** Make a copy of all components of the given trigger step. This has
+** the effect of copying all Expr.token.z values into memory obtained
+** from sqliteMalloc(). As initially created, the Expr.token.z values
+** all point to the input string that was fed to the parser. But that
+** string is ephemeral - it will go away as soon as the sqlite_exec()
+** call that started the parser exits. This routine makes a persistent
+** copy of all the Expr.token.z strings so that the TriggerStep structure
+** will be valid even after the sqlite_exec() call returns.
+*/
+static void sqlitePersistTriggerStep(TriggerStep *p){
+ if( p->target.z ){
+ p->target.z = sqliteStrNDup(p->target.z, p->target.n);
+ p->target.dyn = 1;
+ }
+ if( p->pSelect ){
+ Select *pNew = sqliteSelectDup(p->pSelect);
+ sqliteSelectDelete(p->pSelect);
+ p->pSelect = pNew;
+ }
+ if( p->pWhere ){
+ Expr *pNew = sqliteExprDup(p->pWhere);
+ sqliteExprDelete(p->pWhere);
+ p->pWhere = pNew;
+ }
+ if( p->pExprList ){
+ ExprList *pNew = sqliteExprListDup(p->pExprList);
+ sqliteExprListDelete(p->pExprList);
+ p->pExprList = pNew;
+ }
+ if( p->pIdList ){
+ IdList *pNew = sqliteIdListDup(p->pIdList);
+ sqliteIdListDelete(p->pIdList);
+ p->pIdList = pNew;
+ }
+}
+
+/*
+** Turn a SELECT statement (that the pSelect parameter points to) into
+** a trigger step. Return a pointer to a TriggerStep structure.
+**
+** The parser calls this routine when it finds a SELECT statement in
+** body of a TRIGGER.
+*/
+TriggerStep *sqliteTriggerSelectStep(Select *pSelect){
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
+ if( pTriggerStep==0 ) return 0;
+
+ pTriggerStep->op = TK_SELECT;
+ pTriggerStep->pSelect = pSelect;
+ pTriggerStep->orconf = OE_Default;
+ sqlitePersistTriggerStep(pTriggerStep);
+
+ return pTriggerStep;
+}
+
+/*
+** Build a trigger step out of an INSERT statement. Return a pointer
+** to the new trigger step.
+**
+** The parser calls this routine when it sees an INSERT inside the
+** body of a trigger.
+*/
+TriggerStep *sqliteTriggerInsertStep(
+ Token *pTableName, /* Name of the table into which we insert */
+ IdList *pColumn, /* List of columns in pTableName to insert into */
+ ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
+ Select *pSelect, /* A SELECT statement that supplies values */
+ int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
+){
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
+ if( pTriggerStep==0 ) return 0;
+
+ assert(pEList == 0 || pSelect == 0);
+ assert(pEList != 0 || pSelect != 0);
+
+ pTriggerStep->op = TK_INSERT;
+ pTriggerStep->pSelect = pSelect;
+ pTriggerStep->target = *pTableName;
+ pTriggerStep->pIdList = pColumn;
+ pTriggerStep->pExprList = pEList;
+ pTriggerStep->orconf = orconf;
+ sqlitePersistTriggerStep(pTriggerStep);
+
+ return pTriggerStep;
+}
+
+/*
+** Construct a trigger step that implements an UPDATE statement and return
+** a pointer to that trigger step. The parser calls this routine when it
+** sees an UPDATE statement inside the body of a CREATE TRIGGER.
+*/
+TriggerStep *sqliteTriggerUpdateStep(
+ Token *pTableName, /* Name of the table to be updated */
+ ExprList *pEList, /* The SET clause: list of column and new values */
+ Expr *pWhere, /* The WHERE clause */
+ int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
+){
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
+ if( pTriggerStep==0 ) return 0;
+
+ pTriggerStep->op = TK_UPDATE;
+ pTriggerStep->target = *pTableName;
+ pTriggerStep->pExprList = pEList;
+ pTriggerStep->pWhere = pWhere;
+ pTriggerStep->orconf = orconf;
+ sqlitePersistTriggerStep(pTriggerStep);
+
+ return pTriggerStep;
+}
+
+/*
+** Construct a trigger step that implements a DELETE statement and return
+** a pointer to that trigger step. The parser calls this routine when it
+** sees a DELETE statement inside the body of a CREATE TRIGGER.
+*/
+TriggerStep *sqliteTriggerDeleteStep(Token *pTableName, Expr *pWhere){
+ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
+ if( pTriggerStep==0 ) return 0;
+
+ pTriggerStep->op = TK_DELETE;
+ pTriggerStep->target = *pTableName;
+ pTriggerStep->pWhere = pWhere;
+ pTriggerStep->orconf = OE_Default;
+ sqlitePersistTriggerStep(pTriggerStep);
+
+ return pTriggerStep;
+}
+
+/*
+** Recursively delete a Trigger structure
+*/
+void sqliteDeleteTrigger(Trigger *pTrigger){
+ sqliteDeleteTriggerStep(pTrigger->step_list);
+ sqliteFree(pTrigger->name);
+ sqliteFree(pTrigger->table);
+ sqliteExprDelete(pTrigger->pWhen);
+ sqliteIdListDelete(pTrigger->pColumns);
+ sqliteFree(pTrigger);
+}
+
+/*
+ * This function is called to drop a trigger from the database schema.
+ *
+ * This may be called directly from the parser, or from within
+ * sqliteDropTable(). In the latter case the "nested" argument is true.
+ *
+ * Note that this function does not delete the trigger entirely. Instead it
+ * removes it from the internal schema and places it in the trigDrop hash
+ * table. This is so that the trigger can be restored into the database schema
+ * if the transaction is rolled back.
+ */
+void sqliteDropTrigger(Parse *pParse, Token *pName, int nested){
+ char *zName;
+ Trigger *pTrigger;
+ Table *pTable;
+ Vdbe *v;
+
+ zName = sqliteStrNDup(pName->z, pName->n);
+
+ /* ensure that the trigger being dropped exists */
+ pTrigger = sqliteHashFind(&(pParse->db->trigHash), zName, pName->n + 1);
+ if( !pTrigger ){
+ sqliteSetNString(&pParse->zErrMsg, "no such trigger: ", -1,
+ zName, -1, 0);
+ sqliteFree(zName);
+ return;
+ }
+ pTable = sqliteFindTable(pParse->db, pTrigger->table);
+ assert(pTable);
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int code = SQLITE_DROP_TRIGGER;
+ if( pTable->isTemp ) code = SQLITE_DROP_TEMP_TRIGGER;
+ if( sqliteAuthCheck(pParse, code, pTrigger->name, pTable->zName) ||
+ sqliteAuthCheck(pParse, SQLITE_DELETE, SCHEMA_TABLE(pTable->isTemp),0) ){
+ sqliteFree(zName);
+ return;
+ }
+ }
+#endif
+
+ /*
+ * If this is not an "explain", then delete the trigger structure.
+ */
+ if( !pParse->explain ){
+ if( pTable->pTrigger == pTrigger ){
+ pTable->pTrigger = pTrigger->pNext;
+ }else{
+ Trigger *cc = pTable->pTrigger;
+ while( cc ){
+ if( cc->pNext == pTrigger ){
+ cc->pNext = cc->pNext->pNext;
+ break;
+ }
+ cc = cc->pNext;
+ }
+ assert(cc);
+ }
+ sqliteHashInsert(&(pParse->db->trigHash), zName, pName->n + 1, NULL);
+ sqliteDeleteTrigger(pTrigger);
+ }
+
+ /* Generate code to destroy the database record of the trigger.
+ */
+ if( pTable!=0 && !nested && (v = sqliteGetVdbe(pParse))!=0 ){
+ int base;
+ static VdbeOp dropTrigger[] = {
+ { OP_Rewind, 0, ADDR(8), 0},
+ { OP_String, 0, 0, 0}, /* 1 */
+ { OP_MemStore, 1, 1, 0},
+ { OP_MemLoad, 1, 0, 0}, /* 3 */
+ { OP_Column, 0, 1, 0},
+ { OP_Ne, 0, ADDR(7), 0},
+ { OP_Delete, 0, 0, 0},
+ { OP_Next, 0, ADDR(3), 0}, /* 7 */
+ };
+
+ sqliteBeginWriteOperation(pParse, 0, 0);
+ sqliteOpenMasterTable(v, pTable->isTemp);
+ base = sqliteVdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
+ sqliteVdbeChangeP3(v, base+1, zName, 0);
+ if( !pTable->isTemp ){
+ sqliteChangeCookie(pParse->db, v);
+ }
+ sqliteVdbeAddOp(v, OP_Close, 0, 0);
+ sqliteEndWriteOperation(pParse);
+ }
+
+ sqliteFree(zName);
+}
+
+/*
+** pEList is the SET clause of an UPDATE statement. Each entry
+** in pEList is of the format <id>=<expr>. If any of the entries
+** in pEList have an <id> which matches an identifier in pIdList,
+** then return TRUE. If pIdList==NULL, then it is considered a
+** wildcard that matches anything. Likewise if pEList==NULL then
+** it matches anything so always return true. Return false only
+** if there is no match.
+*/
+static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
+ int e;
+ if( !pIdList || !pEList ) return 1;
+ for(e=0; e<pEList->nExpr; e++){
+ if( sqliteIdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
+ }
+ return 0;
+}
+
+/* A global variable that is TRUE if we should always set up temp tables for
+ * for triggers, even if there are no triggers to code. This is used to test
+ * how much overhead the triggers algorithm is causing.
+ *
+ * This flag can be set or cleared using the "trigger_overhead_test" pragma.
+ * The pragma is not documented since it is not really part of the interface
+ * to SQLite, just the test procedure.
+*/
+int always_code_trigger_setup = 0;
+
+/*
+ * Returns true if a trigger matching op, tr_tm and foreach that is NOT already
+ * on the Parse objects trigger-stack (to prevent recursive trigger firing) is
+ * found in the list specified as pTrigger.
+ */
+int sqliteTriggersExist(
+ Parse *pParse, /* Used to check for recursive triggers */
+ Trigger *pTrigger, /* A list of triggers associated with a table */
+ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
+ int tr_tm, /* one of TK_BEFORE, TK_AFTER */
+ int foreach, /* one of TK_ROW or TK_STATEMENT */
+ ExprList *pChanges /* Columns that change in an UPDATE statement */
+){
+ Trigger * pTriggerCursor;
+
+ if( always_code_trigger_setup ){
+ return 1;
+ }
+
+ pTriggerCursor = pTrigger;
+ while( pTriggerCursor ){
+ if( pTriggerCursor->op == op &&
+ pTriggerCursor->tr_tm == tr_tm &&
+ pTriggerCursor->foreach == foreach &&
+ checkColumnOverLap(pTriggerCursor->pColumns, pChanges) ){
+ TriggerStack * ss;
+ ss = pParse->trigStack;
+ while( ss && ss->pTrigger != pTrigger ){
+ ss = ss->pNext;
+ }
+ if( !ss )return 1;
+ }
+ pTriggerCursor = pTriggerCursor->pNext;
+ }
+
+ return 0;
+}
+
+/*
+** Generate VDBE code for zero or more statements inside the body of a
+** trigger.
+*/
+static int codeTriggerProgram(
+ Parse *pParse, /* The parser context */
+ TriggerStep *pStepList, /* List of statements inside the trigger body */
+ int orconfin /* Conflict algorithm. (OE_Abort, etc) */
+){
+ TriggerStep * pTriggerStep = pStepList;
+ int orconf;
+
+ while( pTriggerStep ){
+ int saveNTab = pParse->nTab;
+ orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
+ pParse->trigStack->orconf = orconf;
+ switch( pTriggerStep->op ){
+ case TK_SELECT: {
+ Select * ss = sqliteSelectDup(pTriggerStep->pSelect);
+ assert(ss);
+ assert(ss->pSrc);
+ sqliteSelect(pParse, ss, SRT_Discard, 0, 0, 0, 0);
+ sqliteSelectDelete(ss);
+ break;
+ }
+ case TK_UPDATE: {
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPush, 0, 0);
+ sqliteUpdate(pParse, &pTriggerStep->target,
+ sqliteExprListDup(pTriggerStep->pExprList),
+ sqliteExprDup(pTriggerStep->pWhere), orconf);
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPop, 0, 0);
+ break;
+ }
+ case TK_INSERT: {
+ sqliteInsert(pParse, &pTriggerStep->target,
+ sqliteExprListDup(pTriggerStep->pExprList),
+ sqliteSelectDup(pTriggerStep->pSelect),
+ sqliteIdListDup(pTriggerStep->pIdList), orconf);
+ break;
+ }
+ case TK_DELETE: {
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPush, 0, 0);
+ sqliteDeleteFrom(pParse, &pTriggerStep->target,
+ sqliteExprDup(pTriggerStep->pWhere));
+ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPop, 0, 0);
+ break;
+ }
+ default:
+ assert(0);
+ }
+ pParse->nTab = saveNTab;
+ pTriggerStep = pTriggerStep->pNext;
+ }
+
+ return 0;
+}
+
+/*
+** This is called to code FOR EACH ROW triggers.
+**
+** When the code that this function generates is executed, the following
+** must be true:
+**
+** 1. No cursors may be open in the main database. (But newIdx and oldIdx
+** can be indices of cursors in temporary tables. See below.)
+**
+** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
+** a temporary vdbe cursor (index newIdx) must be open and pointing at
+** a row containing values to be substituted for new.* expressions in the
+** trigger program(s).
+**
+** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
+** a temporary vdbe cursor (index oldIdx) must be open and pointing at
+** a row containing values to be substituted for old.* expressions in the
+** trigger program(s).
+**
+*/
+int sqliteCodeRowTrigger(
+ Parse *pParse, /* Parse context */
+ int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
+ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
+ int tr_tm, /* One of TK_BEFORE, TK_AFTER */
+ Table *pTab, /* The table to code triggers from */
+ int newIdx, /* The indice of the "new" row to access */
+ int oldIdx, /* The indice of the "old" row to access */
+ int orconf, /* ON CONFLICT policy */
+ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
+){
+ Trigger * pTrigger;
+ TriggerStack * pTriggerStack;
+
+ assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
+ assert(tr_tm == TK_BEFORE || tr_tm == TK_AFTER);
+
+ assert(newIdx != -1 || oldIdx != -1);
+
+ pTrigger = pTab->pTrigger;
+ while( pTrigger ){
+ int fire_this = 0;
+
+ /* determine whether we should code this trigger */
+ if( pTrigger->op == op && pTrigger->tr_tm == tr_tm &&
+ pTrigger->foreach == TK_ROW ){
+ fire_this = 1;
+ pTriggerStack = pParse->trigStack;
+ while( pTriggerStack ){
+ if( pTriggerStack->pTrigger == pTrigger ){
+ fire_this = 0;
+ }
+ pTriggerStack = pTriggerStack->pNext;
+ }
+ if( op == TK_UPDATE && pTrigger->pColumns &&
+ !checkColumnOverLap(pTrigger->pColumns, pChanges) ){
+ fire_this = 0;
+ }
+ }
+
+ if( fire_this && (pTriggerStack = sqliteMalloc(sizeof(TriggerStack)))!=0 ){
+ int endTrigger;
+ SrcList dummyTablist;
+ Expr * whenExpr;
+
+ dummyTablist.nSrc = 0;
+ dummyTablist.a = 0;
+
+ /* Push an entry on to the trigger stack */
+ pTriggerStack->pTrigger = pTrigger;
+ pTriggerStack->newIdx = newIdx;
+ pTriggerStack->oldIdx = oldIdx;
+ pTriggerStack->pTab = pTab;
+ pTriggerStack->pNext = pParse->trigStack;
+ pTriggerStack->ignoreJump = ignoreJump;
+ pParse->trigStack = pTriggerStack;
+
+ /* code the WHEN clause */
+ endTrigger = sqliteVdbeMakeLabel(pParse->pVdbe);
+ whenExpr = sqliteExprDup(pTrigger->pWhen);
+ if( sqliteExprResolveIds(pParse, 0, &dummyTablist, 0, whenExpr) ){
+ pParse->trigStack = pParse->trigStack->pNext;
+ sqliteFree(pTriggerStack);
+ sqliteExprDelete(whenExpr);
+ return 1;
+ }
+ sqliteExprIfFalse(pParse, whenExpr, endTrigger, 1);
+ sqliteExprDelete(whenExpr);
+
+ codeTriggerProgram(pParse, pTrigger->step_list, orconf);
+
+ /* Pop the entry off the trigger stack */
+ pParse->trigStack = pParse->trigStack->pNext;
+ sqliteFree(pTriggerStack);
+
+ sqliteVdbeResolveLabel(pParse->pVdbe, endTrigger);
+ }
+ pTrigger = pTrigger->pNext;
+ }
+
+ return 0;
+}
+
+/*
+ * This function is called to code ON UPDATE and ON DELETE triggers on
+ * views.
+ *
+ * This function deletes the data pointed at by the pWhere and pChanges
+ * arguments before it completes.
+ */
+void sqliteViewTriggers(
+ Parse *pParse,
+ Table *pTab, /* The view to code triggers on */
+ Expr *pWhere, /* The WHERE clause of the statement causing triggers*/
+ int orconf, /* The ON CONFLICT policy specified as part of the
+ statement causing these triggers */
+ ExprList *pChanges /* If this is an statement causing triggers to fire
+ is an UPDATE, then this list holds the columns
+ to update and the expressions to update them to.
+ See comments for sqliteUpdate(). */
+){
+ int oldIdx = -1;
+ int newIdx = -1;
+ int *aXRef = 0;
+ Vdbe *v;
+ int endOfLoop;
+ int startOfLoop;
+ Select theSelect;
+ Token tblNameToken;
+
+ assert(pTab->pSelect);
+
+ tblNameToken.z = pTab->zName;
+ tblNameToken.n = strlen(pTab->zName);
+
+ theSelect.isDistinct = 0;
+ theSelect.pEList = sqliteExprListAppend(0, sqliteExpr(TK_ALL, 0, 0, 0), 0);
+ theSelect.pSrc = sqliteSrcListAppend(0, &tblNameToken);
+ theSelect.pWhere = pWhere; pWhere = 0;
+ theSelect.pGroupBy = 0;
+ theSelect.pHaving = 0;
+ theSelect.pOrderBy = 0;
+ theSelect.op = TK_SELECT; /* ?? */
+ theSelect.pPrior = 0;
+ theSelect.nLimit = -1;
+ theSelect.nOffset = -1;
+ theSelect.zSelect = 0;
+ theSelect.base = 0;
+
+ v = sqliteGetVdbe(pParse);
+ assert(v);
+ sqliteBeginWriteOperation(pParse, 1, 0);
+
+ /* Allocate temp tables */
+ oldIdx = pParse->nTab++;
+ sqliteVdbeAddOp(v, OP_OpenTemp, oldIdx, 0);
+ if( pChanges ){
+ newIdx = pParse->nTab++;
+ sqliteVdbeAddOp(v, OP_OpenTemp, newIdx, 0);
+ }
+
+ /* Snapshot the view */
+ if( sqliteSelect(pParse, &theSelect, SRT_Table, oldIdx, 0, 0, 0) ){
+ goto trigger_cleanup;
+ }
+
+ /* loop thru the view snapshot, executing triggers for each row */
+ endOfLoop = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Rewind, oldIdx, endOfLoop);
+
+ /* Loop thru the view snapshot, executing triggers for each row */
+ startOfLoop = sqliteVdbeCurrentAddr(v);
+
+ /* Build the updated row if required */
+ if( pChanges ){
+ int ii;
+
+ aXRef = sqliteMalloc( sizeof(int) * pTab->nCol );
+ if( aXRef==0 ) goto trigger_cleanup;
+ for(ii = 0; ii < pTab->nCol; ii++){
+ aXRef[ii] = -1;
+ }
+
+ for(ii=0; ii<pChanges->nExpr; ii++){
+ int jj;
+ if( sqliteExprResolveIds(pParse, oldIdx, theSelect.pSrc , 0,
+ pChanges->a[ii].pExpr) ){
+ goto trigger_cleanup;
+ }
+
+ if( sqliteExprCheck(pParse, pChanges->a[ii].pExpr, 0, 0) )
+ goto trigger_cleanup;
+
+ for(jj=0; jj<pTab->nCol; jj++){
+ if( sqliteStrICmp(pTab->aCol[jj].zName, pChanges->a[ii].zName)==0 ){
+ aXRef[jj] = ii;
+ break;
+ }
+ }
+ if( jj>=pTab->nCol ){
+ sqliteSetString(&pParse->zErrMsg, "no such column: ",
+ pChanges->a[ii].zName, 0);
+ pParse->nErr++;
+ goto trigger_cleanup;
+ }
+ }
+
+ sqliteVdbeAddOp(v, OP_Integer, 13, 0);
+
+ for(ii = 0; ii<pTab->nCol; ii++){
+ if( aXRef[ii] < 0 ){
+ sqliteVdbeAddOp(v, OP_Column, oldIdx, ii);
+ }else{
+ sqliteExprCode(pParse, pChanges->a[aXRef[ii]].pExpr);
+ }
+ }
+
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
+ sqliteVdbeAddOp(v, OP_Rewind, newIdx, 0);
+
+ sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_BEFORE,
+ pTab, newIdx, oldIdx, orconf, endOfLoop);
+ sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_AFTER,
+ pTab, newIdx, oldIdx, orconf, endOfLoop);
+ }else{
+ sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_BEFORE, pTab, -1, oldIdx,
+ orconf, endOfLoop);
+ sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_AFTER, pTab, -1, oldIdx,
+ orconf, endOfLoop);
+ }
+
+ sqliteVdbeAddOp(v, OP_Next, oldIdx, startOfLoop);
+
+ sqliteVdbeResolveLabel(v, endOfLoop);
+ sqliteEndWriteOperation(pParse);
+
+trigger_cleanup:
+ sqliteFree(aXRef);
+ sqliteExprListDelete(pChanges);
+ sqliteExprDelete(pWhere);
+ sqliteExprListDelete(theSelect.pEList);
+ sqliteSrcListDelete(theSelect.pSrc);
+ sqliteExprDelete(theSelect.pWhere);
+ return;
+}
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle UPDATE statements.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+
+/*
+** Process an UPDATE statement.
+*/
+void sqliteUpdate(
+ Parse *pParse, /* The parser context */
+ Token *pTableName, /* The table in which we should change things */
+ ExprList *pChanges, /* Things to be changed */
+ Expr *pWhere, /* The WHERE clause. May be null */
+ int onError /* How to handle constraint errors */
+){
+ int i, j; /* Loop counters */
+ Table *pTab; /* The table to be updated */
+ SrcList *pTabList = 0; /* Fake FROM clause containing only pTab */
+ int addr; /* VDBE instruction address of the start of the loop */
+ WhereInfo *pWInfo; /* Information about the WHERE clause */
+ Vdbe *v; /* The virtual database engine */
+ Index *pIdx; /* For looping over indices */
+ int nIdx; /* Number of indices that need updating */
+ int nIdxTotal; /* Total number of indices */
+ int base; /* Index of first available table cursor */
+ sqlite *db; /* The database structure */
+ Index **apIdx = 0; /* An array of indices that need updating too */
+ char *aIdxUsed = 0; /* aIdxUsed[i] if the i-th index is used */
+ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
+ ** an expression for the i-th column of the table.
+ ** aXRef[i]==-1 if the i-th column is not changed. */
+ int openOp; /* Opcode used to open tables */
+ int chngRecno; /* True if the record number is being changed */
+ Expr *pRecnoExpr; /* Expression defining the new record number */
+ int openAll; /* True if all indices need to be opened */
+
+ int row_triggers_exist = 0;
+
+ int newIdx = -1; /* index of trigger "new" temp table */
+ int oldIdx = -1; /* index of trigger "old" temp table */
+
+ if( pParse->nErr || sqlite_malloc_failed ) goto update_cleanup;
+ db = pParse->db;
+
+ /* Check for the special case of a VIEW with one or more ON UPDATE triggers
+ * defined
+ */
+ {
+ char *zTab = sqliteTableNameFromToken(pTableName);
+
+ if( zTab != 0 ){
+ pTab = sqliteFindTable(pParse->db, zTab);
+ if( pTab ){
+ row_triggers_exist =
+ sqliteTriggersExist(pParse, pTab->pTrigger,
+ TK_UPDATE, TK_BEFORE, TK_ROW, pChanges) ||
+ sqliteTriggersExist(pParse, pTab->pTrigger,
+ TK_UPDATE, TK_AFTER, TK_ROW, pChanges);
+ }
+ sqliteFree(zTab);
+ if( row_triggers_exist && pTab->pSelect ){
+ /* Just fire VIEW triggers */
+ sqliteViewTriggers(pParse, pTab, pWhere, onError, pChanges);
+ return;
+ }
+ }
+ }
+
+ /* Locate the table which we want to update. This table has to be
+ ** put in an SrcList structure because some of the subroutines we
+ ** will be calling are designed to work with multiple tables and expect
+ ** an SrcList* parameter instead of just a Table* parameter.
+ */
+ pTabList = sqliteTableTokenToSrcList(pParse, pTableName);
+ if( pTabList==0 ) goto update_cleanup;
+ pTab = pTabList->a[0].pTab;
+ assert( pTab->pSelect==0 ); /* This table is not a VIEW */
+ aXRef = sqliteMalloc( sizeof(int) * pTab->nCol );
+ if( aXRef==0 ) goto update_cleanup;
+ for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
+
+ /* If there are FOR EACH ROW triggers, allocate temp tables */
+ if( row_triggers_exist ){
+ newIdx = pParse->nTab++;
+ oldIdx = pParse->nTab++;
+ }
+
+ /* Allocate a cursors for the main database table and for all indices.
+ ** The index cursors might not be used, but if they are used they
+ ** need to occur right after the database cursor. So go ahead and
+ ** allocate enough space, just in case.
+ */
+ base = pParse->nTab++;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ pParse->nTab++;
+ }
+
+ /* Resolve the column names in all the expressions in both the
+ ** WHERE clause and in the new values. Also find the column index
+ ** for each column to be updated in the pChanges array. For each
+ ** column to be updated, make sure we have authorization to change
+ ** that column.
+ */
+ if( pWhere ){
+ if( sqliteExprResolveIds(pParse, base, pTabList, 0, pWhere) ){
+ goto update_cleanup;
+ }
+ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
+ goto update_cleanup;
+ }
+ }
+ chngRecno = 0;
+ for(i=0; i<pChanges->nExpr; i++){
+ if( sqliteExprResolveIds(pParse, base, pTabList, 0, pChanges->a[i].pExpr) ){
+ goto update_cleanup;
+ }
+ if( sqliteExprCheck(pParse, pChanges->a[i].pExpr, 0, 0) ){
+ goto update_cleanup;
+ }
+ for(j=0; j<pTab->nCol; j++){
+ if( sqliteStrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
+ if( j==pTab->iPKey ){
+ chngRecno = 1;
+ pRecnoExpr = pChanges->a[i].pExpr;
+ }
+ aXRef[j] = i;
+ break;
+ }
+ }
+ if( j>=pTab->nCol ){
+ sqliteSetString(&pParse->zErrMsg, "no such column: ",
+ pChanges->a[i].zName, 0);
+ pParse->nErr++;
+ goto update_cleanup;
+ }
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ {
+ int rc;
+ rc = sqliteAuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
+ pTab->aCol[j].zName);
+ if( rc==SQLITE_DENY ){
+ goto update_cleanup;
+ }else if( rc==SQLITE_IGNORE ){
+ aXRef[j] = -1;
+ }
+ }
+#endif
+ }
+
+ /* Allocate memory for the array apIdx[] and fill it with pointers to every
+ ** index that needs to be updated. Indices only need updating if their
+ ** key includes one of the columns named in pChanges or if the record
+ ** number of the original table entry is changing.
+ */
+ for(nIdx=nIdxTotal=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdxTotal++){
+ if( chngRecno ){
+ i = 0;
+ }else {
+ for(i=0; i<pIdx->nColumn; i++){
+ if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
+ }
+ }
+ if( i<pIdx->nColumn ) nIdx++;
+ }
+ if( nIdxTotal>0 ){
+ apIdx = sqliteMalloc( sizeof(Index*) * nIdx + nIdxTotal );
+ if( apIdx==0 ) goto update_cleanup;
+ aIdxUsed = (char*)&apIdx[nIdx];
+ }
+ for(nIdx=j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
+ if( chngRecno ){
+ i = 0;
+ }else{
+ for(i=0; i<pIdx->nColumn; i++){
+ if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
+ }
+ }
+ if( i<pIdx->nColumn ){
+ apIdx[nIdx++] = pIdx;
+ aIdxUsed[j] = 1;
+ }else{
+ aIdxUsed[j] = 0;
+ }
+ }
+
+ /* Begin generating code.
+ */
+ v = sqliteGetVdbe(pParse);
+ if( v==0 ) goto update_cleanup;
+ sqliteBeginWriteOperation(pParse, 1, !row_triggers_exist && pTab->isTemp);
+
+ /* Begin the database scan
+ */
+ pWInfo = sqliteWhereBegin(pParse, base, pTabList, pWhere, 1, 0);
+ if( pWInfo==0 ) goto update_cleanup;
+
+ /* Remember the index of every item to be updated.
+ */
+ sqliteVdbeAddOp(v, OP_ListWrite, 0, 0);
+
+ /* End the database scan loop.
+ */
+ sqliteWhereEnd(pWInfo);
+
+ /* Initialize the count of updated rows
+ */
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
+ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
+ }
+
+ if( row_triggers_exist ){
+ int ii;
+
+ sqliteVdbeAddOp(v, OP_OpenTemp, oldIdx, 0);
+ sqliteVdbeAddOp(v, OP_OpenTemp, newIdx, 0);
+
+ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
+ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ sqliteVdbeAddOp(v, (pTab->isTemp?OP_OpenAux:OP_Open), base, pTab->tnum);
+ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
+
+ sqliteVdbeAddOp(v, OP_Integer, 13, 0);
+ for(ii = 0; ii < pTab->nCol; ii++){
+ if( ii == pTab->iPKey ){
+ sqliteVdbeAddOp(v, OP_Recno, base, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_Column, base, ii);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, oldIdx, 0);
+
+ sqliteVdbeAddOp(v, OP_Integer, 13, 0);
+ for(ii = 0; ii < pTab->nCol; ii++){
+ if( aXRef[ii] < 0 ){
+ if( ii == pTab->iPKey ){
+ sqliteVdbeAddOp(v, OP_Recno, base, 0);
+ }else{
+ sqliteVdbeAddOp(v, OP_Column, base, ii);
+ }
+ }else{
+ sqliteExprCode(pParse, pChanges->a[aXRef[ii]].pExpr);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
+ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+
+ sqliteVdbeAddOp(v, OP_Rewind, oldIdx, 0);
+ sqliteVdbeAddOp(v, OP_Rewind, newIdx, 0);
+
+ if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_BEFORE, pTab,
+ newIdx, oldIdx, onError, addr) ){
+ goto update_cleanup;
+ }
+ }
+
+ /* Rewind the list of records that need to be updated and
+ ** open every index that needs updating. Note that if any
+ ** index could potentially invoke a REPLACE conflict resolution
+ ** action, then we need to open all indices because we might need
+ ** to be deleting some records.
+ */
+ openOp = pTab->isTemp ? OP_OpenWrAux : OP_OpenWrite;
+ sqliteVdbeAddOp(v, openOp, base, pTab->tnum);
+ if( onError==OE_Replace ){
+ openAll = 1;
+ }else{
+ openAll = 0;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->onError==OE_Replace ){
+ openAll = 1;
+ break;
+ }
+ }
+ }
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ if( openAll || aIdxUsed[i] ){
+ sqliteVdbeAddOp(v, openOp, base+i+1, pIdx->tnum);
+ assert( pParse->nTab>base+i+1 );
+ }
+ }
+
+ /* Loop over every record that needs updating. We have to load
+ ** the old data for each record to be updated because some columns
+ ** might not change and we will need to copy the old value.
+ ** Also, the old data is needed to delete the old index entires.
+ ** So make the cursor point at the old record.
+ */
+ if( !row_triggers_exist ){
+ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
+ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ }
+ sqliteVdbeAddOp(v, OP_NotExists, base, addr);
+
+ /* If the record number will change, push the record number as it
+ ** will be after the update. (The old record number is currently
+ ** on top of the stack.)
+ */
+ if( chngRecno ){
+ sqliteExprCode(pParse, pRecnoExpr);
+ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
+ }
+
+ /* Compute new data for this record.
+ */
+ for(i=0; i<pTab->nCol; i++){
+ if( i==pTab->iPKey ){
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ continue;
+ }
+ j = aXRef[i];
+ if( j<0 ){
+ sqliteVdbeAddOp(v, OP_Column, base, i);
+ }else{
+ sqliteExprCode(pParse, pChanges->a[j].pExpr);
+ }
+ }
+
+ /* Do constraint checks
+ */
+ sqliteGenerateConstraintChecks(pParse, pTab, base, aIdxUsed, chngRecno, 1,
+ onError, addr);
+
+ /* Delete the old indices for the current record.
+ */
+ sqliteGenerateRowIndexDelete(db, v, pTab, base, aIdxUsed);
+
+ /* If changing the record number, delete the old record.
+ */
+ if( chngRecno ){
+ sqliteVdbeAddOp(v, OP_Delete, base, 0);
+ }
+
+ /* Create the new index entries and the new record.
+ */
+ sqliteCompleteInsertion(pParse, pTab, base, aIdxUsed, chngRecno, 1);
+
+ /* Increment the row counter
+ */
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack){
+ sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
+ }
+
+ if( row_triggers_exist ){
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ if( openAll || aIdxUsed[i] )
+ sqliteVdbeAddOp(v, OP_Close, base+i+1, 0);
+ }
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ pParse->nTab = base;
+
+ if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_AFTER, pTab,
+ newIdx, oldIdx, onError, addr) ){
+ goto update_cleanup;
+ }
+ }
+
+ /* Repeat the above with the next record to be updated, until
+ ** all record selected by the WHERE clause have been updated.
+ */
+ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
+ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
+ sqliteVdbeAddOp(v, OP_ListReset, 0, 0);
+
+ /* Close all tables if there were no FOR EACH ROW triggers */
+ if( !row_triggers_exist ){
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
+ if( openAll || aIdxUsed[i] ){
+ sqliteVdbeAddOp(v, OP_Close, base+i+1, 0);
+ }
+ }
+ sqliteVdbeAddOp(v, OP_Close, base, 0);
+ pParse->nTab = base;
+ }else{
+ sqliteVdbeAddOp(v, OP_Close, newIdx, 0);
+ sqliteVdbeAddOp(v, OP_Close, oldIdx, 0);
+ }
+
+ sqliteEndWriteOperation(pParse);
+
+ /*
+ ** Return the number of rows that were changed.
+ */
+ if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
+ sqliteVdbeAddOp(v, OP_ColumnName, 0, 0);
+ sqliteVdbeChangeP3(v, -1, "rows updated", P3_STATIC);
+ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
+ }
+
+update_cleanup:
+ sqliteFree(apIdx);
+ sqliteFree(aXRef);
+ sqliteSrcListDelete(pTabList);
+ sqliteExprListDelete(pChanges);
+ sqliteExprDelete(pWhere);
+ return;
+}
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Utility functions used throughout sqlite.
+**
+** This file contains functions for allocating memory, comparing
+** strings, and stuff like that.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+#include <stdarg.h>
+#include <ctype.h>
+
+/*
+** If malloc() ever fails, this global variable gets set to 1.
+** This causes the library to abort and never again function.
+*/
+int sqlite_malloc_failed = 0;
+
+/*
+** If MEMORY_DEBUG is defined, then use versions of malloc() and
+** free() that track memory usage and check for buffer overruns.
+*/
+#ifdef MEMORY_DEBUG
+
+/*
+** For keeping track of the number of mallocs and frees. This
+** is used to check for memory leaks.
+*/
+int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
+int sqlite_nFree; /* Number of sqliteFree() calls */
+int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
+#if MEMORY_DEBUG>1
+static int memcnt = 0;
+#endif
+
+
+/*
+** Allocate new memory and set it to zero. Return NULL if
+** no memory is available.
+*/
+void *sqliteMalloc_(int n, int bZero, char *zFile, int line){
+ void *p;
+ int *pi;
+ int k;
+ if( sqlite_iMallocFail>=0 ){
+ sqlite_iMallocFail--;
+ if( sqlite_iMallocFail==0 ){
+ sqlite_malloc_failed++;
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"**** failed to allocate %d bytes at %s:%d\n",
+ n, zFile,line);
+#endif
+ sqlite_iMallocFail--;
+ return 0;
+ }
+ }
+ if( n==0 ) return 0;
+ k = (n+sizeof(int)-1)/sizeof(int);
+ pi = malloc( (3+k)*sizeof(int));
+ if( pi==0 ){
+ sqlite_malloc_failed++;
+ return 0;
+ }
+ sqlite_nMalloc++;
+ pi[0] = 0xdead1122;
+ pi[1] = n;
+ pi[k+2] = 0xdead3344;
+ p = &pi[2];
+ memset(p, bZero==0, n);
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"%06d malloc %d bytes at 0x%x from %s:%d\n",
+ ++memcnt, n, (int)p, zFile,line);
+#endif
+ return p;
+}
+
+/*
+** Check to see if the given pointer was obtained from sqliteMalloc()
+** and is able to hold at least N bytes. Raise an exception if this
+** is not the case.
+**
+** This routine is used for testing purposes only.
+*/
+void sqliteCheckMemory(void *p, int N){
+ int *pi = p;
+ int n, k;
+ pi -= 2;
+ assert( pi[0]==0xdead1122 );
+ n = pi[1];
+ assert( N>=0 && N<n );
+ k = (n+sizeof(int)-1)/sizeof(int);
+ assert( pi[k+2]==0xdead3344 );
+}
+
+/*
+** Free memory previously obtained from sqliteMalloc()
+*/
+void sqliteFree_(void *p, char *zFile, int line){
+ if( p ){
+ int *pi, k, n;
+ pi = p;
+ pi -= 2;
+ sqlite_nFree++;
+ if( pi[0]!=0xdead1122 ){
+ fprintf(stderr,"Low-end memory corruption at 0x%x\n", (int)p);
+ return;
+ }
+ n = pi[1];
+ k = (n+sizeof(int)-1)/sizeof(int);
+ if( pi[k+2]!=0xdead3344 ){
+ fprintf(stderr,"High-end memory corruption at 0x%x\n", (int)p);
+ return;
+ }
+ memset(pi, 0xff, (k+3)*sizeof(int));
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"%06d free %d bytes at 0x%x from %s:%d\n",
+ ++memcnt, n, (int)p, zFile,line);
+#endif
+ free(pi);
+ }
+}
+
+/*
+** Resize a prior allocation. If p==0, then this routine
+** works just like sqliteMalloc(). If n==0, then this routine
+** works just like sqliteFree().
+*/
+void *sqliteRealloc_(void *oldP, int n, char *zFile, int line){
+ int *oldPi, *pi, k, oldN, oldK;
+ void *p;
+ if( oldP==0 ){
+ return sqliteMalloc_(n,1,zFile,line);
+ }
+ if( n==0 ){
+ sqliteFree_(oldP,zFile,line);
+ return 0;
+ }
+ oldPi = oldP;
+ oldPi -= 2;
+ if( oldPi[0]!=0xdead1122 ){
+ fprintf(stderr,"Low-end memory corruption in realloc at 0x%x\n", (int)p);
+ return 0;
+ }
+ oldN = oldPi[1];
+ oldK = (oldN+sizeof(int)-1)/sizeof(int);
+ if( oldPi[oldK+2]!=0xdead3344 ){
+ fprintf(stderr,"High-end memory corruption in realloc at 0x%x\n", (int)p);
+ return 0;
+ }
+ k = (n + sizeof(int) - 1)/sizeof(int);
+ pi = malloc( (k+3)*sizeof(int) );
+ if( pi==0 ){
+ sqlite_malloc_failed++;
+ return 0;
+ }
+ pi[0] = 0xdead1122;
+ pi[1] = n;
+ pi[k+2] = 0xdead3344;
+ p = &pi[2];
+ memcpy(p, oldP, n>oldN ? oldN : n);
+ if( n>oldN ){
+ memset(&((char*)p)[oldN], 0, n-oldN);
+ }
+ memset(oldPi, 0xab, (oldK+3)*sizeof(int));
+ free(oldPi);
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"%06d realloc %d to %d bytes at 0x%x to 0x%x at %s:%d\n",
+ ++memcnt, oldN, n, (int)oldP, (int)p, zFile, line);
+#endif
+ return p;
+}
+
+/*
+** Make a duplicate of a string into memory obtained from malloc()
+** Free the original string using sqliteFree().
+**
+** This routine is called on all strings that are passed outside of
+** the SQLite library. That way clients can free the string using free()
+** rather than having to call sqliteFree().
+*/
+void sqliteStrRealloc(char **pz){
+ char *zNew;
+ if( pz==0 || *pz==0 ) return;
+ zNew = malloc( strlen(*pz) + 1 );
+ if( zNew==0 ){
+ sqlite_malloc_failed++;
+ sqliteFree(*pz);
+ *pz = 0;
+ }
+ strcpy(zNew, *pz);
+ sqliteFree(*pz);
+ *pz = zNew;
+}
+
+/*
+** Make a copy of a string in memory obtained from sqliteMalloc()
+*/
+char *sqliteStrDup_(const char *z, char *zFile, int line){
+ char *zNew;
+ if( z==0 ) return 0;
+ zNew = sqliteMalloc_(strlen(z)+1, 0, zFile, line);
+ if( zNew ) strcpy(zNew, z);
+ return zNew;
+}
+char *sqliteStrNDup_(const char *z, int n, char *zFile, int line){
+ char *zNew;
+ if( z==0 ) return 0;
+ zNew = sqliteMalloc_(n+1, 0, zFile, line);
+ if( zNew ){
+ memcpy(zNew, z, n);
+ zNew[n] = 0;
+ }
+ return zNew;
+}
+#endif /* MEMORY_DEBUG */
+
+/*
+** The following versions of malloc() and free() are for use in a
+** normal build.
+*/
+#if !defined(MEMORY_DEBUG)
+
+/*
+** Allocate new memory and set it to zero. Return NULL if
+** no memory is available. See also sqliteMallocRaw().
+*/
+void *sqliteMalloc(int n){
+ void *p;
+ if( n==0 ) return 0;
+ p = malloc(n);
+ if( p==0 ){
+ sqlite_malloc_failed++;
+ return 0;
+ }
+ memset(p, 0, n);
+ return p;
+}
+
+/*
+** Allocate new memory but do not set it to zero. Return NULL if
+** no memory is available. See also sqliteMalloc().
+*/
+void *sqliteMallocRaw(int n){
+ void *p;
+ if( n==0 ) return 0;
+ p = malloc(n);
+ if( p==0 ){
+ sqlite_malloc_failed++;
+ return 0;
+ }
+ return p;
+}
+
+/*
+** Free memory previously obtained from sqliteMalloc()
+*/
+void sqliteFree(void *p){
+ if( p ){
+ free(p);
+ }
+}
+
+/*
+** Resize a prior allocation. If p==0, then this routine
+** works just like sqliteMalloc(). If n==0, then this routine
+** works just like sqliteFree().
+*/
+void *sqliteRealloc(void *p, int n){
+ void *p2;
+ if( p==0 ){
+ return sqliteMalloc(n);
+ }
+ if( n==0 ){
+ sqliteFree(p);
+ return 0;
+ }
+ p2 = realloc(p, n);
+ if( p2==0 ){
+ sqlite_malloc_failed++;
+ }
+ return p2;
+}
+
+/*
+** Make a copy of a string in memory obtained from sqliteMalloc()
+*/
+char *sqliteStrDup(const char *z){
+ char *zNew;
+ if( z==0 ) return 0;
+ zNew = sqliteMallocRaw(strlen(z)+1);
+ if( zNew ) strcpy(zNew, z);
+ return zNew;
+}
+char *sqliteStrNDup(const char *z, int n){
+ char *zNew;
+ if( z==0 ) return 0;
+ zNew = sqliteMallocRaw(n+1);
+ if( zNew ){
+ memcpy(zNew, z, n);
+ zNew[n] = 0;
+ }
+ return zNew;
+}
+#endif /* !defined(MEMORY_DEBUG) */
+
+/*
+** Create a string from the 2nd and subsequent arguments (up to the
+** first NULL argument), store the string in memory obtained from
+** sqliteMalloc() and make the pointer indicated by the 1st argument
+** point to that string.
+*/
+void sqliteSetString(char **pz, const char *zFirst, ...){
+ va_list ap;
+ int nByte;
+ const char *z;
+ char *zResult;
+
+ if( pz==0 ) return;
+ nByte = strlen(zFirst) + 1;
+ va_start(ap, zFirst);
+ while( (z = va_arg(ap, const char*))!=0 ){
+ nByte += strlen(z);
+ }
+ va_end(ap);
+ sqliteFree(*pz);
+ *pz = zResult = sqliteMallocRaw( nByte );
+ if( zResult==0 ){
+ return;
+ }
+ strcpy(zResult, zFirst);
+ zResult += strlen(zResult);
+ va_start(ap, zFirst);
+ while( (z = va_arg(ap, const char*))!=0 ){
+ strcpy(zResult, z);
+ zResult += strlen(zResult);
+ }
+ va_end(ap);
+#ifdef MEMORY_DEBUG
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
+#endif
+#endif
+}
+
+/*
+** Works like sqliteSetString, but each string is now followed by
+** a length integer which specifies how much of the source string
+** to copy (in bytes). -1 means use the whole string.
+*/
+void sqliteSetNString(char **pz, ...){
+ va_list ap;
+ int nByte;
+ const char *z;
+ char *zResult;
+ int n;
+
+ if( pz==0 ) return;
+ nByte = 0;
+ va_start(ap, pz);
+ while( (z = va_arg(ap, const char*))!=0 ){
+ n = va_arg(ap, int);
+ if( n<=0 ) n = strlen(z);
+ nByte += n;
+ }
+ va_end(ap);
+ sqliteFree(*pz);
+ *pz = zResult = sqliteMallocRaw( nByte + 1 );
+ if( zResult==0 ) return;
+ va_start(ap, pz);
+ while( (z = va_arg(ap, const char*))!=0 ){
+ n = va_arg(ap, int);
+ if( n<=0 ) n = strlen(z);
+ strncpy(zResult, z, n);
+ zResult += n;
+ }
+ *zResult = 0;
+#ifdef MEMORY_DEBUG
+#if MEMORY_DEBUG>1
+ fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
+#endif
+#endif
+ va_end(ap);
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** 2002-Feb-14: This routine is extended to remove MS-Access style
+** brackets from around identifers. For example: "[a-b-c]" becomes
+** "a-b-c".
+*/
+void sqliteDequote(char *z){
+ int quote;
+ int i, j;
+ if( z==0 ) return;
+ quote = z[0];
+ switch( quote ){
+ case '\'': break;
+ case '"': break;
+ case '[': quote = ']'; break;
+ default: return;
+ }
+ for(i=1, j=0; z[i]; i++){
+ if( z[i]==quote ){
+ if( z[i+1]==quote ){
+ z[j++] = quote;
+ i++;
+ }else{
+ z[j++] = 0;
+ break;
+ }
+ }else{
+ z[j++] = z[i];
+ }
+ }
+}
+
+/* An array to map all upper-case characters into their corresponding
+** lower-case character.
+*/
+static unsigned char UpperToLower[] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
+ 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
+ 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
+ 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
+ 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
+ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
+ 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
+ 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
+ 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
+ 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
+ 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
+ 252,253,254,255
+};
+
+/*
+** This function computes a hash on the name of a keyword.
+** Case is not significant.
+*/
+int sqliteHashNoCase(const char *z, int n){
+ int h = 0;
+ if( n<=0 ) n = strlen(z);
+ while( n > 0 ){
+ h = (h<<3) ^ h ^ UpperToLower[(unsigned char)*z++];
+ n--;
+ }
+ if( h<0 ) h = -h;
+ return h;
+}
+
+/*
+** Some systems have stricmp(). Others have strcasecmp(). Because
+** there is no consistency, we will define our own.
+*/
+int sqliteStrICmp(const char *zLeft, const char *zRight){
+ register unsigned char *a, *b;
+ a = (unsigned char *)zLeft;
+ b = (unsigned char *)zRight;
+ while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
+ return *a - *b;
+}
+int sqliteStrNICmp(const char *zLeft, const char *zRight, int N){
+ register unsigned char *a, *b;
+ a = (unsigned char *)zLeft;
+ b = (unsigned char *)zRight;
+ while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
+ return N<0 ? 0 : *a - *b;
+}
+
+#if 0 /* NOT USED */
+/*
+** The sortStrCmp() function below is used to order elements according
+** to the ORDER BY clause of a SELECT. The sort order is a little different
+** from what one might expect. This note attempts to describe what is
+** going on.
+**
+** We want the main string comparision function used for sorting to
+** sort both numbers and alphanumeric words into the correct sequence.
+** The same routine should do both without prior knowledge of which
+** type of text the input represents. It should even work for strings
+** which are a mixture of text and numbers. (It does not work for
+** numeric substrings in exponential notation, however.)
+**
+** To accomplish this, we keep track of a state number while scanning
+** the two strings. The states are as follows:
+**
+** 1 Beginning of word
+** 2 Arbitrary text
+** 3 Integer
+** 4 Negative integer
+** 5 Real number
+** 6 Negative real
+**
+** The scan begins in state 1, beginning of word. Transitions to other
+** states are determined by characters seen, as shown in the following
+** chart:
+**
+** Current State Character Seen New State
+** -------------------- -------------- -------------------
+** 0 Beginning of word "-" 3 Negative integer
+** digit 2 Integer
+** space 0 Beginning of word
+** otherwise 1 Arbitrary text
+**
+** 1 Arbitrary text space 0 Beginning of word
+** digit 2 Integer
+** otherwise 1 Arbitrary text
+**
+** 2 Integer space 0 Beginning of word
+** "." 4 Real number
+** digit 2 Integer
+** otherwise 1 Arbitrary text
+**
+** 3 Negative integer space 0 Beginning of word
+** "." 5 Negative Real num
+** digit 3 Negative integer
+** otherwise 1 Arbitrary text
+**
+** 4 Real number space 0 Beginning of word
+** digit 4 Real number
+** otherwise 1 Arbitrary text
+**
+** 5 Negative real num space 0 Beginning of word
+** digit 5 Negative real num
+** otherwise 1 Arbitrary text
+**
+** To implement this state machine, we first classify each character
+** into on of the following categories:
+**
+** 0 Text
+** 1 Space
+** 2 Digit
+** 3 "-"
+** 4 "."
+**
+** Given an arbitrary character, the array charClass[] maps that character
+** into one of the atove categories.
+*/
+static const unsigned char charClass[] = {
+ /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
+/* 0x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,
+/* 1x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* 2x */ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0,
+/* 3x */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0,
+/* 4x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* 5x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* 6x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* 7x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* 8x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* 9x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* Ax */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* Bx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* Cx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* Dx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* Ex */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+/* Fx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+};
+#define N_CHAR_CLASS 5
+
+/*
+** Given the current state number (0 thru 5), this array figures
+** the new state number given the character class.
+*/
+static const unsigned char stateMachine[] = {
+ /* Text, Space, Digit, "-", "." */
+ 1, 0, 2, 3, 1, /* State 0: Beginning of word */
+ 1, 0, 2, 1, 1, /* State 1: Arbitrary text */
+ 1, 0, 2, 1, 4, /* State 2: Integer */
+ 1, 0, 3, 1, 5, /* State 3: Negative integer */
+ 1, 0, 4, 1, 1, /* State 4: Real number */
+ 1, 0, 5, 1, 1, /* State 5: Negative real num */
+};
+
+/* This routine does a comparison of two strings. Case is used only
+** if useCase!=0. Numeric substrings compare in numerical order for the
+** most part but this routine does not understand exponential notation.
+*/
+static int sortStrCmp(const char *atext, const char *btext, int useCase){
+ register unsigned char *a, *b, *map, ca, cb;
+ int result;
+ register int cclass = 0;
+
+ a = (unsigned char *)atext;
+ b = (unsigned char *)btext;
+ if( useCase ){
+ do{
+ if( (ca= *a++)!=(cb= *b++) ) break;
+ cclass = stateMachine[cclass*N_CHAR_CLASS + charClass[ca]];
+ }while( ca!=0 );
+ }else{
+ map = UpperToLower;
+ do{
+ if( (ca=map[*a++])!=(cb=map[*b++]) ) break;
+ cclass = stateMachine[cclass*N_CHAR_CLASS + charClass[ca]];
+ }while( ca!=0 );
+ if( ca>='[' && ca<='`' ) cb = b[-1];
+ if( cb>='[' && cb<='`' ) ca = a[-1];
+ }
+ switch( cclass ){
+ case 0:
+ case 1: {
+ if( isdigit(ca) && isdigit(cb) ){
+ cclass = 2;
+ }
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+ switch( cclass ){
+ case 2:
+ case 3: {
+ if( isdigit(ca) ){
+ if( isdigit(cb) ){
+ int acnt, bcnt;
+ acnt = bcnt = 0;
+ while( isdigit(*a++) ) acnt++;
+ while( isdigit(*b++) ) bcnt++;
+ result = acnt - bcnt;
+ if( result==0 ) result = ca-cb;
+ }else{
+ result = 1;
+ }
+ }else if( isdigit(cb) ){
+ result = -1;
+ }else if( ca=='.' ){
+ result = 1;
+ }else if( cb=='.' ){
+ result = -1;
+ }else{
+ result = ca - cb;
+ cclass = 2;
+ }
+ if( cclass==3 ) result = -result;
+ break;
+ }
+ case 0:
+ case 1:
+ case 4: {
+ result = ca - cb;
+ break;
+ }
+ case 5: {
+ result = cb - ca;
+ };
+ }
+ return result;
+}
+#endif /* NOT USED */
+
+/*
+** Return TRUE if z is a pure numeric string. Return FALSE if the
+** string contains any character which is not part of a number.
+**
+** Am empty string is considered numeric.
+*/
+static int sqliteIsNumber(const char *z){
+ if( *z=='-' || *z=='+' ) z++;
+ if( !isdigit(*z) ){
+ return *z==0;
+ }
+ z++;
+ while( isdigit(*z) ){ z++; }
+ if( *z=='.' ){
+ z++;
+ if( !isdigit(*z) ) return 0;
+ while( isdigit(*z) ){ z++; }
+ if( *z=='e' || *z=='E' ){
+ z++;
+ if( *z=='+' || *z=='-' ) z++;
+ if( !isdigit(*z) ) return 0;
+ while( isdigit(*z) ){ z++; }
+ }
+ }
+ return *z==0;
+}
+
+/* This comparison routine is what we use for comparison operations
+** between numeric values in an SQL expression. "Numeric" is a little
+** bit misleading here. What we mean is that the strings have a
+** type of "numeric" from the point of view of SQL. The strings
+** do not necessarily contain numbers. They could contain text.
+**
+** If the input strings both look like actual numbers then they
+** compare in numerical order. Numerical strings are always less
+** than non-numeric strings so if one input string looks like a
+** number and the other does not, then the one that looks like
+** a number is the smaller. Non-numeric strings compare in
+** lexigraphical order (the same order as strcmp()).
+*/
+int sqliteCompare(const char *atext, const char *btext){
+ int result;
+ int isNumA, isNumB;
+ if( atext==0 ){
+ return -1;
+ }else if( btext==0 ){
+ return 1;
+ }
+ isNumA = sqliteIsNumber(atext);
+ isNumB = sqliteIsNumber(btext);
+ if( isNumA ){
+ if( !isNumB ){
+ result = -1;
+ }else{
+ double rA, rB;
+ rA = atof(atext);
+ rB = atof(btext);
+ if( rA<rB ){
+ result = -1;
+ }else if( rA>rB ){
+ result = +1;
+ }else{
+ result = 0;
+ }
+ }
+ }else if( isNumB ){
+ result = +1;
+ }else {
+ result = strcmp(atext, btext);
+ }
+ return result;
+}
+
+/*
+** This routine is used for sorting. Each key is a list of one or more
+** null-terminated elements. The list is terminated by two nulls in
+** a row. For example, the following text is a key with three elements
+**
+** Aone\000Dtwo\000Athree\000\000
+**
+** All elements begin with one of the characters "+-AD" and end with "\000"
+** with zero or more text elements in between. Except, NULL elements
+** consist of the special two-character sequence "N\000".
+**
+** Both arguments will have the same number of elements. This routine
+** returns negative, zero, or positive if the first argument is less
+** than, equal to, or greater than the first. (Result is a-b).
+**
+** Each element begins with one of the characters "+", "-", "A", "D".
+** This character determines the sort order and collating sequence:
+**
+** + Sort numerically in ascending order
+** - Sort numerically in descending order
+** A Sort as strings in ascending order
+** D Sort as strings in descending order.
+**
+** For the "+" and "-" sorting, pure numeric strings (strings for which the
+** isNum() function above returns TRUE) always compare less than strings
+** that are not pure numerics. Non-numeric strings compare in memcmp()
+** order. This is the same sort order as the sqliteCompare() function
+** above generates.
+**
+** The last point is a change from version 2.6.3 to version 2.7.0. In
+** version 2.6.3 and earlier, substrings of digits compare in numerical
+** and case was used only to break a tie.
+**
+** Elements that begin with 'A' or 'D' compare in memcmp() order regardless
+** of whether or not they look like a number.
+**
+** Note that the sort order imposed by the rules above is the same
+** from the ordering defined by the "<", "<=", ">", and ">=" operators
+** of expressions and for indices. This was not the case for version
+** 2.6.3 and earlier.
+*/
+int sqliteSortCompare(const char *a, const char *b){
+ int len;
+ int res = 0;
+ int isNumA, isNumB;
+ int dir = 0;
+
+ while( res==0 && *a && *b ){
+ if( a[0]=='N' || b[0]=='N' ){
+ if( a[0]==b[0] ){
+ a += 2;
+ b += 2;
+ continue;
+ }
+ if( a[0]=='N' ){
+ dir = b[0];
+ res = -1;
+ }else{
+ dir = a[0];
+ res = +1;
+ }
+ break;
+ }
+ assert( a[0]==b[0] );
+ if( (dir=a[0])=='A' || a[0]=='D' ){
+ res = strcmp(&a[1],&b[1]);
+ if( res ) break;
+ }else{
+ isNumA = sqliteIsNumber(&a[1]);
+ isNumB = sqliteIsNumber(&b[1]);
+ if( isNumA ){
+ double rA, rB;
+ if( !isNumB ){
+ res = -1;
+ break;
+ }
+ rA = atof(&a[1]);
+ rB = atof(&b[1]);
+ if( rA<rB ){
+ res = -1;
+ break;
+ }
+ if( rA>rB ){
+ res = +1;
+ break;
+ }
+ }else if( isNumB ){
+ res = +1;
+ break;
+ }else{
+ res = strcmp(&a[1],&b[1]);
+ if( res ) break;
+ }
+ }
+ len = strlen(&a[1]) + 2;
+ a += len;
+ b += len;
+ }
+ if( dir=='-' || dir=='D' ) res = -res;
+ return res;
+}
+
+/*
+** Some powers of 64. These constants are needed in the
+** sqliteRealToSortable() routine below.
+*/
+#define _64e3 (64.0 * 64.0 * 64.0)
+#define _64e4 (64.0 * 64.0 * 64.0 * 64.0)
+#define _64e15 (_64e3 * _64e4 * _64e4 * _64e4)
+#define _64e16 (_64e4 * _64e4 * _64e4 * _64e4)
+#define _64e63 (_64e15 * _64e16 * _64e16 * _64e16)
+#define _64e64 (_64e16 * _64e16 * _64e16 * _64e16)
+
+/*
+** The following procedure converts a double-precision floating point
+** number into a string. The resulting string has the property that
+** two such strings comparied using strcmp() or memcmp() will give the
+** same results as a numeric comparison of the original floating point
+** numbers.
+**
+** This routine is used to generate database keys from floating point
+** numbers such that the keys sort in the same order as the original
+** floating point numbers even though the keys are compared using
+** memcmp().
+**
+** The calling function should have allocated at least 14 characters
+** of space for the buffer z[].
+*/
+void sqliteRealToSortable(double r, char *z){
+ int neg;
+ int exp;
+ int cnt = 0;
+
+ /* This array maps integers between 0 and 63 into base-64 digits.
+ ** The digits must be chosen such at their ASCII codes are increasing.
+ ** This means we can not use the traditional base-64 digit set. */
+ static const char zDigit[] =
+ "0123456789"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ "abcdefghijklmnopqrstuvwxyz"
+ "|~";
+ if( r<0.0 ){
+ neg = 1;
+ r = -r;
+ *z++ = '-';
+ } else {
+ neg = 0;
+ *z++ = '0';
+ }
+ exp = 0;
+
+ if( r==0.0 ){
+ exp = -1024;
+ }else if( r<(0.5/64.0) ){
+ while( r < 0.5/_64e64 && exp > -961 ){ r *= _64e64; exp -= 64; }
+ while( r < 0.5/_64e16 && exp > -1009 ){ r *= _64e16; exp -= 16; }
+ while( r < 0.5/_64e4 && exp > -1021 ){ r *= _64e4; exp -= 4; }
+ while( r < 0.5/64.0 && exp > -1024 ){ r *= 64.0; exp -= 1; }
+ }else if( r>=0.5 ){
+ while( r >= 0.5*_64e63 && exp < 960 ){ r *= 1.0/_64e64; exp += 64; }
+ while( r >= 0.5*_64e15 && exp < 1008 ){ r *= 1.0/_64e16; exp += 16; }
+ while( r >= 0.5*_64e3 && exp < 1020 ){ r *= 1.0/_64e4; exp += 4; }
+ while( r >= 0.5 && exp < 1023 ){ r *= 1.0/64.0; exp += 1; }
+ }
+ if( neg ){
+ exp = -exp;
+ r = -r;
+ }
+ exp += 1024;
+ r += 0.5;
+ if( exp<0 ) return;
+ if( exp>=2048 || r>=1.0 ){
+ strcpy(z, "~~~~~~~~~~~~");
+ return;
+ }
+ *z++ = zDigit[(exp>>6)&0x3f];
+ *z++ = zDigit[exp & 0x3f];
+ while( r>0.0 && cnt<10 ){
+ int digit;
+ r *= 64.0;
+ digit = (int)r;
+ assert( digit>=0 && digit<64 );
+ *z++ = zDigit[digit & 0x3f];
+ r -= digit;
+ cnt++;
+ }
+ *z = 0;
+}
+
+#ifdef SQLITE_UTF8
+/*
+** X is a pointer to the first byte of a UTF-8 character. Increment
+** X so that it points to the next character. This only works right
+** if X points to a well-formed UTF-8 string.
+*/
+#define sqliteNextChar(X) while( (0xc0&*++(X))==0x80 ){}
+#define sqliteCharVal(X) sqlite_utf8_to_int(X)
+
+#else /* !defined(SQLITE_UTF8) */
+/*
+** For iso8859 encoding, the next character is just the next byte.
+*/
+#define sqliteNextChar(X) (++(X));
+#define sqliteCharVal(X) ((int)*(X))
+
+#endif /* defined(SQLITE_UTF8) */
+
+
+#ifdef SQLITE_UTF8
+/*
+** Convert the UTF-8 character to which z points into a 31-bit
+** UCS character. This only works right if z points to a well-formed
+** UTF-8 string.
+*/
+static int sqlite_utf8_to_int(const unsigned char *z){
+ int c;
+ static const int initVal[] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
+ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
+ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
+ 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
+ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
+ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
+ 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
+ 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
+ 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
+ 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
+ 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 0, 1, 2,
+ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 254,
+ 255,
+ };
+ c = initVal[*(z++)];
+ while( (0xc0&*z)==0x80 ){
+ c = (c<<6) | (0x3f&*(z++));
+ }
+ return c;
+}
+#endif
+
+/*
+** Compare two UTF-8 strings for equality where the first string can
+** potentially be a "glob" expression. Return true (1) if they
+** are the same and false (0) if they are different.
+**
+** Globbing rules:
+**
+** '*' Matches any sequence of zero or more characters.
+**
+** '?' Matches exactly one character.
+**
+** [...] Matches one character from the enclosed list of
+** characters.
+**
+** [^...] Matches one character not in the enclosed list.
+**
+** With the [...] and [^...] matching, a ']' character can be included
+** in the list by making it the first character after '[' or '^'. A
+** range of characters can be specified using '-'. Example:
+** "[a-z]" matches any single lower-case letter. To match a '-', make
+** it the last character in the list.
+**
+** This routine is usually quick, but can be N**2 in the worst case.
+**
+** Hints: to match '*' or '?', put them in "[]". Like this:
+**
+** abc[*]xyz Matches "abc*xyz" only
+*/
+int
+sqliteGlobCompare(const unsigned char *zPattern, const unsigned char *zString){
+ register int c;
+ int invert;
+ int seen;
+ int c2;
+
+ while( (c = *zPattern)!=0 ){
+ switch( c ){
+ case '*':
+ while( (c=zPattern[1]) == '*' || c == '?' ){
+ if( c=='?' ){
+ if( *zString==0 ) return 0;
+ sqliteNextChar(zString);
+ }
+ zPattern++;
+ }
+ if( c==0 ) return 1;
+ if( c=='[' ){
+ while( *zString && sqliteGlobCompare(&zPattern[1],zString)==0 ){
+ sqliteNextChar(zString);
+ }
+ return *zString!=0;
+ }else{
+ while( (c2 = *zString)!=0 ){
+ while( c2 != 0 && c2 != c ){ c2 = *++zString; }
+ if( c2==0 ) return 0;
+ if( sqliteGlobCompare(&zPattern[1],zString) ) return 1;
+ sqliteNextChar(zString);
+ }
+ return 0;
+ }
+ case '?': {
+ if( *zString==0 ) return 0;
+ sqliteNextChar(zString);
+ zPattern++;
+ break;
+ }
+ case '[': {
+ int prior_c = 0;
+ seen = 0;
+ invert = 0;
+ c = sqliteCharVal(zString);
+ if( c==0 ) return 0;
+ c2 = *++zPattern;
+ if( c2=='^' ){ invert = 1; c2 = *++zPattern; }
+ if( c2==']' ){
+ if( c==']' ) seen = 1;
+ c2 = *++zPattern;
+ }
+ while( (c2 = sqliteCharVal(zPattern))!=0 && c2!=']' ){
+ if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){
+ zPattern++;
+ c2 = sqliteCharVal(zPattern);
+ if( c>=prior_c && c<=c2 ) seen = 1;
+ prior_c = 0;
+ }else if( c==c2 ){
+ seen = 1;
+ prior_c = c2;
+ }else{
+ prior_c = c2;
+ }
+ sqliteNextChar(zPattern);
+ }
+ if( c2==0 || (seen ^ invert)==0 ) return 0;
+ sqliteNextChar(zString);
+ zPattern++;
+ break;
+ }
+ default: {
+ if( c != *zString ) return 0;
+ zPattern++;
+ zString++;
+ break;
+ }
+ }
+ }
+ return *zString==0;
+}
+
+/*
+** Compare two UTF-8 strings for equality using the "LIKE" operator of
+** SQL. The '%' character matches any sequence of 0 or more
+** characters and '_' matches any single character. Case is
+** not significant.
+**
+** This routine is just an adaptation of the sqliteGlobCompare()
+** routine above.
+*/
+int
+sqliteLikeCompare(const unsigned char *zPattern, const unsigned char *zString){
+ register int c;
+ int c2;
+
+ while( (c = UpperToLower[*zPattern])!=0 ){
+ switch( c ){
+ case '%': {
+ while( (c=zPattern[1]) == '%' || c == '_' ){
+ if( c=='_' ){
+ if( *zString==0 ) return 0;
+ sqliteNextChar(zString);
+ }
+ zPattern++;
+ }
+ if( c==0 ) return 1;
+ c = UpperToLower[c];
+ while( (c2=UpperToLower[*zString])!=0 ){
+ while( c2 != 0 && c2 != c ){ c2 = UpperToLower[*++zString]; }
+ if( c2==0 ) return 0;
+ if( sqliteLikeCompare(&zPattern[1],zString) ) return 1;
+ sqliteNextChar(zString);
+ }
+ return 0;
+ }
+ case '_': {
+ if( *zString==0 ) return 0;
+ sqliteNextChar(zString);
+ zPattern++;
+ break;
+ }
+ default: {
+ if( c != UpperToLower[*zString] ) return 0;
+ zPattern++;
+ zString++;
+ break;
+ }
+ }
+ }
+ return *zString==0;
+}
+
+/*
+** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
+** when this routine is called.
+**
+** This routine is a attempt to detect if two threads use the
+** same sqlite* pointer at the same time. There is a race
+** condition so it is possible that the error is not detected.
+** But usually the problem will be seen. The result will be an
+** error which can be used to debug the application that is
+** using SQLite incorrectly.
+**
+** Ticket #202: If db->magic is not a valid open value, take care not
+** to modify the db structure at all. It could be that db is a stale
+** pointer. In other words, it could be that there has been a prior
+** call to sqlite_close(db) and db has been deallocated. And we do
+** not want to write into deallocated memory.
+*/
+int sqliteSafetyOn(sqlite *db){
+ if( db->magic==SQLITE_MAGIC_OPEN ){
+ db->magic = SQLITE_MAGIC_BUSY;
+ return 0;
+ }else if( db->magic==SQLITE_MAGIC_BUSY || db->magic==SQLITE_MAGIC_ERROR
+ || db->want_to_close ){
+ db->magic = SQLITE_MAGIC_ERROR;
+ db->flags |= SQLITE_Interrupt;
+ }
+ return 1;
+}
+
+/*
+** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
+** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
+** when this routine is called.
+*/
+int sqliteSafetyOff(sqlite *db){
+ if( db->magic==SQLITE_MAGIC_BUSY ){
+ db->magic = SQLITE_MAGIC_OPEN;
+ return 0;
+ }else if( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ERROR
+ || db->want_to_close ){
+ db->magic = SQLITE_MAGIC_ERROR;
+ db->flags |= SQLITE_Interrupt;
+ }
+ return 1;
+}
+
+/*
+** Check to make sure we are not currently executing an sqlite_exec().
+** If we are currently in an sqlite_exec(), return true and set
+** sqlite.magic to SQLITE_MAGIC_ERROR. This will cause a complete
+** shutdown of the database.
+**
+** This routine is used to try to detect when API routines are called
+** at the wrong time or in the wrong sequence.
+*/
+int sqliteSafetyCheck(sqlite *db){
+ if( db->pVdbe!=0 ){
+ db->magic = SQLITE_MAGIC_ERROR;
+ return 1;
+ }
+ return 0;
+}
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** The code in this file implements the Virtual Database Engine (VDBE)
+**
+** The SQL parser generates a program which is then executed by
+** the VDBE to do the work of the SQL statement. VDBE programs are
+** similar in form to assembly language. The program consists of
+** a linear sequence of operations. Each operation has an opcode
+** and 3 operands. Operands P1 and P2 are integers. Operand P3
+** is a null-terminated string. The P2 operand must be non-negative.
+** Opcodes will typically ignore one or more operands. Many opcodes
+** ignore all three operands.
+**
+** Computation results are stored on a stack. Each entry on the
+** stack is either an integer, a null-terminated string, a floating point
+** number, or the SQL "NULL" value. An inplicit conversion from one
+** type to the other occurs as necessary.
+**
+** Most of the code in this file is taken up by the sqliteVdbeExec()
+** function which does the work of interpreting a VDBE program.
+** But other routines are also provided to help in building up
+** a program instruction by instruction.
+**
+** Various scripts scan this source file in order to generate HTML
+** documentation, headers files, or other derived files. The formatting
+** of the code in this file is, therefore, important. See other comments
+** in this file for details. If in doubt, do not deviate from existing
+** commenting and indentation practices when changing or adding code.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+#include <ctype.h>
+
+/*
+** The makefile scans this source file and creates the following
+** array of string constants which are the names of all VDBE opcodes.
+** This array is defined in a separate source code file named opcode.c
+** which is automatically generated by the makefile.
+*/
+extern char *sqliteOpcodeNames[];
+
+/*
+** The following global variable is incremented every time a cursor
+** moves, either by the OP_MoveTo or the OP_Next opcode. The test
+** procedures use this information to make sure that indices are
+** working correctly. This variable has no function other than to
+** help verify the correct operation of the library.
+*/
+int sqlite_search_count = 0;
+
+/*
+** SQL is translated into a sequence of instructions to be
+** executed by a virtual machine. Each instruction is an instance
+** of the following structure.
+*/
+typedef struct VdbeOp Op;
+
+/*
+** Boolean values
+*/
+typedef unsigned char Bool;
+
+/*
+** A cursor is a pointer into a single BTree within a database file.
+** The cursor can seek to a BTree entry with a particular key, or
+** loop over all entries of the Btree. You can also insert new BTree
+** entries or retrieve the key or data from the entry that the cursor
+** is currently pointing to.
+**
+** Every cursor that the virtual machine has open is represented by an
+** instance of the following structure.
+*/
+struct Cursor {
+ BtCursor *pCursor; /* The cursor structure of the backend */
+ int lastRecno; /* Last recno from a Next or NextIdx operation */
+ int nextRowid; /* Next rowid returned by OP_NewRowid */
+ Bool recnoIsValid; /* True if lastRecno is valid */
+ Bool keyAsData; /* The OP_Column command works on key instead of data */
+ Bool atFirst; /* True if pointing to first entry */
+ Bool useRandomRowid; /* Generate new record numbers semi-randomly */
+ Bool nullRow; /* True if pointing to a row with no data */
+ Bool nextRowidValid; /* True if the nextRowid field is valid */
+ Btree *pBt; /* Separate file holding temporary table */
+};
+typedef struct Cursor Cursor;
+
+/*
+** A sorter builds a list of elements to be sorted. Each element of
+** the list is an instance of the following structure.
+*/
+typedef struct Sorter Sorter;
+struct Sorter {
+ int nKey; /* Number of bytes in the key */
+ char *zKey; /* The key by which we will sort */
+ int nData; /* Number of bytes in the data */
+ char *pData; /* The data associated with this key */
+ Sorter *pNext; /* Next in the list */
+};
+
+/*
+** Number of buckets used for merge-sort.
+*/
+#define NSORT 30
+
+/*
+** Number of bytes of string storage space available to each stack
+** layer without having to malloc. NBFS is short for Number of Bytes
+** For Strings.
+*/
+#define NBFS 32
+
+/*
+** A single level of the stack is an instance of the following
+** structure. Except, string values are stored on a separate
+** list of of pointers to character. The reason for storing
+** strings separately is so that they can be easily passed
+** to the callback function.
+*/
+struct Stack {
+ int i; /* Integer value */
+ int n; /* Number of characters in string value, including '\0' */
+ int flags; /* Some combination of STK_Null, STK_Str, STK_Dyn, etc. */
+ double r; /* Real value */
+ char z[NBFS]; /* Space for short strings */
+};
+typedef struct Stack Stack;
+
+/*
+** Memory cells use the same structure as the stack except that space
+** for an arbitrary string is added.
+*/
+struct Mem {
+ Stack s; /* All values of the memory cell besides string */
+ char *z; /* String value for this memory cell */
+};
+typedef struct Mem Mem;
+
+/*
+** Allowed values for Stack.flags
+*/
+#define STK_Null 0x0001 /* Value is NULL */
+#define STK_Str 0x0002 /* Value is a string */
+#define STK_Int 0x0004 /* Value is an integer */
+#define STK_Real 0x0008 /* Value is a real number */
+#define STK_Dyn 0x0010 /* Need to call sqliteFree() on zStack[] */
+#define STK_Static 0x0020 /* zStack[] points to a static string */
+#define STK_Ephem 0x0040 /* zStack[] points to an ephemeral string */
+
+/* The following STK_ value appears only in AggElem.aMem.s.flag fields.
+** It indicates that the corresponding AggElem.aMem.z points to a
+** aggregate function context that needs to be finalized.
+*/
+#define STK_AggCtx 0x0040 /* zStack[] points to an agg function context */
+
+/*
+** The "context" argument for a installable function. A pointer to an
+** instance of this structure is the first argument to the routines used
+** implement the SQL functions.
+**
+** There is a typedef for this structure in sqlite.h. So all routines,
+** even the public interface to SQLite, can use a pointer to this structure.
+** But this file is the only place where the internal details of this
+** structure are known.
+**
+** This structure is defined inside of vdbe.c because it uses substructures
+** (Stack) which are only defined there.
+*/
+struct sqlite_func {
+ FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
+ Stack s; /* Small strings, ints, and double values go here */
+ char *z; /* Space for holding dynamic string results */
+ void *pAgg; /* Aggregate context */
+ u8 isError; /* Set to true for an error */
+ u8 isStep; /* Current in the step function */
+ int cnt; /* Number of times that the step function has been called */
+};
+
+/*
+** An Agg structure describes an Aggregator. Each Agg consists of
+** zero or more Aggregator elements (AggElem). Each AggElem contains
+** a key and one or more values. The values are used in processing
+** aggregate functions in a SELECT. The key is used to implement
+** the GROUP BY clause of a select.
+*/
+typedef struct Agg Agg;
+typedef struct AggElem AggElem;
+struct Agg {
+ int nMem; /* Number of values stored in each AggElem */
+ AggElem *pCurrent; /* The AggElem currently in focus */
+ HashElem *pSearch; /* The hash element for pCurrent */
+ Hash hash; /* Hash table of all aggregate elements */
+ FuncDef **apFunc; /* Information about aggregate functions */
+};
+struct AggElem {
+ char *zKey; /* The key to this AggElem */
+ int nKey; /* Number of bytes in the key, including '\0' at end */
+ Mem aMem[1]; /* The values for this AggElem */
+};
+
+/*
+** A Set structure is used for quick testing to see if a value
+** is part of a small set. Sets are used to implement code like
+** this:
+** x.y IN ('hi','hoo','hum')
+*/
+typedef struct Set Set;
+struct Set {
+ Hash hash; /* A set is just a hash table */
+ HashElem *prev; /* Previously accessed hash elemen */
+};
+
+/*
+** A Keylist is a bunch of keys into a table. The keylist can
+** grow without bound. The keylist stores the ROWIDs of database
+** records that need to be deleted or updated.
+*/
+typedef struct Keylist Keylist;
+struct Keylist {
+ int nKey; /* Number of slots in aKey[] */
+ int nUsed; /* Next unwritten slot in aKey[] */
+ int nRead; /* Next unread slot in aKey[] */
+ Keylist *pNext; /* Next block of keys */
+ int aKey[1]; /* One or more keys. Extra space allocated as needed */
+};
+
+/*
+** An instance of the virtual machine. This structure contains the complete
+** state of the virtual machine.
+**
+** The "sqlite_vm" structure pointer that is returned by sqlite_compile()
+** is really a pointer to an instance of this structure.
+*/
+struct Vdbe {
+ sqlite *db; /* The whole database */
+ Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
+ Btree *pBt; /* Opaque context structure used by DB backend */
+ FILE *trace; /* Write an execution trace here, if not NULL */
+ int nOp; /* Number of instructions in the program */
+ int nOpAlloc; /* Number of slots allocated for aOp[] */
+ Op *aOp; /* Space to hold the virtual machine's program */
+ int nLabel; /* Number of labels used */
+ int nLabelAlloc; /* Number of slots allocated in aLabel[] */
+ int *aLabel; /* Space to hold the labels */
+ int tos; /* Index of top of stack */
+ Stack *aStack; /* The operand stack, except string values */
+ char **zStack; /* Text or binary values of the stack */
+ char **azColName; /* Becomes the 4th parameter to callbacks */
+ int nCursor; /* Number of slots in aCsr[] */
+ Cursor *aCsr; /* One element of this array for each open cursor */
+ Sorter *pSort; /* A linked list of objects to be sorted */
+ FILE *pFile; /* At most one open file handler */
+ int nField; /* Number of file fields */
+ char **azField; /* Data for each file field */
+ char *zLine; /* A single line from the input file */
+ int magic; /* Magic number for sanity checking */
+ int nLineAlloc; /* Number of spaces allocated for zLine */
+ int nMem; /* Number of memory locations currently allocated */
+ Mem *aMem; /* The memory locations */
+ Agg agg; /* Aggregate information */
+ int nSet; /* Number of sets allocated */
+ Set *aSet; /* An array of sets */
+ int nCallback; /* Number of callbacks invoked so far */
+ Keylist *pList; /* A list of ROWIDs */
+ int keylistStackDepth; /* The size of the "keylist" stack */
+ Keylist **keylistStack; /* The stack used by opcodes ListPush & ListPop */
+ int pc; /* The program counter */
+ int rc; /* Value to return */
+ unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
+ int errorAction; /* Recovery action to do in case of an error */
+ int undoTransOnError; /* If error, either ROLLBACK or COMMIT */
+ int inTempTrans; /* True if temp database is transactioned */
+ int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */
+ int returnDepth; /* Next unused element in returnStack[] */
+ int nResColumn; /* Number of columns in one row of the result set */
+ char **azResColumn; /* Values for one row of result */
+ int (*xCallback)(void*,int,char**,char**); /* Callback for SELECT results */
+ void *pCbArg; /* First argument to xCallback() */
+ int popStack; /* Pop the stack this much on entry to VdbeExec() */
+ char *zErrMsg; /* Error message written here */
+ u8 explain; /* True if EXPLAIN present on SQL command */
+};
+
+/*
+** The following are allowed values for Vdbe.magic
+*/
+#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
+#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
+#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
+#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
+
+/*
+** When debugging the code generator in a symbolic debugger, one can
+** set the sqlite_vdbe_addop_trace to 1 and all opcodes will be printed
+** as they are added to the instruction stream.
+*/
+#ifndef NDEBUG
+int sqlite_vdbe_addop_trace = 0;
+static void vdbePrintOp(FILE*, int, Op*);
+#endif
+
+/*
+** Create a new virtual database engine.
+*/
+Vdbe *sqliteVdbeCreate(sqlite *db){
+ Vdbe *p;
+ p = sqliteMalloc( sizeof(Vdbe) );
+ if( p==0 ) return 0;
+ p->pBt = db->pBe;
+ p->db = db;
+ if( db->pVdbe ){
+ db->pVdbe->pPrev = p;
+ }
+ p->pNext = db->pVdbe;
+ p->pPrev = 0;
+ db->pVdbe = p;
+ p->magic = VDBE_MAGIC_INIT;
+ return p;
+}
+
+/*
+** Turn tracing on or off
+*/
+void sqliteVdbeTrace(Vdbe *p, FILE *trace){
+ p->trace = trace;
+}
+
+/*
+** Add a new instruction to the list of instructions current in the
+** VDBE. Return the address of the new instruction.
+**
+** Parameters:
+**
+** p Pointer to the VDBE
+**
+** op The opcode for this instruction
+**
+** p1, p2 First two of the three possible operands.
+**
+** Use the sqliteVdbeResolveLabel() function to fix an address and
+** the sqliteVdbeChangeP3() function to change the value of the P3
+** operand.
+*/
+int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){
+ int i;
+
+ i = p->nOp;
+ p->nOp++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( i>=p->nOpAlloc ){
+ int oldSize = p->nOpAlloc;
+ Op *aNew;
+ p->nOpAlloc = p->nOpAlloc*2 + 100;
+ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
+ if( aNew==0 ){
+ p->nOpAlloc = oldSize;
+ return 0;
+ }
+ p->aOp = aNew;
+ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
+ }
+ p->aOp[i].opcode = op;
+ p->aOp[i].p1 = p1;
+ if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
+ p2 = p->aLabel[-1-p2];
+ }
+ p->aOp[i].p2 = p2;
+ p->aOp[i].p3 = 0;
+ p->aOp[i].p3type = P3_NOTUSED;
+#ifndef NDEBUG
+ if( sqlite_vdbe_addop_trace ) vdbePrintOp(0, i, &p->aOp[i]);
+#endif
+ return i;
+}
+
+/*
+** Create a new symbolic label for an instruction that has yet to be
+** coded. The symbolic label is really just a negative number. The
+** label can be used as the P2 value of an operation. Later, when
+** the label is resolved to a specific address, the VDBE will scan
+** through its operation list and change all values of P2 which match
+** the label into the resolved address.
+**
+** The VDBE knows that a P2 value is a label because labels are
+** always negative and P2 values are suppose to be non-negative.
+** Hence, a negative P2 value is a label that has yet to be resolved.
+*/
+int sqliteVdbeMakeLabel(Vdbe *p){
+ int i;
+ i = p->nLabel++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( i>=p->nLabelAlloc ){
+ int *aNew;
+ p->nLabelAlloc = p->nLabelAlloc*2 + 10;
+ aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
+ if( aNew==0 ){
+ sqliteFree(p->aLabel);
+ }
+ p->aLabel = aNew;
+ }
+ if( p->aLabel==0 ){
+ p->nLabel = 0;
+ p->nLabelAlloc = 0;
+ return 0;
+ }
+ p->aLabel[i] = -1;
+ return -1-i;
+}
+
+/*
+** Resolve label "x" to be the address of the next instruction to
+** be inserted. The parameter "x" must have been obtained from
+** a prior call to sqliteVdbeMakeLabel().
+*/
+void sqliteVdbeResolveLabel(Vdbe *p, int x){
+ int j;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( x<0 && (-x)<=p->nLabel && p->aOp ){
+ if( p->aLabel[-1-x]==p->nOp ) return;
+ assert( p->aLabel[-1-x]<0 );
+ p->aLabel[-1-x] = p->nOp;
+ for(j=0; j<p->nOp; j++){
+ if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp;
+ }
+ }
+}
+
+/*
+** Return the address of the next instruction to be inserted.
+*/
+int sqliteVdbeCurrentAddr(Vdbe *p){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ return p->nOp;
+}
+
+/*
+** Add a whole list of operations to the operation stack. Return the
+** address of the first operation added.
+*/
+int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOp const *aOp){
+ int addr;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->nOp + nOp >= p->nOpAlloc ){
+ int oldSize = p->nOpAlloc;
+ Op *aNew;
+ p->nOpAlloc = p->nOpAlloc*2 + nOp + 10;
+ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
+ if( aNew==0 ){
+ p->nOpAlloc = oldSize;
+ return 0;
+ }
+ p->aOp = aNew;
+ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
+ }
+ addr = p->nOp;
+ if( nOp>0 ){
+ int i;
+ for(i=0; i<nOp; i++){
+ int p2 = aOp[i].p2;
+ p->aOp[i+addr] = aOp[i];
+ if( p2<0 ) p->aOp[i+addr].p2 = addr + ADDR(p2);
+ p->aOp[i+addr].p3type = aOp[i].p3 ? P3_STATIC : P3_NOTUSED;
+#ifndef NDEBUG
+ if( sqlite_vdbe_addop_trace ) vdbePrintOp(0, i+addr, &p->aOp[i+addr]);
+#endif
+ }
+ p->nOp += nOp;
+ }
+ return addr;
+}
+
+/*
+** Change the value of the P1 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqliteVdbeAddOpList but we want to make a
+** few minor changes to the program.
+*/
+void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p1 = val;
+ }
+}
+
+/*
+** Change the value of the P2 operand for a specific instruction.
+** This routine is useful for setting a jump destination.
+*/
+void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){
+ assert( val>=0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p2 = val;
+ }
+}
+
+/*
+** Change the value of the P3 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqliteVdbeAddOpList but we want to make a
+** few minor changes to the program.
+**
+** If n>=0 then the P3 operand is dynamic, meaning that a copy of
+** the string is made into memory obtained from sqliteMalloc().
+** A value of n==0 means copy bytes of zP3 up to and including the
+** first null byte. If n>0 then copy n+1 bytes of zP3.
+**
+** If n==P3_STATIC it means that zP3 is a pointer to a constant static
+** string and we can just copy the pointer. n==P3_POINTER means zP3 is
+** a pointer to some object other than a string.
+**
+** If addr<0 then change P3 on the most recently inserted instruction.
+*/
+void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p==0 || p->aOp==0 ) return;
+ if( addr<0 || addr>=p->nOp ){
+ addr = p->nOp - 1;
+ if( addr<0 ) return;
+ }
+ pOp = &p->aOp[addr];
+ if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
+ sqliteFree(pOp->p3);
+ pOp->p3 = 0;
+ }
+ if( zP3==0 ){
+ pOp->p3 = 0;
+ pOp->p3type = P3_NOTUSED;
+ }else if( n<0 ){
+ pOp->p3 = (char*)zP3;
+ pOp->p3type = n;
+ }else{
+ sqliteSetNString(&pOp->p3, zP3, n, 0);
+ pOp->p3type = P3_DYNAMIC;
+ }
+}
+
+/*
+** If the P3 operand to the specified instruction appears
+** to be a quoted string token, then this procedure removes
+** the quotes.
+**
+** The quoting operator can be either a grave ascent (ASCII 0x27)
+** or a double quote character (ASCII 0x22). Two quotes in a row
+** resolve to be a single actual quote character within the string.
+*/
+void sqliteVdbeDequoteP3(Vdbe *p, int addr){
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
+ pOp = &p->aOp[addr];
+ if( pOp->p3==0 || pOp->p3[0]==0 ) return;
+ if( pOp->p3type==P3_POINTER ) return;
+ if( pOp->p3type!=P3_DYNAMIC ){
+ pOp->p3 = sqliteStrDup(pOp->p3);
+ pOp->p3type = P3_DYNAMIC;
+ }
+ sqliteDequote(pOp->p3);
+}
+
+/*
+** On the P3 argument of the given instruction, change all
+** strings of whitespace characters into a single space and
+** delete leading and trailing whitespace.
+*/
+void sqliteVdbeCompressSpace(Vdbe *p, int addr){
+ char *z;
+ int i, j;
+ Op *pOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
+ pOp = &p->aOp[addr];
+ if( pOp->p3type==P3_POINTER ){
+ return;
+ }
+ if( pOp->p3type!=P3_DYNAMIC ){
+ pOp->p3 = sqliteStrDup(pOp->p3);
+ pOp->p3type = P3_DYNAMIC;
+ }
+ z = pOp->p3;
+ if( z==0 ) return;
+ i = j = 0;
+ while( isspace(z[i]) ){ i++; }
+ while( z[i] ){
+ if( isspace(z[i]) ){
+ z[j++] = ' ';
+ while( isspace(z[++i]) ){}
+ }else{
+ z[j++] = z[i++];
+ }
+ }
+ while( j>0 && isspace(z[j-1]) ){ j--; }
+ z[j] = 0;
+}
+
+/*
+** Search for the current program for the given opcode and P2
+** value. Return 1 if found and 0 if not found.
+*/
+int sqliteVdbeFindOp(Vdbe *p, int op, int p2){
+ int i;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ for(i=0; i<p->nOp; i++){
+ if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return 1;
+ }
+ return 0;
+}
+
+/*
+** The following group or routines are employed by installable functions
+** to return their results.
+**
+** The sqlite_set_result_string() routine can be used to return a string
+** value or to return a NULL. To return a NULL, pass in NULL for zResult.
+** A copy is made of the string before this routine returns so it is safe
+** to pass in an ephemeral string.
+**
+** sqlite_set_result_error() works like sqlite_set_result_string() except
+** that it signals a fatal error. The string argument, if any, is the
+** error message. If the argument is NULL a generic substitute error message
+** is used.
+**
+** The sqlite_set_result_int() and sqlite_set_result_double() set the return
+** value of the user function to an integer or a double.
+**
+** These routines are defined here in vdbe.c because they depend on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
+ assert( !p->isStep );
+ if( p->s.flags & STK_Dyn ){
+ sqliteFree(p->z);
+ }
+ if( zResult==0 ){
+ p->s.flags = STK_Null;
+ n = 0;
+ p->z = 0;
+ p->s.n = 0;
+ }else{
+ if( n<0 ) n = strlen(zResult);
+ if( n<NBFS-1 ){
+ memcpy(p->s.z, zResult, n);
+ p->s.z[n] = 0;
+ p->s.flags = STK_Str;
+ p->z = p->s.z;
+ }else{
+ p->z = sqliteMallocRaw( n+1 );
+ if( p->z ){
+ memcpy(p->z, zResult, n);
+ p->z[n] = 0;
+ }
+ p->s.flags = STK_Str | STK_Dyn;
+ }
+ p->s.n = n+1;
+ }
+ return p->z;
+}
+void sqlite_set_result_int(sqlite_func *p, int iResult){
+ assert( !p->isStep );
+ if( p->s.flags & STK_Dyn ){
+ sqliteFree(p->z);
+ }
+ p->s.i = iResult;
+ p->s.flags = STK_Int;
+}
+void sqlite_set_result_double(sqlite_func *p, double rResult){
+ assert( !p->isStep );
+ if( p->s.flags & STK_Dyn ){
+ sqliteFree(p->z);
+ }
+ p->s.r = rResult;
+ p->s.flags = STK_Real;
+}
+void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){
+ assert( !p->isStep );
+ sqlite_set_result_string(p, zMsg, n);
+ p->isError = 1;
+}
+
+/*
+** Extract the user data from a sqlite_func structure and return a
+** pointer to it.
+**
+** This routine is defined here in vdbe.c because it depends on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+void *sqlite_user_data(sqlite_func *p){
+ assert( p && p->pFunc );
+ return p->pFunc->pUserData;
+}
+
+/*
+** Allocate or return the aggregate context for a user function. A new
+** context is allocated on the first call. Subsequent calls return the
+** same context that was returned on prior calls.
+**
+** This routine is defined here in vdbe.c because it depends on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+void *sqlite_aggregate_context(sqlite_func *p, int nByte){
+ assert( p && p->pFunc && p->pFunc->xStep );
+ if( p->pAgg==0 ){
+ if( nByte<=NBFS ){
+ p->pAgg = (void*)p->z;
+ }else{
+ p->pAgg = sqliteMalloc( nByte );
+ }
+ }
+ return p->pAgg;
+}
+
+/*
+** Return the number of times the Step function of a aggregate has been
+** called.
+**
+** This routine is defined here in vdbe.c because it depends on knowing
+** the internals of the sqlite_func structure which is only defined in
+** this source file.
+*/
+int sqlite_aggregate_count(sqlite_func *p){
+ assert( p && p->pFunc && p->pFunc->xStep );
+ return p->cnt;
+}
+
+/*
+** Advance the virtual machine to the next output row.
+**
+** The return vale will be either SQLITE_BUSY, SQLITE_DONE,
+** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
+**
+** SQLITE_BUSY means that the virtual machine attempted to open
+** a locked database and there is no busy callback registered.
+** Call sqlite_step() again to retry the open. *pN is set to 0
+** and *pazColName and *pazValue are both set to NULL.
+**
+** SQLITE_DONE means that the virtual machine has finished
+** executing. sqlite_step() should not be called again on this
+** virtual machine. *pN and *pazColName are set appropriately
+** but *pazValue is set to NULL.
+**
+** SQLITE_ROW means that the virtual machine has generated another
+** row of the result set. *pN is set to the number of columns in
+** the row. *pazColName is set to the names of the columns followed
+** by the column datatypes. *pazValue is set to the values of each
+** column in the row. The value of the i-th column is (*pazValue)[i].
+** The name of the i-th column is (*pazColName)[i] and the datatype
+** of the i-th column is (*pazColName)[i+*pN].
+**
+** SQLITE_ERROR means that a run-time error (such as a constraint
+** violation) has occurred. The details of the error will be returned
+** by the next call to sqlite_finalize(). sqlite_step() should not
+** be called again on the VM.
+**
+** SQLITE_MISUSE means that the this routine was called inappropriately.
+** Perhaps it was called on a virtual machine that had already been
+** finalized or on one that had previously returned SQLITE_ERROR or
+** SQLITE_DONE. Or it could be the case the the same database connection
+** is being used simulataneously by two or more threads.
+*/
+int sqlite_step(
+ sqlite_vm *pVm, /* The virtual machine to execute */
+ int *pN, /* OUT: Number of columns in result */
+ const char ***pazValue, /* OUT: Column data */
+ const char ***pazColName /* OUT: Column names and datatypes */
+){
+ Vdbe *p = (Vdbe*)pVm;
+ sqlite *db;
+ int rc;
+
+ if( p->magic!=VDBE_MAGIC_RUN ){
+ return SQLITE_MISUSE;
+ }
+ db = p->db;
+ if( sqliteSafetyOn(db) ){
+ return SQLITE_MISUSE;
+ }
+ if( p->explain ){
+ rc = sqliteVdbeList(p);
+ }else{
+ rc = sqliteVdbeExec(p);
+ }
+ if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
+ *pazColName = (const char**)p->azColName;
+ *pN = p->nResColumn;
+ }else{
+ *pN = 0;
+ *pazColName = 0;
+ }
+ if( rc==SQLITE_ROW ){
+ *pazValue = (const char**)p->azResColumn;
+ }else{
+ *pazValue = 0;
+ }
+ if( sqliteSafetyOff(db) ){
+ return SQLITE_MISUSE;
+ }
+ return rc;
+}
+
+/*
+** Reset an Agg structure. Delete all its contents.
+**
+** For installable aggregate functions, if the step function has been
+** called, make sure the finalizer function has also been called. The
+** finalizer might need to free memory that was allocated as part of its
+** private context. If the finalizer has not been called yet, call it
+** now.
+*/
+static void AggReset(Agg *pAgg){
+ int i;
+ HashElem *p;
+ for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
+ AggElem *pElem = sqliteHashData(p);
+ assert( pAgg->apFunc!=0 );
+ for(i=0; i<pAgg->nMem; i++){
+ Mem *pMem = &pElem->aMem[i];
+ if( pAgg->apFunc[i] && (pMem->s.flags & STK_AggCtx)!=0 ){
+ sqlite_func ctx;
+ ctx.pFunc = pAgg->apFunc[i];
+ ctx.s.flags = STK_Null;
+ ctx.z = 0;
+ ctx.pAgg = pMem->z;
+ ctx.cnt = pMem->s.i;
+ ctx.isStep = 0;
+ ctx.isError = 0;
+ (*pAgg->apFunc[i]->xFinalize)(&ctx);
+ if( pMem->z!=0 && pMem->z!=pMem->s.z ){
+ sqliteFree(pMem->z);
+ }
+ }else if( pMem->s.flags & STK_Dyn ){
+ sqliteFree(pMem->z);
+ }
+ }
+ sqliteFree(pElem);
+ }
+ sqliteHashClear(&pAgg->hash);
+ sqliteFree(pAgg->apFunc);
+ pAgg->apFunc = 0;
+ pAgg->pCurrent = 0;
+ pAgg->pSearch = 0;
+ pAgg->nMem = 0;
+}
+
+/*
+** Insert a new aggregate element and make it the element that
+** has focus.
+**
+** Return 0 on success and 1 if memory is exhausted.
+*/
+static int AggInsert(Agg *p, char *zKey, int nKey){
+ AggElem *pElem, *pOld;
+ int i;
+ pElem = sqliteMalloc( sizeof(AggElem) + nKey +
+ (p->nMem-1)*sizeof(pElem->aMem[0]) );
+ if( pElem==0 ) return 1;
+ pElem->zKey = (char*)&pElem->aMem[p->nMem];
+ memcpy(pElem->zKey, zKey, nKey);
+ pElem->nKey = nKey;
+ pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
+ if( pOld!=0 ){
+ assert( pOld==pElem ); /* Malloc failed on insert */
+ sqliteFree(pOld);
+ return 0;
+ }
+ for(i=0; i<p->nMem; i++){
+ pElem->aMem[i].s.flags = STK_Null;
+ }
+ p->pCurrent = pElem;
+ return 0;
+}
+
+/*
+** Get the AggElem currently in focus
+*/
+#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
+static AggElem *_AggInFocus(Agg *p){
+ HashElem *pElem = sqliteHashFirst(&p->hash);
+ if( pElem==0 ){
+ AggInsert(p,"",1);
+ pElem = sqliteHashFirst(&p->hash);
+ }
+ return pElem ? sqliteHashData(pElem) : 0;
+}
+
+/*
+** Convert the given stack entity into a string if it isn't one
+** already.
+*/
+#define Stringify(P,I) if((aStack[I].flags & STK_Str)==0){hardStringify(P,I);}
+static int hardStringify(Vdbe *p, int i){
+ Stack *pStack = &p->aStack[i];
+ int fg = pStack->flags;
+ if( fg & STK_Real ){
+ sprintf(pStack->z,"%.15g",pStack->r);
+ }else if( fg & STK_Int ){
+ sprintf(pStack->z,"%d",pStack->i);
+ }else{
+ pStack->z[0] = 0;
+ }
+ p->zStack[i] = pStack->z;
+ pStack->n = strlen(pStack->z)+1;
+ pStack->flags = STK_Str;
+ return 0;
+}
+
+/*
+** Convert the given stack entity into a string that has been obtained
+** from sqliteMalloc(). This is different from Stringify() above in that
+** Stringify() will use the NBFS bytes of static string space if the string
+** will fit but this routine always mallocs for space.
+** Return non-zero if we run out of memory.
+*/
+#define Dynamicify(P,I) ((aStack[I].flags & STK_Dyn)==0 ? hardDynamicify(P,I):0)
+static int hardDynamicify(Vdbe *p, int i){
+ Stack *pStack = &p->aStack[i];
+ int fg = pStack->flags;
+ char *z;
+ if( (fg & STK_Str)==0 ){
+ hardStringify(p, i);
+ }
+ assert( (fg & STK_Dyn)==0 );
+ z = sqliteMallocRaw( pStack->n );
+ if( z==0 ) return 1;
+ memcpy(z, p->zStack[i], pStack->n);
+ p->zStack[i] = z;
+ pStack->flags |= STK_Dyn;
+ return 0;
+}
+
+/*
+** An ephemeral string value (signified by the STK_Ephem flag) contains
+** a pointer to a dynamically allocated string where some other entity
+** is responsible for deallocating that string. Because the stack entry
+** does not control the string, it might be deleted without the stack
+** entry knowing it.
+**
+** This routine converts an ephemeral string into a dynamically allocated
+** string that the stack entry itself controls. In other words, it
+** converts an STK_Ephem string into an STK_Dyn string.
+*/
+#define Deephemeralize(P,I) \
+ if( ((P)->aStack[I].flags&STK_Ephem)!=0 && hardDeephem(P,I) ){ goto no_mem;}
+static int hardDeephem(Vdbe *p, int i){
+ Stack *pStack = &p->aStack[i];
+ char **pzStack = &p->zStack[i];
+ char *z;
+ assert( (pStack->flags & STK_Ephem)!=0 );
+ z = sqliteMallocRaw( pStack->n );
+ if( z==0 ) return 1;
+ memcpy(z, *pzStack, pStack->n);
+ *pzStack = z;
+ return 0;
+}
+
+/*
+** Release the memory associated with the given stack level
+*/
+#define Release(P,I) if((P)->aStack[I].flags&STK_Dyn){ hardRelease(P,I); }
+static void hardRelease(Vdbe *p, int i){
+ sqliteFree(p->zStack[i]);
+ p->zStack[i] = 0;
+ p->aStack[i].flags &= ~(STK_Str|STK_Dyn|STK_Static|STK_Ephem);
+}
+
+/*
+** Return TRUE if zNum is an integer and write
+** the value of the integer into *pNum.
+**
+** Under Linux (RedHat 7.2) this routine is much faster than atoi()
+** for converting strings into integers.
+*/
+static int toInt(const char *zNum, int *pNum){
+ int v = 0;
+ int neg;
+ if( *zNum=='-' ){
+ neg = 1;
+ zNum++;
+ }else if( *zNum=='+' ){
+ neg = 0;
+ zNum++;
+ }else{
+ neg = 0;
+ }
+ while( isdigit(*zNum) ){
+ v = v*10 + *zNum - '0';
+ zNum++;
+ }
+ *pNum = neg ? -v : v;
+ return *zNum==0;
+}
+
+/*
+** Convert the given stack entity into a integer if it isn't one
+** already.
+**
+** Any prior string or real representation is invalidated.
+** NULLs are converted into 0.
+*/
+#define Integerify(P,I) \
+ if(((P)->aStack[(I)].flags&STK_Int)==0){ hardIntegerify(P,I); }
+static void hardIntegerify(Vdbe *p, int i){
+ if( p->aStack[i].flags & STK_Real ){
+ p->aStack[i].i = (int)p->aStack[i].r;
+ Release(p, i);
+ }else if( p->aStack[i].flags & STK_Str ){
+ toInt(p->zStack[i], &p->aStack[i].i);
+ Release(p, i);
+ }else{
+ p->aStack[i].i = 0;
+ }
+ p->aStack[i].flags = STK_Int;
+}
+
+/*
+** Get a valid Real representation for the given stack element.
+**
+** Any prior string or integer representation is retained.
+** NULLs are converted into 0.0.
+*/
+#define Realify(P,I) \
+ if(((P)->aStack[(I)].flags&STK_Real)==0){ hardRealify(P,I); }
+static void hardRealify(Vdbe *p, int i){
+ if( p->aStack[i].flags & STK_Str ){
+ p->aStack[i].r = atof(p->zStack[i]);
+ }else if( p->aStack[i].flags & STK_Int ){
+ p->aStack[i].r = p->aStack[i].i;
+ }else{
+ p->aStack[i].r = 0.0;
+ }
+ p->aStack[i].flags |= STK_Real;
+}
+
+/*
+** Pop the stack N times. Free any memory associated with the
+** popped stack elements.
+*/
+static void PopStack(Vdbe *p, int N){
+ assert( N>=0 );
+ if( p->zStack==0 ) return;
+ assert( p->aStack || sqlite_malloc_failed );
+ if( p->aStack==0 ) return;
+ while( N-- > 0 ){
+ if( p->aStack[p->tos].flags & STK_Dyn ){
+ sqliteFree(p->zStack[p->tos]);
+ }
+ p->aStack[p->tos].flags = 0;
+ p->zStack[p->tos] = 0;
+ p->tos--;
+ }
+}
+
+/*
+** Here is a macro to handle the common case of popping the stack
+** once. This macro only works from within the sqliteVdbeExec()
+** function.
+*/
+#define POPSTACK \
+ assert(p->tos>=0); \
+ if( aStack[p->tos].flags & STK_Dyn ) sqliteFree(zStack[p->tos]); \
+ p->tos--;
+
+/*
+** Return TRUE if zNum is a floating-point or integer number.
+*/
+static int isNumber(const char *zNum){
+ if( *zNum=='-' || *zNum=='+' ) zNum++;
+ if( !isdigit(*zNum) ) return 0;
+ while( isdigit(*zNum) ) zNum++;
+ if( *zNum==0 ) return 1;
+ if( *zNum!='.' ) return 0;
+ zNum++;
+ if( !isdigit(*zNum) ) return 0;
+ while( isdigit(*zNum) ) zNum++;
+ if( *zNum==0 ) return 1;
+ if( *zNum!='e' && *zNum!='E' ) return 0;
+ zNum++;
+ if( *zNum=='-' || *zNum=='+' ) zNum++;
+ if( !isdigit(*zNum) ) return 0;
+ while( isdigit(*zNum) ) zNum++;
+ return *zNum==0;
+}
+
+/*
+** Delete a keylist
+*/
+static void KeylistFree(Keylist *p){
+ while( p ){
+ Keylist *pNext = p->pNext;
+ sqliteFree(p);
+ p = pNext;
+ }
+}
+
+/*
+** Close a cursor and release all the resources that cursor happens
+** to hold.
+*/
+static void cleanupCursor(Cursor *pCx){
+ if( pCx->pCursor ){
+ sqliteBtreeCloseCursor(pCx->pCursor);
+ }
+ if( pCx->pBt ){
+ sqliteBtreeClose(pCx->pBt);
+ }
+ memset(pCx, 0, sizeof(Cursor));
+}
+
+/*
+** Close all cursors
+*/
+static void closeAllCursors(Vdbe *p){
+ int i;
+ for(i=0; i<p->nCursor; i++){
+ cleanupCursor(&p->aCsr[i]);
+ }
+ sqliteFree(p->aCsr);
+ p->aCsr = 0;
+ p->nCursor = 0;
+}
+
+/*
+** Remove any elements that remain on the sorter for the VDBE given.
+*/
+static void SorterReset(Vdbe *p){
+ while( p->pSort ){
+ Sorter *pSorter = p->pSort;
+ p->pSort = pSorter->pNext;
+ sqliteFree(pSorter->zKey);
+ sqliteFree(pSorter->pData);
+ sqliteFree(pSorter);
+ }
+}
+
+/*
+** Clean up the VM after execution.
+**
+** This routine will automatically close any cursors, lists, and/or
+** sorters that were left open.
+*/
+static void Cleanup(Vdbe *p){
+ int i;
+ PopStack(p, p->tos+1);
+ closeAllCursors(p);
+ if( p->aMem ){
+ for(i=0; i<p->nMem; i++){
+ if( p->aMem[i].s.flags & STK_Dyn ){
+ sqliteFree(p->aMem[i].z);
+ }
+ }
+ }
+ sqliteFree(p->aMem);
+ p->aMem = 0;
+ p->nMem = 0;
+ if( p->pList ){
+ KeylistFree(p->pList);
+ p->pList = 0;
+ }
+ SorterReset(p);
+ if( p->pFile ){
+ if( p->pFile!=stdin ) fclose(p->pFile);
+ p->pFile = 0;
+ }
+ if( p->azField ){
+ sqliteFree(p->azField);
+ p->azField = 0;
+ }
+ p->nField = 0;
+ if( p->zLine ){
+ sqliteFree(p->zLine);
+ p->zLine = 0;
+ }
+ p->nLineAlloc = 0;
+ AggReset(&p->agg);
+ if( p->aSet ){
+ for(i=0; i<p->nSet; i++){
+ sqliteHashClear(&p->aSet[i].hash);
+ }
+ }
+ sqliteFree(p->aSet);
+ p->aSet = 0;
+ p->nSet = 0;
+ if( p->keylistStack ){
+ int ii;
+ for(ii = 0; ii < p->keylistStackDepth; ii++){
+ KeylistFree(p->keylistStack[ii]);
+ }
+ sqliteFree(p->keylistStack);
+ p->keylistStackDepth = 0;
+ p->keylistStack = 0;
+ }
+ sqliteFree(p->zErrMsg);
+ p->zErrMsg = 0;
+ p->magic = VDBE_MAGIC_DEAD;
+}
+
+/*
+** Delete an entire VDBE.
+*/
+void sqliteVdbeDelete(Vdbe *p){
+ int i;
+ if( p==0 ) return;
+ Cleanup(p);
+ if( p->pPrev ){
+ p->pPrev->pNext = p->pNext;
+ }else{
+ assert( p->db->pVdbe==p );
+ p->db->pVdbe = p->pNext;
+ }
+ if( p->pNext ){
+ p->pNext->pPrev = p->pPrev;
+ }
+ p->pPrev = p->pNext = 0;
+ if( p->nOpAlloc==0 ){
+ p->aOp = 0;
+ p->nOp = 0;
+ }
+ for(i=0; i<p->nOp; i++){
+ if( p->aOp[i].p3type==P3_DYNAMIC ){
+ sqliteFree(p->aOp[i].p3);
+ }
+ }
+ sqliteFree(p->aOp);
+ sqliteFree(p->aLabel);
+ sqliteFree(p->aStack);
+ sqliteFree(p);
+}
+
+/*
+** Give a listing of the program in the virtual machine.
+**
+** The interface is the same as sqliteVdbeExec(). But instead of
+** running the code, it invokes the callback once for each instruction.
+** This feature is used to implement "EXPLAIN".
+*/
+int sqliteVdbeList(
+ Vdbe *p /* The VDBE */
+){
+ sqlite *db = p->db;
+ int i;
+ static char *azColumnNames[] = {
+ "addr", "opcode", "p1", "p2", "p3",
+ "int", "text", "int", "int", "text",
+ 0
+ };
+
+ assert( p->popStack==0 );
+ assert( p->explain );
+ p->azColName = azColumnNames;
+ p->azResColumn = p->zStack;
+ for(i=0; i<5; i++) p->zStack[i] = p->aStack[i].z;
+ p->rc = SQLITE_OK;
+ for(i=p->pc; p->rc==SQLITE_OK && i<p->nOp; i++){
+ if( db->flags & SQLITE_Interrupt ){
+ db->flags &= ~SQLITE_Interrupt;
+ if( db->magic!=SQLITE_MAGIC_BUSY ){
+ p->rc = SQLITE_MISUSE;
+ }else{
+ p->rc = SQLITE_INTERRUPT;
+ }
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), 0);
+ break;
+ }
+ sprintf(p->zStack[0],"%d",i);
+ sprintf(p->zStack[2],"%d", p->aOp[i].p1);
+ sprintf(p->zStack[3],"%d", p->aOp[i].p2);
+ if( p->aOp[i].p3type==P3_POINTER ){
+ sprintf(p->aStack[4].z, "ptr(%#x)", (int)p->aOp[i].p3);
+ p->zStack[4] = p->aStack[4].z;
+ }else{
+ p->zStack[4] = p->aOp[i].p3;
+ }
+ p->zStack[1] = sqliteOpcodeNames[p->aOp[i].opcode];
+ if( p->xCallback==0 ){
+ p->pc = i+1;
+ p->azResColumn = p->zStack;
+ p->nResColumn = 5;
+ return SQLITE_ROW;
+ }
+ if( sqliteSafetyOff(db) ){
+ p->rc = SQLITE_MISUSE;
+ break;
+ }
+ if( p->xCallback(p->pCbArg, 5, p->zStack, p->azColName) ){
+ p->rc = SQLITE_ABORT;
+ }
+ if( sqliteSafetyOn(db) ){
+ p->rc = SQLITE_MISUSE;
+ }
+ }
+ return p->rc==SQLITE_OK ? SQLITE_OK : SQLITE_ERROR;
+}
+
+/*
+** The parameters are pointers to the head of two sorted lists
+** of Sorter structures. Merge these two lists together and return
+** a single sorted list. This routine forms the core of the merge-sort
+** algorithm.
+**
+** In the case of a tie, left sorts in front of right.
+*/
+static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
+ Sorter sHead;
+ Sorter *pTail;
+ pTail = &sHead;
+ pTail->pNext = 0;
+ while( pLeft && pRight ){
+ int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
+ if( c<=0 ){
+ pTail->pNext = pLeft;
+ pLeft = pLeft->pNext;
+ }else{
+ pTail->pNext = pRight;
+ pRight = pRight->pNext;
+ }
+ pTail = pTail->pNext;
+ }
+ if( pLeft ){
+ pTail->pNext = pLeft;
+ }else if( pRight ){
+ pTail->pNext = pRight;
+ }
+ return sHead.pNext;
+}
+
+/*
+** Convert an integer in between the native integer format and
+** the bigEndian format used as the record number for tables.
+**
+** The bigEndian format (most significant byte first) is used for
+** record numbers so that records will sort into the correct order
+** even though memcmp() is used to compare the keys. On machines
+** whose native integer format is little endian (ex: i486) the
+** order of bytes is reversed. On native big-endian machines
+** (ex: Alpha, Sparc, Motorola) the byte order is the same.
+**
+** This function is its own inverse. In other words
+**
+** X == byteSwap(byteSwap(X))
+*/
+static int byteSwap(int x){
+ union {
+ char zBuf[sizeof(int)];
+ int i;
+ } ux;
+ ux.zBuf[3] = x&0xff;
+ ux.zBuf[2] = (x>>8)&0xff;
+ ux.zBuf[1] = (x>>16)&0xff;
+ ux.zBuf[0] = (x>>24)&0xff;
+ return ux.i;
+}
+
+/*
+** When converting from the native format to the key format and back
+** again, in addition to changing the byte order we invert the high-order
+** bit of the most significant byte. This causes negative numbers to
+** sort before positive numbers in the memcmp() function.
+*/
+#define keyToInt(X) (byteSwap(X) ^ 0x80000000)
+#define intToKey(X) (byteSwap((X) ^ 0x80000000))
+
+/*
+** Code contained within the VERIFY() macro is not needed for correct
+** execution. It is there only to catch errors. So when we compile
+** with NDEBUG=1, the VERIFY() code is omitted.
+*/
+#ifdef NDEBUG
+# define VERIFY(X)
+#else
+# define VERIFY(X) X
+#endif
+
+/*
+** The following routine works like a replacement for the standard
+** library routine fgets(). The difference is in how end-of-line (EOL)
+** is handled. Standard fgets() uses LF for EOL under unix, CRLF
+** under windows, and CR under mac. This routine accepts any of these
+** character sequences as an EOL mark. The EOL mark is replaced by
+** a single LF character in zBuf.
+*/
+static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
+ int i, c;
+ for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
+ zBuf[i] = c;
+ if( c=='\r' || c=='\n' ){
+ if( c=='\r' ){
+ zBuf[i] = '\n';
+ c = getc(in);
+ if( c!=EOF && c!='\n' ) ungetc(c, in);
+ }
+ i++;
+ break;
+ }
+ }
+ zBuf[i] = 0;
+ return i>0 ? zBuf : 0;
+}
+
+#if !defined(NDEBUG) || defined(VDBE_PROFILE)
+/*
+** Print a single opcode. This routine is used for debugging only.
+*/
+static void vdbePrintOp(FILE *pOut, int pc, Op *pOp){
+ char *zP3;
+ char zPtr[40];
+ if( pOp->p3type==P3_POINTER ){
+ sprintf(zPtr, "ptr(%#x)", (int)pOp->p3);
+ zP3 = zPtr;
+ }else{
+ zP3 = pOp->p3;
+ }
+ if( pOut==0 ) pOut = stdout;
+ fprintf(pOut,"%4d %-12s %4d %4d %s\n",
+ pc, sqliteOpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");
+ fflush(pOut);
+}
+#endif
+
+/*
+** Make sure there is space in the Vdbe structure to hold at least
+** mxCursor cursors. If there is not currently enough space, then
+** allocate more.
+**
+** If a memory allocation error occurs, return 1. Return 0 if
+** everything works.
+*/
+static int expandCursorArraySize(Vdbe *p, int mxCursor){
+ if( mxCursor>=p->nCursor ){
+ Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
+ if( aCsr==0 ) return 1;
+ p->aCsr = aCsr;
+ memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
+ p->nCursor = mxCursor+1;
+ }
+ return 0;
+}
+
+#ifdef VDBE_PROFILE
+/*
+** The following routine only works on pentium-class processors.
+** It uses the RDTSC opcode to read cycle count value out of the
+** processor and returns that value. This can be used for high-res
+** profiling.
+*/
+__inline__ unsigned long long int hwtime(void){
+ unsigned long long int x;
+ __asm__("rdtsc\n\t"
+ "mov %%edx, %%ecx\n\t"
+ :"=A" (x));
+ return x;
+}
+#endif
+
+/*
+** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
+** sqlite_interrupt() routine has been called. If it has been, then
+** processing of the VDBE program is interrupted.
+**
+** This macro added to every instruction that does a jump in order to
+** implement a loop. This test used to be on every single instruction,
+** but that meant we more testing that we needed. By only testing the
+** flag on jump instructions, we get a (small) speed improvement.
+*/
+#define CHECK_FOR_INTERRUPT \
+ if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
+
+
+/*
+** Prepare a virtual machine for execution. This involves things such
+** as allocating stack space and initializing the program counter.
+** After the VDBE has be prepped, it can be executed by one or more
+** calls to sqliteVdbeExec().
+**
+** The behavior of sqliteVdbeExec() is influenced by the parameters to
+** this routine. If xCallback is NULL, then sqliteVdbeExec() will return
+** with SQLITE_ROW whenever there is a row of the result set ready
+** to be delivered. p->azResColumn will point to the row and
+** p->nResColumn gives the number of columns in the row. If xCallback
+** is not NULL, then the xCallback() routine is invoked to process each
+** row in the result set.
+*/
+void sqliteVdbeMakeReady(
+ Vdbe *p, /* The VDBE */
+ sqlite_callback xCallback, /* Result callback */
+ void *pCallbackArg, /* 1st argument to xCallback() */
+ int isExplain /* True if the EXPLAIN keywords is present */
+){
+ int n;
+
+ assert( p!=0 );
+ assert( p->aStack==0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+
+ /* Add a HALT instruction to the very end of the program.
+ */
+ sqliteVdbeAddOp(p, OP_Halt, 0, 0);
+
+ /* No instruction ever pushes more than a single element onto the
+ ** stack. And the stack never grows on successive executions of the
+ ** same loop. So the total number of instructions is an upper bound
+ ** on the maximum stack depth required.
+ **
+ ** Allocation all the stack space we will ever need.
+ */
+ n = isExplain ? 10 : p->nOp;
+ p->aStack = sqliteMalloc( n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) );
+ p->zStack = (char**)&p->aStack[n];
+ p->azColName = (char**)&p->zStack[n];
+
+ sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
+ p->agg.pSearch = 0;
+#ifdef MEMORY_DEBUG
+ if( access("vdbe_trace",0)==0 ){
+ p->trace = stdout;
+ }
+#endif
+ p->tos = -1;
+ p->pc = 0;
+ p->rc = SQLITE_OK;
+ p->uniqueCnt = 0;
+ p->returnDepth = 0;
+ p->errorAction = OE_Abort;
+ p->undoTransOnError = 0;
+ p->xCallback = xCallback;
+ p->pCbArg = pCallbackArg;
+ p->popStack = 0;
+ p->explain = isExplain;
+ p->magic = VDBE_MAGIC_RUN;
+#ifdef VDBE_PROFILE
+ for(i=0; i<p->nOp; i++){
+ p->aOp[i].cnt = 0;
+ p->aOp[i].cycles = 0;
+ }
+#endif
+}
+
+/*
+** Execute as much of a VDBE program as we can then return.
+**
+** sqliteVdbeMakeReady() must be called before this routine in order to
+** close the program with a final OP_Halt and to set up the callbacks
+** and the error message pointer.
+**
+** Whenever a row or result data is available, this routine will either
+** invoke the result callback (if there is one) or return with
+** SQLITE_ROW.
+**
+** If an attempt is made to open a locked database, then this routine
+** will either invoke the busy callback (if there is one) or it will
+** return SQLITE_BUSY.
+**
+** If an error occurs, an error message is written to memory obtained
+** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
+** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
+**
+** If the callback ever returns non-zero, then the program exits
+** immediately. There will be no error message but the p->rc field is
+** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
+**
+** A memory allocation error causes p->rc to be set SQLITE_NOMEM and this
+** routien to return SQLITE_ERROR.
+**
+** Other fatal errors return SQLITE_ERROR.
+**
+** After this routine has finished, sqliteVdbeFinalize() should be
+** used to clean up the mess that was left behind.
+*/
+int sqliteVdbeExec(
+ Vdbe *p /* The VDBE */
+){
+ int pc; /* The program counter */
+ Op *pOp; /* Current operation */
+ int rc = SQLITE_OK; /* Value to return */
+ Btree *pBt = p->pBt; /* The backend driver */
+ sqlite *db = p->db; /* The database */
+ char **zStack = p->zStack; /* Text stack */
+ Stack *aStack = p->aStack; /* Additional stack information */
+ char zBuf[100]; /* Space to sprintf() an integer */
+#ifdef VDBE_PROFILE
+ unsigned long long start; /* CPU clock count at start of opcode */
+ int origPc; /* Program counter at start of opcode */
+#endif
+
+ if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
+ assert( db->magic==SQLITE_MAGIC_BUSY );
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
+ p->rc = SQLITE_OK;
+ assert( p->explain==0 );
+ if( sqlite_malloc_failed ) goto no_mem;
+ if( p->popStack ){
+ PopStack(p, p->popStack);
+ p->popStack = 0;
+ }
+ for(pc=p->pc; rc==SQLITE_OK; pc++){
+ assert( pc>=0 && pc<p->nOp );
+#ifdef VDBE_PROFILE
+ origPc = pc;
+ start = hwtime();
+#endif
+ pOp = &p->aOp[pc];
+
+ /* Only allow tracing if NDEBUG is not defined.
+ */
+#ifndef NDEBUG
+ if( p->trace ){
+ vdbePrintOp(p->trace, pc, pOp);
+ }
+#endif
+
+ switch( pOp->opcode ){
+
+/*****************************************************************************
+** What follows is a massive switch statement where each case implements a
+** separate instruction in the virtual machine. If we follow the usual
+** indentation conventions, each case should be indented by 6 spaces. But
+** that is a lot of wasted space on the left margin. So the code within
+** the switch statement will break with convention and be flush-left. Another
+** big comment (similar to this one) will mark the point in the code where
+** we transition back to normal indentation.
+**
+** The formatting of each case is important. The makefile for SQLite
+** generates two C files "opcodes.h" and "opcodes.c" by scanning this
+** file looking for lines that begin with "case OP_". The opcodes.h files
+** will be filled with #defines that give unique integer values to each
+** opcode and the opcodes.c file is filled with an array of strings where
+** each string is the symbolic name for the corresponding opcode.
+**
+** Documentation about VDBE opcodes is generated by scanning this file
+** for lines of that contain "Opcode:". That line and all subsequent
+** comment lines are used in the generation of the opcode.html documentation
+** file.
+**
+** SUMMARY:
+**
+** Formatting is important to scripts that scan this file.
+** Do not deviate from the formatting style currently in use.
+**
+*****************************************************************************/
+
+/* Opcode: Goto * P2 *
+**
+** An unconditional jump to address P2.
+** The next instruction executed will be
+** the one at index P2 from the beginning of
+** the program.
+*/
+case OP_Goto: {
+ CHECK_FOR_INTERRUPT;
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Gosub * P2 *
+**
+** Push the current address plus 1 onto the return address stack
+** and then jump to address P2.
+**
+** The return address stack is of limited depth. If too many
+** OP_Gosub operations occur without intervening OP_Returns, then
+** the return address stack will fill up and processing will abort
+** with a fatal error.
+*/
+case OP_Gosub: {
+ if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
+ sqliteSetString(&p->zErrMsg, "return address stack overflow", 0);
+ p->rc = SQLITE_INTERNAL;
+ return SQLITE_ERROR;
+ }
+ p->returnStack[p->returnDepth++] = pc+1;
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: Return * * *
+**
+** Jump immediately to the next instruction after the last unreturned
+** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
+** processing aborts with a fatal error.
+*/
+case OP_Return: {
+ if( p->returnDepth<=0 ){
+ sqliteSetString(&p->zErrMsg, "return address stack underflow", 0);
+ p->rc = SQLITE_INTERNAL;
+ return SQLITE_ERROR;
+ }
+ p->returnDepth--;
+ pc = p->returnStack[p->returnDepth] - 1;
+ break;
+}
+
+/* Opcode: Halt P1 P2 *
+**
+** Exit immediately. All open cursors, Lists, Sorts, etc are closed
+** automatically.
+**
+** P1 is the result code returned by sqlite_exec(). For a normal
+** halt, this should be SQLITE_OK (0). For errors, it can be some
+** other value. If P1!=0 then P2 will determine whether or not to
+** rollback the current transaction. Do not rollback if P2==OE_Fail.
+** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back
+** out all changes that have occurred during this execution of the
+** VDBE, but do not rollback the transaction.
+**
+** There is an implied "Halt 0 0 0" instruction inserted at the very end of
+** every program. So a jump past the last instruction of the program
+** is the same as executing Halt.
+*/
+case OP_Halt: {
+ p->magic = VDBE_MAGIC_HALT;
+ if( pOp->p1!=SQLITE_OK ){
+ p->rc = pOp->p1;
+ p->errorAction = pOp->p2;
+ if( pOp->p3 ){
+ sqliteSetString(&p->zErrMsg, pOp->p3, 0);
+ }
+ return SQLITE_ERROR;
+ }else{
+ p->rc = SQLITE_OK;
+ return SQLITE_DONE;
+ }
+}
+
+/* Opcode: Integer P1 * P3
+**
+** The integer value P1 is pushed onto the stack. If P3 is not zero
+** then it is assumed to be a string representation of the same integer.
+*/
+case OP_Integer: {
+ int i = ++p->tos;
+ aStack[i].i = pOp->p1;
+ aStack[i].flags = STK_Int;
+ if( pOp->p3 ){
+ zStack[i] = pOp->p3;
+ aStack[i].flags |= STK_Str | STK_Static;
+ aStack[i].n = strlen(pOp->p3)+1;
+ }
+ break;
+}
+
+/* Opcode: String * * P3
+**
+** The string value P3 is pushed onto the stack. If P3==0 then a
+** NULL is pushed onto the stack.
+*/
+case OP_String: {
+ int i = ++p->tos;
+ char *z;
+ z = pOp->p3;
+ if( z==0 ){
+ zStack[i] = 0;
+ aStack[i].n = 0;
+ aStack[i].flags = STK_Null;
+ }else{
+ zStack[i] = z;
+ aStack[i].n = strlen(z) + 1;
+ aStack[i].flags = STK_Str | STK_Static;
+ }
+ break;
+}
+
+/* Opcode: Pop P1 * *
+**
+** P1 elements are popped off of the top of stack and discarded.
+*/
+case OP_Pop: {
+ assert( p->tos+1>=pOp->p1 );
+ PopStack(p, pOp->p1);
+ break;
+}
+
+/* Opcode: Dup P1 P2 *
+**
+** A copy of the P1-th element of the stack
+** is made and pushed onto the top of the stack.
+** The top of the stack is element 0. So the
+** instruction "Dup 0 0 0" will make a copy of the
+** top of the stack.
+**
+** If the content of the P1-th element is a dynamically
+** allocated string, then a new copy of that string
+** is made if P2==0. If P2!=0, then just a pointer
+** to the string is copied.
+**
+** Also see the Pull instruction.
+*/
+case OP_Dup: {
+ int i = p->tos - pOp->p1;
+ int j = ++p->tos;
+ VERIFY( if( i<0 ) goto not_enough_stack; )
+ memcpy(&aStack[j], &aStack[i], sizeof(aStack[i])-NBFS);
+ if( aStack[j].flags & STK_Str ){
+ int isStatic = (aStack[j].flags & STK_Static)!=0;
+ if( pOp->p2 || isStatic ){
+ zStack[j] = zStack[i];
+ aStack[j].flags &= ~STK_Dyn;
+ if( !isStatic ) aStack[j].flags |= STK_Ephem;
+ }else if( aStack[i].n<=NBFS ){
+ memcpy(aStack[j].z, zStack[i], aStack[j].n);
+ zStack[j] = aStack[j].z;
+ aStack[j].flags &= ~(STK_Static|STK_Dyn|STK_Ephem);
+ }else{
+ zStack[j] = sqliteMallocRaw( aStack[j].n );
+ if( zStack[j]==0 ) goto no_mem;
+ memcpy(zStack[j], zStack[i], aStack[j].n);
+ aStack[j].flags &= ~(STK_Static|STK_Ephem);
+ aStack[j].flags |= STK_Dyn;
+ }
+ }
+ break;
+}
+
+/* Opcode: Pull P1 * *
+**
+** The P1-th element is removed from its current location on
+** the stack and pushed back on top of the stack. The
+** top of the stack is element 0, so "Pull 0 0 0" is
+** a no-op. "Pull 1 0 0" swaps the top two elements of
+** the stack.
+**
+** See also the Dup instruction.
+*/
+case OP_Pull: {
+ int from = p->tos - pOp->p1;
+ int to = p->tos;
+ int i;
+ Stack ts;
+ char *tz;
+ VERIFY( if( from<0 ) goto not_enough_stack; )
+ ts = aStack[from];
+ tz = zStack[from];
+ Deephemeralize(p, to);
+ for(i=from; i<to; i++){
+ Deephemeralize(p, i);
+ aStack[i] = aStack[i+1];
+ assert( (aStack[i].flags & STK_Ephem)==0 );
+ if( aStack[i].flags & (STK_Dyn|STK_Static) ){
+ zStack[i] = zStack[i+1];
+ }else{
+ zStack[i] = aStack[i].z;
+ }
+ }
+ aStack[to] = ts;
+ assert( (aStack[to].flags & STK_Ephem)==0 );
+ if( aStack[to].flags & (STK_Dyn|STK_Static) ){
+ zStack[to] = tz;
+ }else{
+ zStack[to] = aStack[to].z;
+ }
+ break;
+}
+
+/* Opcode: Push P1 * *
+**
+** Overwrite the value of the P1-th element down on the
+** stack (P1==0 is the top of the stack) with the value
+** of the top of the stack. Then pop the top of the stack.
+*/
+case OP_Push: {
+ int from = p->tos;
+ int to = p->tos - pOp->p1;
+
+ VERIFY( if( to<0 ) goto not_enough_stack; )
+ if( aStack[to].flags & STK_Dyn ){
+ sqliteFree(zStack[to]);
+ }
+ Deephemeralize(p, from);
+ aStack[to] = aStack[from];
+ if( aStack[to].flags & (STK_Dyn|STK_Static|STK_Ephem) ){
+ zStack[to] = zStack[from];
+ }else{
+ zStack[to] = aStack[to].z;
+ }
+ aStack[from].flags = 0;
+ p->tos--;
+ break;
+}
+
+/* Opcode: ColumnName P1 * P3
+**
+** P3 becomes the P1-th column name (first is 0). An array of pointers
+** to all column names is passed as the 4th parameter to the callback.
+*/
+case OP_ColumnName: {
+ p->azColName[pOp->p1] = pOp->p3;
+ p->nCallback = 0;
+ break;
+}
+
+/* Opcode: Callback P1 * *
+**
+** Pop P1 values off the stack and form them into an array. Then
+** invoke the callback function using the newly formed array as the
+** 3rd parameter.
+*/
+case OP_Callback: {
+ int i = p->tos - pOp->p1 + 1;
+ int j;
+ VERIFY( if( i<0 ) goto not_enough_stack; )
+ for(j=i; j<=p->tos; j++){
+ if( aStack[j].flags & STK_Null ){
+ zStack[j] = 0;
+ }else{
+ Stringify(p, j);
+ }
+ }
+ zStack[p->tos+1] = 0;
+ if( p->xCallback==0 ){
+ p->azResColumn = &zStack[i];
+ p->nResColumn = pOp->p1;
+ p->popStack = pOp->p1;
+ p->pc = pc + 1;
+ return SQLITE_ROW;
+ }
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
+ if( p->xCallback(p->pCbArg, pOp->p1, &zStack[i], p->azColName)!=0 ){
+ rc = SQLITE_ABORT;
+ }
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
+ p->nCallback++;
+ PopStack(p, pOp->p1);
+ if( sqlite_malloc_failed ) goto no_mem;
+ break;
+}
+
+/* Opcode: NullCallback P1 * *
+**
+** Invoke the callback function once with the 2nd argument (the
+** number of columns) equal to P1 and with the 4th argument (the
+** names of the columns) set according to prior OP_ColumnName
+** instructions. This is all like the regular
+** OP_Callback or OP_SortCallback opcodes. But the 3rd argument
+** which normally contains a pointer to an array of pointers to
+** data is NULL.
+**
+** The callback is only invoked if there have been no prior calls
+** to OP_Callback or OP_SortCallback.
+**
+** This opcode is used to report the number and names of columns
+** in cases where the result set is empty.
+*/
+case OP_NullCallback: {
+ if( p->nCallback==0 && p->xCallback!=0 ){
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
+ if( p->xCallback(p->pCbArg, pOp->p1, 0, p->azColName)!=0 ){
+ rc = SQLITE_ABORT;
+ }
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
+ p->nCallback++;
+ if( sqlite_malloc_failed ) goto no_mem;
+ }
+ p->nResColumn = pOp->p1;
+ break;
+}
+
+/* Opcode: Concat P1 P2 P3
+**
+** Look at the first P1 elements of the stack. Append them all
+** together with the lowest element first. Use P3 as a separator.
+** Put the result on the top of the stack. The original P1 elements
+** are popped from the stack if P2==0 and retained if P2==1. If
+** any element of the stack is NULL, then the result is NULL.
+**
+** If P3 is NULL, then use no separator. When P1==1, this routine
+** makes a copy of the top stack element into memory obtained
+** from sqliteMalloc().
+*/
+case OP_Concat: {
+ char *zNew;
+ int nByte;
+ int nField;
+ int i, j;
+ char *zSep;
+ int nSep;
+
+ nField = pOp->p1;
+ zSep = pOp->p3;
+ if( zSep==0 ) zSep = "";
+ nSep = strlen(zSep);
+ VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
+ nByte = 1 - nSep;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( aStack[i].flags & STK_Null ){
+ nByte = -1;
+ break;
+ }else{
+ Stringify(p, i);
+ nByte += aStack[i].n - 1 + nSep;
+ }
+ }
+ if( nByte<0 ){
+ if( pOp->p2==0 ) PopStack(p, nField);
+ p->tos++;
+ aStack[p->tos].flags = STK_Null;
+ zStack[p->tos] = 0;
+ break;
+ }
+ zNew = sqliteMallocRaw( nByte );
+ if( zNew==0 ) goto no_mem;
+ j = 0;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null)==0 ){
+ memcpy(&zNew[j], zStack[i], aStack[i].n-1);
+ j += aStack[i].n-1;
+ }
+ if( nSep>0 && i<p->tos ){
+ memcpy(&zNew[j], zSep, nSep);
+ j += nSep;
+ }
+ }
+ zNew[j] = 0;
+ if( pOp->p2==0 ) PopStack(p, nField);
+ p->tos++;
+ aStack[p->tos].n = nByte;
+ aStack[p->tos].flags = STK_Str|STK_Dyn;
+ zStack[p->tos] = zNew;
+ break;
+}
+
+/* Opcode: Add * * *
+**
+** Pop the top two elements from the stack, add them together,
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the addition.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Multiply * * *
+**
+** Pop the top two elements from the stack, multiply them together,
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the multiplication.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Subtract * * *
+**
+** Pop the top two elements from the stack, subtract the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the subtraction.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Divide * * *
+**
+** Pop the top two elements from the stack, divide the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the result back onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the division. Division by zero returns NULL.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: Remainder * * *
+**
+** Pop the top two elements from the stack, divide the
+** first (what was on top of the stack) from the second (the
+** next on stack)
+** and push the remainder after division onto the stack. If either element
+** is a string then it is converted to a double using the atof()
+** function before the division. Division by zero returns NULL.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_Add:
+case OP_Subtract:
+case OP_Multiply:
+case OP_Divide:
+case OP_Remainder: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ if( ((aStack[tos].flags | aStack[nos].flags) & STK_Null)!=0 ){
+ POPSTACK;
+ Release(p, nos);
+ aStack[nos].flags = STK_Null;
+ }else if( (aStack[tos].flags & aStack[nos].flags & STK_Int)==STK_Int ){
+ int a, b;
+ a = aStack[tos].i;
+ b = aStack[nos].i;
+ switch( pOp->opcode ){
+ case OP_Add: b += a; break;
+ case OP_Subtract: b -= a; break;
+ case OP_Multiply: b *= a; break;
+ case OP_Divide: {
+ if( a==0 ) goto divide_by_zero;
+ b /= a;
+ break;
+ }
+ default: {
+ if( a==0 ) goto divide_by_zero;
+ b %= a;
+ break;
+ }
+ }
+ POPSTACK;
+ Release(p, nos);
+ aStack[nos].i = b;
+ aStack[nos].flags = STK_Int;
+ }else{
+ double a, b;
+ Realify(p, tos);
+ Realify(p, nos);
+ a = aStack[tos].r;
+ b = aStack[nos].r;
+ switch( pOp->opcode ){
+ case OP_Add: b += a; break;
+ case OP_Subtract: b -= a; break;
+ case OP_Multiply: b *= a; break;
+ case OP_Divide: {
+ if( a==0.0 ) goto divide_by_zero;
+ b /= a;
+ break;
+ }
+ default: {
+ int ia = (int)a;
+ int ib = (int)b;
+ if( ia==0.0 ) goto divide_by_zero;
+ b = ib % ia;
+ break;
+ }
+ }
+ POPSTACK;
+ Release(p, nos);
+ aStack[nos].r = b;
+ aStack[nos].flags = STK_Real;
+ }
+ break;
+
+divide_by_zero:
+ PopStack(p, 2);
+ p->tos = nos;
+ aStack[nos].flags = STK_Null;
+ break;
+}
+
+/* Opcode: Function P1 * P3
+**
+** Invoke a user function (P3 is a pointer to a Function structure that
+** defines the function) with P1 string arguments taken from the stack.
+** Pop all arguments from the stack and push back the result.
+**
+** See also: AggFunc
+*/
+case OP_Function: {
+ int n, i;
+ sqlite_func ctx;
+
+ n = pOp->p1;
+ VERIFY( if( n<0 ) goto bad_instruction; )
+ VERIFY( if( p->tos+1<n ) goto not_enough_stack; )
+ for(i=p->tos-n+1; i<=p->tos; i++){
+ if( aStack[i].flags & STK_Null ){
+ zStack[i] = 0;
+ }else{
+ Stringify(p, i);
+ }
+ }
+ ctx.pFunc = (FuncDef*)pOp->p3;
+ ctx.s.flags = STK_Null;
+ ctx.z = 0;
+ ctx.isError = 0;
+ ctx.isStep = 0;
+ (*ctx.pFunc->xFunc)(&ctx, n, (const char**)&zStack[p->tos-n+1]);
+ PopStack(p, n);
+ p->tos++;
+ aStack[p->tos] = ctx.s;
+ if( ctx.s.flags & STK_Dyn ){
+ zStack[p->tos] = ctx.z;
+ }else if( ctx.s.flags & STK_Str ){
+ zStack[p->tos] = aStack[p->tos].z;
+ }else{
+ zStack[p->tos] = 0;
+ }
+ if( ctx.isError ){
+ sqliteSetString(&p->zErrMsg,
+ zStack[p->tos] ? zStack[p->tos] : "user function error", 0);
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: BitAnd * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the bit-wise AND of the
+** two elements.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: BitOr * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the bit-wise OR of the
+** two elements.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: ShiftLeft * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the top element shifted
+** left by N bits where N is the second element on the stack.
+** If either operand is NULL, the result is NULL.
+*/
+/* Opcode: ShiftRight * * *
+**
+** Pop the top two elements from the stack. Convert both elements
+** to integers. Push back onto the stack the top element shifted
+** right by N bits where N is the second element on the stack.
+** If either operand is NULL, the result is NULL.
+*/
+case OP_BitAnd:
+case OP_BitOr:
+case OP_ShiftLeft:
+case OP_ShiftRight: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ int a, b;
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ if( (aStack[tos].flags | aStack[nos].flags) & STK_Null ){
+ POPSTACK;
+ Release(p,nos);
+ aStack[nos].flags = STK_Null;
+ break;
+ }
+ Integerify(p, tos);
+ Integerify(p, nos);
+ a = aStack[tos].i;
+ b = aStack[nos].i;
+ switch( pOp->opcode ){
+ case OP_BitAnd: a &= b; break;
+ case OP_BitOr: a |= b; break;
+ case OP_ShiftLeft: a <<= b; break;
+ case OP_ShiftRight: a >>= b; break;
+ default: /* CANT HAPPEN */ break;
+ }
+ POPSTACK;
+ Release(p, nos);
+ aStack[nos].i = a;
+ aStack[nos].flags = STK_Int;
+ break;
+}
+
+/* Opcode: AddImm P1 * *
+**
+** Add the value P1 to whatever is on top of the stack. The result
+** is always an integer.
+**
+** To force the top of the stack to be an integer, just add 0.
+*/
+case OP_AddImm: {
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ Integerify(p, tos);
+ aStack[tos].i += pOp->p1;
+ break;
+}
+
+/* Opcode: MustBeInt P1 P2 *
+**
+** Force the top of the stack to be an integer. If the top of the
+** stack is not an integer and cannot be converted into an integer
+** with out data loss, then jump immediately to P2, or if P2==0
+** raise an SQLITE_MISMATCH exception.
+**
+** If the top of the stack is not an integer and P2 is not zero and
+** P1 is 1, then the stack is popped. In all other cases, the depth
+** of the stack is unchanged.
+*/
+case OP_MustBeInt: {
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( aStack[tos].flags & STK_Int ){
+ /* Do nothing */
+ }else if( aStack[tos].flags & STK_Real ){
+ int i = aStack[tos].r;
+ double r = i;
+ if( r!=aStack[tos].r ){
+ goto mismatch;
+ }
+ aStack[tos].i = i;
+ }else if( aStack[tos].flags & STK_Str ){
+ int v;
+ if( !toInt(zStack[tos], &v) ){
+ goto mismatch;
+ }
+ p->aStack[tos].i = v;
+ }else{
+ goto mismatch;
+ }
+ Release(p, tos);
+ p->aStack[tos].flags = STK_Int;
+ break;
+
+mismatch:
+ if( pOp->p2==0 ){
+ rc = SQLITE_MISMATCH;
+ goto abort_due_to_error;
+ }else{
+ if( pOp->p1 ) POPSTACK;
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: Eq P1 P2 *
+**
+** Pop the top two elements from the stack. If they are equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared for equality that way. Otherwise the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrEq.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Ne P1 P2 *
+**
+** Pop the top two elements from the stack. If they are not equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Otherwise the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrNe.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Lt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than the first (the top of stack), then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+** In other words, jump if NOS<TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrLt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Le P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS<=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrLe.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Gt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is greater than the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrGt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: Ge P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the next
+** on stack) is greater than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** If both values are numeric, they are converted to doubles using atof()
+** and compared in that format. Numeric values are always less than
+** non-numeric values. If both operands are non-numeric, the strcmp() library
+** routine is used for the comparison. For a pure text comparison
+** use OP_StrGe.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+case OP_Eq:
+case OP_Ne:
+case OP_Lt:
+case OP_Le:
+case OP_Gt:
+case OP_Ge: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ int c, v;
+ int ft, fn;
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ ft = aStack[tos].flags;
+ fn = aStack[nos].flags;
+ if( (ft | fn) & STK_Null ){
+ POPSTACK;
+ POPSTACK;
+ if( pOp->p2 ){
+ if( pOp->p1 ) pc = pOp->p2-1;
+ }else{
+ p->tos++;
+ aStack[nos].flags = STK_Null;
+ }
+ break;
+ }else if( (ft & fn & STK_Int)==STK_Int ){
+ c = aStack[nos].i - aStack[tos].i;
+ }else if( (ft & STK_Int)!=0 && (fn & STK_Str)!=0 && toInt(zStack[nos],&v) ){
+ Release(p, nos);
+ aStack[nos].i = v;
+ aStack[nos].flags = STK_Int;
+ c = aStack[nos].i - aStack[tos].i;
+ }else if( (fn & STK_Int)!=0 && (ft & STK_Str)!=0 && toInt(zStack[tos],&v) ){
+ Release(p, tos);
+ aStack[tos].i = v;
+ aStack[tos].flags = STK_Int;
+ c = aStack[nos].i - aStack[tos].i;
+ }else{
+ Stringify(p, tos);
+ Stringify(p, nos);
+ c = sqliteCompare(zStack[nos], zStack[tos]);
+ }
+ switch( pOp->opcode ){
+ case OP_Eq: c = c==0; break;
+ case OP_Ne: c = c!=0; break;
+ case OP_Lt: c = c<0; break;
+ case OP_Le: c = c<=0; break;
+ case OP_Gt: c = c>0; break;
+ default: c = c>=0; break;
+ }
+ POPSTACK;
+ POPSTACK;
+ if( pOp->p2 ){
+ if( c ) pc = pOp->p2-1;
+ }else{
+ p->tos++;
+ aStack[nos].flags = STK_Int;
+ aStack[nos].i = c;
+ }
+ break;
+}
+/* INSERT NO CODE HERE!
+**
+** The opcode numbers are extracted from this source file by doing
+**
+** grep '^case OP_' vdbe.c | ... >opcodes.h
+**
+** The opcodes are numbered in the order that they appear in this file.
+** But in order for the expression generating code to work right, the
+** string comparison operators that follow must be numbered exactly 6
+** greater than the numeric comparison opcodes above. So no other
+** cases can appear between the two.
+*/
+/* Opcode: StrEq P1 P2 *
+**
+** Pop the top two elements from the stack. If they are equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Eq.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrNe P1 P2 *
+**
+** Pop the top two elements from the stack. If they are not equal, then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Ne.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrLt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than the first (the top of stack), then
+** jump to instruction P2. Otherwise, continue to the next instruction.
+** In other words, jump if NOS<TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Lt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrLe P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is less than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS<=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Le.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrGt P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the
+** next on stack) is greater than the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Gt.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+/* Opcode: StrGe P1 P2 *
+**
+** Pop the top two elements from the stack. If second element (the next
+** on stack) is greater than or equal to the first (the top of stack),
+** then jump to instruction P2. In other words, jump if NOS>=TOS.
+**
+** If either operand is NULL (and thus if the result is unknown) then
+** take the jump if P1 is true.
+**
+** The strcmp() library routine is used for the comparison. For a
+** numeric comparison, use OP_Ge.
+**
+** If P2 is zero, do not jump. Instead, push an integer 1 onto the
+** stack if the jump would have been taken, or a 0 if not. Push a
+** NULL if either operand was NULL.
+*/
+case OP_StrEq:
+case OP_StrNe:
+case OP_StrLt:
+case OP_StrLe:
+case OP_StrGt:
+case OP_StrGe: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ int c;
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ if( (aStack[nos].flags | aStack[tos].flags) & STK_Null ){
+ POPSTACK;
+ POPSTACK;
+ if( pOp->p2 ){
+ if( pOp->p1 ) pc = pOp->p2-1;
+ }else{
+ p->tos++;
+ aStack[nos].flags = STK_Null;
+ }
+ break;
+ }else{
+ Stringify(p, tos);
+ Stringify(p, nos);
+ c = strcmp(zStack[nos], zStack[tos]);
+ }
+ /* The asserts on each case of the following switch are there to verify
+ ** that string comparison opcodes are always exactly 6 greater than the
+ ** corresponding numeric comparison opcodes. The code generator depends
+ ** on this fact.
+ */
+ switch( pOp->opcode ){
+ case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break;
+ case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break;
+ case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break;
+ case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break;
+ case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break;
+ default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break;
+ }
+ POPSTACK;
+ POPSTACK;
+ if( pOp->p2 ){
+ if( c ) pc = pOp->p2-1;
+ }else{
+ p->tos++;
+ aStack[nos].flags = STK_Int;
+ aStack[nos].i = c;
+ }
+ break;
+}
+
+/* Opcode: And * * *
+**
+** Pop two values off the stack. Take the logical AND of the
+** two values and push the resulting boolean value back onto the
+** stack.
+*/
+/* Opcode: Or * * *
+**
+** Pop two values off the stack. Take the logical OR of the
+** two values and push the resulting boolean value back onto the
+** stack.
+*/
+case OP_And:
+case OP_Or: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
+
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ if( aStack[tos].flags & STK_Null ){
+ v1 = 2;
+ }else{
+ Integerify(p, tos);
+ v1 = aStack[tos].i==0;
+ }
+ if( aStack[nos].flags & STK_Null ){
+ v2 = 2;
+ }else{
+ Integerify(p, nos);
+ v2 = aStack[nos].i==0;
+ }
+ if( pOp->opcode==OP_And ){
+ static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
+ v1 = and_logic[v1*3+v2];
+ }else{
+ static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
+ v1 = or_logic[v1*3+v2];
+ }
+ POPSTACK;
+ Release(p, nos);
+ if( v1==2 ){
+ aStack[nos].flags = STK_Null;
+ }else{
+ aStack[nos].i = v1==0;
+ aStack[nos].flags = STK_Int;
+ }
+ break;
+}
+
+/* Opcode: Negative * * *
+**
+** Treat the top of the stack as a numeric quantity. Replace it
+** with its additive inverse. If the top of the stack is NULL
+** its value is unchanged.
+*/
+/* Opcode: AbsValue * * *
+**
+** Treat the top of the stack as a numeric quantity. Replace it
+** with its absolute value. If the top of the stack is NULL
+** its value is unchanged.
+*/
+case OP_Negative:
+case OP_AbsValue: {
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( aStack[tos].flags & STK_Real ){
+ Release(p, tos);
+ if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){
+ aStack[tos].r = -aStack[tos].r;
+ }
+ aStack[tos].flags = STK_Real;
+ }else if( aStack[tos].flags & STK_Int ){
+ Release(p, tos);
+ if( pOp->opcode==OP_Negative || aStack[tos].i<0 ){
+ aStack[tos].i = -aStack[tos].i;
+ }
+ aStack[tos].flags = STK_Int;
+ }else if( aStack[tos].flags & STK_Null ){
+ /* Do nothing */
+ }else{
+ Realify(p, tos);
+ Release(p, tos);
+ if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){
+ aStack[tos].r = -aStack[tos].r;
+ }
+ aStack[tos].flags = STK_Real;
+ }
+ break;
+}
+
+/* Opcode: Not * * *
+**
+** Interpret the top of the stack as a boolean value. Replace it
+** with its complement. If the top of the stack is NULL its value
+** is unchanged.
+*/
+case OP_Not: {
+ int tos = p->tos;
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ if( aStack[tos].flags & STK_Null ) break; /* Do nothing to NULLs */
+ Integerify(p, tos);
+ Release(p, tos);
+ aStack[tos].i = !aStack[tos].i;
+ aStack[tos].flags = STK_Int;
+ break;
+}
+
+/* Opcode: BitNot * * *
+**
+** Interpret the top of the stack as an value. Replace it
+** with its ones-complement. If the top of the stack is NULL its
+** value is unchanged.
+*/
+case OP_BitNot: {
+ int tos = p->tos;
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ if( aStack[tos].flags & STK_Null ) break; /* Do nothing to NULLs */
+ Integerify(p, tos);
+ Release(p, tos);
+ aStack[tos].i = ~aStack[tos].i;
+ aStack[tos].flags = STK_Int;
+ break;
+}
+
+/* Opcode: Noop * * *
+**
+** Do nothing. This instruction is often useful as a jump
+** destination.
+*/
+case OP_Noop: {
+ break;
+}
+
+/* Opcode: If P1 P2 *
+**
+** Pop a single boolean from the stack. If the boolean popped is
+** true, then jump to p2. Otherwise continue to the next instruction.
+** An integer is false if zero and true otherwise. A string is
+** false if it has zero length and true otherwise.
+**
+** If the value popped of the stack is NULL, then take the jump if P1
+** is true and fall through if P1 is false.
+*/
+/* Opcode: IfNot P1 P2 *
+**
+** Pop a single boolean from the stack. If the boolean popped is
+** false, then jump to p2. Otherwise continue to the next instruction.
+** An integer is false if zero and true otherwise. A string is
+** false if it has zero length and true otherwise.
+**
+** If the value popped of the stack is NULL, then take the jump if P1
+** is true and fall through if P1 is false.
+*/
+case OP_If:
+case OP_IfNot: {
+ int c;
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ if( aStack[p->tos].flags & STK_Null ){
+ c = pOp->p1;
+ }else{
+ Integerify(p, p->tos);
+ c = aStack[p->tos].i;
+ if( pOp->opcode==OP_IfNot ) c = !c;
+ }
+ POPSTACK;
+ if( c ) pc = pOp->p2-1;
+ break;
+}
+
+/* Opcode: IsNull P1 P2 *
+**
+** If any of the top abs(P1) values on the stack are NULL, then jump
+** to P2. The stack is popped P1 times if P1>0. If P1<0 then all values
+** are left unchanged on the stack.
+*/
+case OP_IsNull: {
+ int i, cnt;
+ cnt = pOp->p1;
+ if( cnt<0 ) cnt = -cnt;
+ VERIFY( if( p->tos+1-cnt<0 ) goto not_enough_stack; )
+ for(i=0; i<cnt; i++){
+ if( aStack[p->tos-i].flags & STK_Null ){
+ pc = pOp->p2-1;
+ break;
+ }
+ }
+ if( pOp->p1>0 ) PopStack(p, cnt);
+ break;
+}
+
+/* Opcode: NotNull P1 P2 *
+**
+** Jump to P2 if the top value on the stack is not NULL. Pop the
+** stack if P1 is greater than zero. If P1 is less than or equal to
+** zero then leave the value on the stack.
+*/
+case OP_NotNull: {
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ if( (aStack[p->tos].flags & STK_Null)==0 ) pc = pOp->p2-1;
+ if( pOp->p1>0 ){ POPSTACK; }
+ break;
+}
+
+/* Opcode: MakeRecord P1 P2 *
+**
+** Convert the top P1 entries of the stack into a single entry
+** suitable for use as a data record in a database table. The
+** details of the format are irrelavant as long as the OP_Column
+** opcode can decode the record later. Refer to source code
+** comments for the details of the record format.
+**
+** If P2 is true (non-zero) and one or more of the P1 entries
+** that go into building the record is NULL, then add some extra
+** bytes to the record to make it distinct for other entries created
+** during the same run of the VDBE. The extra bytes added are a
+** counter that is reset with each run of the VDBE, so records
+** created this way will not necessarily be distinct across runs.
+** But they should be distinct for transient tables (created using
+** OP_OpenTemp) which is what they are intended for.
+**
+** (Later:) The P2==1 option was intended to make NULLs distinct
+** for the UNION operator. But I have since discovered that NULLs
+** are indistinct for UNION. So this option is never used.
+*/
+case OP_MakeRecord: {
+ char *zNewRecord;
+ int nByte;
+ int nField;
+ int i, j;
+ int idxWidth;
+ u32 addr;
+ int addUnique = 0; /* True to cause bytes to be added to make the
+ ** generated record distinct */
+ char zTemp[NBFS]; /* Temp space for small records */
+
+ /* Assuming the record contains N fields, the record format looks
+ ** like this:
+ **
+ ** -------------------------------------------------------------------
+ ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
+ ** -------------------------------------------------------------------
+ **
+ ** All data fields are converted to strings before being stored and
+ ** are stored with their null terminators. NULL entries omit the
+ ** null terminator. Thus an empty string uses 1 byte and a NULL uses
+ ** zero bytes. Data(0) is taken from the lowest element of the stack
+ ** and data(N-1) is the top of the stack.
+ **
+ ** Each of the idx() entries is either 1, 2, or 3 bytes depending on
+ ** how big the total record is. Idx(0) contains the offset to the start
+ ** of data(0). Idx(k) contains the offset to the start of data(k).
+ ** Idx(N) contains the total number of bytes in the record.
+ */
+ nField = pOp->p1;
+ VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
+ nByte = 0;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null) ){
+ addUnique = pOp->p2;
+ }else{
+ Stringify(p, i);
+ nByte += aStack[i].n;
+ }
+ }
+ if( addUnique ) nByte += sizeof(p->uniqueCnt);
+ if( nByte + nField + 1 < 256 ){
+ idxWidth = 1;
+ }else if( nByte + 2*nField + 2 < 65536 ){
+ idxWidth = 2;
+ }else{
+ idxWidth = 3;
+ }
+ nByte += idxWidth*(nField + 1);
+ if( nByte>MAX_BYTES_PER_ROW ){
+ rc = SQLITE_TOOBIG;
+ goto abort_due_to_error;
+ }
+ if( nByte<=NBFS ){
+ zNewRecord = zTemp;
+ }else{
+ zNewRecord = sqliteMallocRaw( nByte );
+ if( zNewRecord==0 ) goto no_mem;
+ }
+ j = 0;
+ addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ zNewRecord[j++] = addr & 0xff;
+ if( idxWidth>1 ){
+ zNewRecord[j++] = (addr>>8)&0xff;
+ if( idxWidth>2 ){
+ zNewRecord[j++] = (addr>>16)&0xff;
+ }
+ }
+ if( (aStack[i].flags & STK_Null)==0 ){
+ addr += aStack[i].n;
+ }
+ }
+ zNewRecord[j++] = addr & 0xff;
+ if( idxWidth>1 ){
+ zNewRecord[j++] = (addr>>8)&0xff;
+ if( idxWidth>2 ){
+ zNewRecord[j++] = (addr>>16)&0xff;
+ }
+ }
+ if( addUnique ){
+ memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
+ p->uniqueCnt++;
+ j += sizeof(p->uniqueCnt);
+ }
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null)==0 ){
+ memcpy(&zNewRecord[j], zStack[i], aStack[i].n);
+ j += aStack[i].n;
+ }
+ }
+ PopStack(p, nField);
+ p->tos++;
+ aStack[p->tos].n = nByte;
+ if( nByte<=NBFS ){
+ assert( zNewRecord==zTemp );
+ memcpy(aStack[p->tos].z, zTemp, nByte);
+ zStack[p->tos] = aStack[p->tos].z;
+ aStack[p->tos].flags = STK_Str;
+ }else{
+ assert( zNewRecord!=zTemp );
+ aStack[p->tos].flags = STK_Str | STK_Dyn;
+ zStack[p->tos] = zNewRecord;
+ }
+ break;
+}
+
+/* Opcode: MakeKey P1 P2 P3
+**
+** Convert the top P1 entries of the stack into a single entry suitable
+** for use as the key in an index. The top P1 records are
+** converted to strings and merged. The null-terminators
+** are retained and used as separators.
+** The lowest entry in the stack is the first field and the top of the
+** stack becomes the last.
+**
+** If P2 is not zero, then the original entries remain on the stack
+** and the new key is pushed on top. If P2 is zero, the original
+** data is popped off the stack first then the new key is pushed
+** back in its place.
+**
+** P3 is a string that is P1 characters long. Each character is either
+** an 'n' or a 't' to indicates if the argument should be numeric or
+** text. The first character corresponds to the lowest element on the
+** stack. If P3 is NULL then all arguments are assumed to be numeric.
+**
+** The key is a concatenation of fields. Each field is terminated by
+** a single 0x00 character. A NULL field is introduced by an 'a' and
+** is followed immediately by its 0x00 terminator. A numeric field is
+** introduced by a single character 'b' and is followed by a sequence
+** of characters that represent the number such that a comparison of
+** the character string using memcpy() sorts the numbers in numerical
+** order. The character strings for numbers are generated using the
+** sqliteRealToSortable() function. A text field is introduced by a
+** 'c' character and is followed by the exact text of the field. The
+** use of an 'a', 'b', or 'c' character at the beginning of each field
+** guarantees that NULL sort before numbers and that numbers sort
+** before text. 0x00 characters do not occur except as separators
+** between fields.
+**
+** See also: MakeIdxKey, SortMakeKey
+*/
+/* Opcode: MakeIdxKey P1 P2 P3
+**
+** Convert the top P1 entries of the stack into a single entry suitable
+** for use as the key in an index. In addition, take one additional integer
+** off of the stack, treat that integer as a four-byte record number, and
+** append the four bytes to the key. Thus a total of P1+1 entries are
+** popped from the stack for this instruction and a single entry is pushed
+** back. The first P1 entries that are popped are strings and the last
+** entry (the lowest on the stack) is an integer record number.
+**
+** The converstion of the first P1 string entries occurs just like in
+** MakeKey. Each entry is separated from the others by a null.
+** The entire concatenation is null-terminated. The lowest entry
+** in the stack is the first field and the top of the stack becomes the
+** last.
+**
+** If P2 is not zero and one or more of the P1 entries that go into the
+** generated key is NULL, then jump to P2 after the new key has been
+** pushed on the stack. In other words, jump to P2 if the key is
+** guaranteed to be unique. This jump can be used to skip a subsequent
+** uniqueness test.
+**
+** P3 is a string that is P1 characters long. Each character is either
+** an 'n' or a 't' to indicates if the argument should be numeric or
+** text. The first character corresponds to the lowest element on the
+** stack. If P3 is null then all arguments are assumed to be numeric.
+**
+** See also: MakeKey, SortMakeKey
+*/
+case OP_MakeIdxKey:
+case OP_MakeKey: {
+ char *zNewKey;
+ int nByte;
+ int nField;
+ int addRowid;
+ int i, j;
+ int containsNull = 0;
+ char zTemp[NBFS];
+
+ addRowid = pOp->opcode==OP_MakeIdxKey;
+ nField = pOp->p1;
+ VERIFY( if( p->tos+1+addRowid<nField ) goto not_enough_stack; )
+ nByte = 0;
+ for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){
+ int flags = aStack[i].flags;
+ int len;
+ char *z;
+ if( flags & STK_Null ){
+ nByte += 2;
+ containsNull = 1;
+ }else if( pOp->p3 && pOp->p3[j]=='t' ){
+ Stringify(p, i);
+ aStack[i].flags &= ~(STK_Int|STK_Real);
+ nByte += aStack[i].n+1;
+ }else if( (flags & (STK_Real|STK_Int))!=0 || isNumber(zStack[i]) ){
+ if( (flags & (STK_Real|STK_Int))==STK_Int ){
+ aStack[i].r = aStack[i].i;
+ }else if( (flags & (STK_Real|STK_Int))==0 ){
+ aStack[i].r = atof(zStack[i]);
+ }
+ Release(p, i);
+ z = aStack[i].z;
+ sqliteRealToSortable(aStack[i].r, z);
+ len = strlen(z);
+ zStack[i] = 0;
+ aStack[i].flags = STK_Real;
+ aStack[i].n = len+1;
+ nByte += aStack[i].n+1;
+ }else{
+ nByte += aStack[i].n+1;
+ }
+ }
+ if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
+ rc = SQLITE_TOOBIG;
+ goto abort_due_to_error;
+ }
+ if( addRowid ) nByte += sizeof(u32);
+ if( nByte<=NBFS ){
+ zNewKey = zTemp;
+ }else{
+ zNewKey = sqliteMallocRaw( nByte );
+ if( zNewKey==0 ) goto no_mem;
+ }
+ j = 0;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( aStack[i].flags & STK_Null ){
+ zNewKey[j++] = 'a';
+ zNewKey[j++] = 0;
+ }else{
+ if( aStack[i].flags & (STK_Int|STK_Real) ){
+ zNewKey[j++] = 'b';
+ }else{
+ zNewKey[j++] = 'c';
+ }
+ memcpy(&zNewKey[j], zStack[i] ? zStack[i] : aStack[i].z, aStack[i].n);
+ j += aStack[i].n;
+ }
+ }
+ if( addRowid ){
+ u32 iKey;
+ Integerify(p, p->tos-nField);
+ iKey = intToKey(aStack[p->tos-nField].i);
+ memcpy(&zNewKey[j], &iKey, sizeof(u32));
+ PopStack(p, nField+1);
+ if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
+ }else{
+ if( pOp->p2==0 ) PopStack(p, nField+addRowid);
+ }
+ p->tos++;
+ aStack[p->tos].n = nByte;
+ if( nByte<=NBFS ){
+ assert( zNewKey==zTemp );
+ zStack[p->tos] = aStack[p->tos].z;
+ memcpy(zStack[p->tos], zTemp, nByte);
+ aStack[p->tos].flags = STK_Str;
+ }else{
+ aStack[p->tos].flags = STK_Str|STK_Dyn;
+ zStack[p->tos] = zNewKey;
+ }
+ break;
+}
+
+/* Opcode: IncrKey * * *
+**
+** The top of the stack should contain an index key generated by
+** The MakeKey opcode. This routine increases the least significant
+** byte of that key by one. This is used so that the MoveTo opcode
+** will move to the first entry greater than the key rather than to
+** the key itself.
+*/
+case OP_IncrKey: {
+ int tos = p->tos;
+
+ VERIFY( if( tos<0 ) goto bad_instruction );
+ Stringify(p, tos);
+ if( aStack[tos].flags & (STK_Static|STK_Ephem) ){
+ /* CANT HAPPEN. The IncrKey opcode is only applied to keys
+ ** generated by MakeKey or MakeIdxKey and the results of those
+ ** operands are always dynamic strings.
+ */
+ goto abort_due_to_error;
+ }
+ zStack[tos][aStack[tos].n-1]++;
+ break;
+}
+
+/* Opcode: Checkpoint * * *
+**
+** Begin a checkpoint. A checkpoint is the beginning of a operation that
+** is part of a larger transaction but which might need to be rolled back
+** itself without effecting the containing transaction. A checkpoint will
+** be automatically committed or rollback when the VDBE halts.
+*/
+case OP_Checkpoint: {
+ rc = sqliteBtreeBeginCkpt(pBt);
+ if( rc==SQLITE_OK && db->pBeTemp ){
+ rc = sqliteBtreeBeginCkpt(db->pBeTemp);
+ }
+ break;
+}
+
+/* Opcode: Transaction P1 * *
+**
+** Begin a transaction. The transaction ends when a Commit or Rollback
+** opcode is encountered. Depending on the ON CONFLICT setting, the
+** transaction might also be rolled back if an error is encountered.
+**
+** If P1 is true, then the transaction is started on the temporary
+** tables of the database only. The main database file is not write
+** locked and other processes can continue to read the main database
+** file.
+**
+** A write lock is obtained on the database file when a transaction is
+** started. No other process can read or write the file while the
+** transaction is underway. Starting a transaction also creates a
+** rollback journal. A transaction must be started before any changes
+** can be made to the database.
+*/
+case OP_Transaction: {
+ int busy = 1;
+ if( db->pBeTemp && !p->inTempTrans ){
+ rc = sqliteBtreeBeginTrans(db->pBeTemp);
+ if( rc!=SQLITE_OK ){
+ goto abort_due_to_error;
+ }
+ p->inTempTrans = 1;
+ }
+ while( pOp->p1==0 && busy ){
+ rc = sqliteBtreeBeginTrans(pBt);
+ switch( rc ){
+ case SQLITE_BUSY: {
+ if( db->xBusyCallback==0 ){
+ p->pc = pc;
+ p->undoTransOnError = 1;
+ p->rc = SQLITE_BUSY;
+ return SQLITE_BUSY;
+ }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0);
+ busy = 0;
+ }
+ break;
+ }
+ case SQLITE_READONLY: {
+ rc = SQLITE_OK;
+ /* Fall thru into the next case */
+ }
+ case SQLITE_OK: {
+ p->inTempTrans = 0;
+ busy = 0;
+ break;
+ }
+ default: {
+ goto abort_due_to_error;
+ }
+ }
+ }
+ p->undoTransOnError = 1;
+ break;
+}
+
+/* Opcode: Commit * * *
+**
+** Cause all modifications to the database that have been made since the
+** last Transaction to actually take effect. No additional modifications
+** are allowed until another transaction is started. The Commit instruction
+** deletes the journal file and releases the write lock on the database.
+** A read lock continues to be held if there are still cursors open.
+*/
+case OP_Commit: {
+ if( db->pBeTemp==0 || (rc = sqliteBtreeCommit(db->pBeTemp))==SQLITE_OK ){
+ rc = p->inTempTrans ? SQLITE_OK : sqliteBtreeCommit(pBt);
+ }
+ if( rc==SQLITE_OK ){
+ sqliteCommitInternalChanges(db);
+ }else{
+ if( db->pBeTemp ) sqliteBtreeRollback(db->pBeTemp);
+ sqliteBtreeRollback(pBt);
+ sqliteRollbackInternalChanges(db);
+ }
+ p->inTempTrans = 0;
+ break;
+}
+
+/* Opcode: Rollback * * *
+**
+** Cause all modifications to the database that have been made since the
+** last Transaction to be undone. The database is restored to its state
+** before the Transaction opcode was executed. No additional modifications
+** are allowed until another transaction is started.
+**
+** This instruction automatically closes all cursors and releases both
+** the read and write locks on the database.
+*/
+case OP_Rollback: {
+ if( db->pBeTemp ){
+ sqliteBtreeRollback(db->pBeTemp);
+ }
+ rc = sqliteBtreeRollback(pBt);
+ sqliteRollbackInternalChanges(db);
+ break;
+}
+
+/* Opcode: ReadCookie * P2 *
+**
+** When P2==0,
+** read the schema cookie from the database file and push it onto the
+** stack. The schema cookie is an integer that is used like a version
+** number for the database schema. Everytime the schema changes, the
+** cookie changes to a new random value. This opcode is used during
+** initialization to read the initial cookie value so that subsequent
+** database accesses can verify that the cookie has not changed.
+**
+** If P2>0, then read global database parameter number P2. There is
+** a small fixed number of global database parameters. P2==1 is the
+** database version number. P2==2 is the recommended pager cache size.
+** Other parameters are currently unused.
+**
+** There must be a read-lock on the database (either a transaction
+** must be started or there must be an open cursor) before
+** executing this instruction.
+*/
+case OP_ReadCookie: {
+ int i = ++p->tos;
+ int aMeta[SQLITE_N_BTREE_META];
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ rc = sqliteBtreeGetMeta(pBt, aMeta);
+ aStack[i].i = aMeta[1+pOp->p2];
+ aStack[i].flags = STK_Int;
+ break;
+}
+
+/* Opcode: SetCookie * P2 *
+**
+** When P2==0,
+** this operation changes the value of the schema cookie on the database.
+** The new value is top of the stack.
+** When P2>0, the value of global database parameter
+** number P2 is changed. See ReadCookie for more information about
+** global database parametes.
+**
+** The schema cookie changes its value whenever the database schema changes.
+** That way, other processes can recognize when the schema has changed
+** and reread it.
+**
+** A transaction must be started before executing this opcode.
+*/
+case OP_SetCookie: {
+ int aMeta[SQLITE_N_BTREE_META];
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ Integerify(p, p->tos)
+ rc = sqliteBtreeGetMeta(pBt, aMeta);
+ if( rc==SQLITE_OK ){
+ aMeta[1+pOp->p2] = aStack[p->tos].i;
+ rc = sqliteBtreeUpdateMeta(pBt, aMeta);
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: VerifyCookie P1 P2 *
+**
+** Check the value of global database parameter number P2 and make
+** sure it is equal to P1. P2==0 is the schema cookie. P1==1 is
+** the database version. If the values do not match, abort with
+** an SQLITE_SCHEMA error.
+**
+** The cookie changes its value whenever the database schema changes.
+** This operation is used to detect when that the cookie has changed
+** and that the current process needs to reread the schema.
+**
+** Either a transaction needs to have been started or an OP_Open needs
+** to be executed (to establish a read lock) before this opcode is
+** invoked.
+*/
+case OP_VerifyCookie: {
+ int aMeta[SQLITE_N_BTREE_META];
+ assert( pOp->p2<SQLITE_N_BTREE_META );
+ rc = sqliteBtreeGetMeta(pBt, aMeta);
+ if( rc==SQLITE_OK && aMeta[1+pOp->p2]!=pOp->p1 ){
+ sqliteSetString(&p->zErrMsg, "database schema has changed", 0);
+ rc = SQLITE_SCHEMA;
+ }
+ break;
+}
+
+/* Opcode: Open P1 P2 P3
+**
+** Open a read-only cursor for the database table whose root page is
+** P2 in the main database file. Give the new cursor an identifier
+** of P1. The P1 values need not be contiguous but all P1 values
+** should be small integers. It is an error for P1 to be negative.
+**
+** If P2==0 then take the root page number from the top of the stack.
+**
+** There will be a read lock on the database whenever there is an
+** open cursor. If the database was unlocked prior to this instruction
+** then a read lock is acquired as part of this instruction. A read
+** lock allows other processes to read the database but prohibits
+** any other process from modifying the database. The read lock is
+** released when all cursors are closed. If this instruction attempts
+** to get a read lock but fails, the script terminates with an
+** SQLITE_BUSY error code.
+**
+** The P3 value is the name of the table or index being opened.
+** The P3 value is not actually used by this opcode and may be
+** omitted. But the code generator usually inserts the index or
+** table name into P3 to make the code easier to read.
+**
+** See also OpenAux and OpenWrite.
+*/
+/* Opcode: OpenAux P1 P2 P3
+**
+** Open a read-only cursor in the auxiliary table set. This opcode
+** works exactly like OP_Open except that it opens the cursor on the
+** auxiliary table set (the file used to store tables created using
+** CREATE TEMPORARY TABLE) instead of in the main database file.
+** See OP_Open for additional information.
+*/
+/* Opcode: OpenWrite P1 P2 P3
+**
+** Open a read/write cursor named P1 on the table or index whose root
+** page is P2. If P2==0 then take the root page number from the stack.
+**
+** This instruction works just like Open except that it opens the cursor
+** in read/write mode. For a given table, there can be one or more read-only
+** cursors or a single read/write cursor but not both.
+**
+** See also OpWrAux.
+*/
+/* Opcode: OpenWrAux P1 P2 P3
+**
+** Open a read/write cursor in the auxiliary table set. This opcode works
+** just like OpenWrite except that the auxiliary table set (the file used
+** to store tables created using CREATE TEMPORARY TABLE) is used in place
+** of the main database file.
+*/
+case OP_OpenAux:
+case OP_OpenWrAux:
+case OP_OpenWrite:
+case OP_Open: {
+ int busy = 0;
+ int i = pOp->p1;
+ int tos = p->tos;
+ int p2 = pOp->p2;
+ int wrFlag;
+ Btree *pX;
+ switch( pOp->opcode ){
+ case OP_Open: wrFlag = 0; pX = pBt; break;
+ case OP_OpenWrite: wrFlag = 1; pX = pBt; break;
+ case OP_OpenAux: wrFlag = 0; pX = db->pBeTemp; break;
+ case OP_OpenWrAux: wrFlag = 1; pX = db->pBeTemp; break;
+ }
+ if( p2<=0 ){
+ if( tos<0 ) goto not_enough_stack;
+ Integerify(p, tos);
+ p2 = p->aStack[tos].i;
+ POPSTACK;
+ if( p2<2 ){
+ sqliteSetString(&p->zErrMsg, "root page number less than 2", 0);
+ rc = SQLITE_INTERNAL;
+ break;
+ }
+ }
+ VERIFY( if( i<0 ) goto bad_instruction; )
+ if( expandCursorArraySize(p, i) ) goto no_mem;
+ cleanupCursor(&p->aCsr[i]);
+ memset(&p->aCsr[i], 0, sizeof(Cursor));
+ p->aCsr[i].nullRow = 1;
+ if( pX==0 ) break;
+ do{
+ rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
+ switch( rc ){
+ case SQLITE_BUSY: {
+ if( db->xBusyCallback==0 ){
+ p->pc = pc;
+ p->rc = SQLITE_BUSY;
+ return SQLITE_BUSY;
+ }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0);
+ busy = 0;
+ }
+ break;
+ }
+ case SQLITE_OK: {
+ busy = 0;
+ break;
+ }
+ default: {
+ goto abort_due_to_error;
+ }
+ }
+ }while( busy );
+ if( p2<=0 ){
+ POPSTACK;
+ }
+ break;
+}
+
+/* Opcode: OpenTemp P1 P2 *
+**
+** Open a new cursor that points to a table or index in a temporary
+** database file. The temporary file is opened read/write even if
+** the main database is read-only. The temporary file is deleted
+** when the cursor is closed.
+**
+** The cursor points to a BTree table if P2==0 and to a BTree index
+** if P2==1. A BTree table must have an integer key and can have arbitrary
+** data. A BTree index has no data but can have an arbitrary key.
+**
+** This opcode is used for tables that exist for the duration of a single
+** SQL statement only. Tables created using CREATE TEMPORARY TABLE
+** are opened using OP_OpenAux or OP_OpenWrAux. "Temporary" in the
+** context of this opcode means for the duration of a single SQL statement
+** whereas "Temporary" in the context of CREATE TABLE means for the duration
+** of the connection to the database. Same word; different meanings.
+*/
+case OP_OpenTemp: {
+ int i = pOp->p1;
+ Cursor *pCx;
+ VERIFY( if( i<0 ) goto bad_instruction; )
+ if( expandCursorArraySize(p, i) ) goto no_mem;
+ pCx = &p->aCsr[i];
+ cleanupCursor(pCx);
+ memset(pCx, 0, sizeof(*pCx));
+ pCx->nullRow = 1;
+ rc = sqliteBtreeOpen(0, 1, TEMP_PAGES, &pCx->pBt);
+ if( rc==SQLITE_OK ){
+ rc = sqliteBtreeBeginTrans(pCx->pBt);
+ }
+ if( rc==SQLITE_OK ){
+ if( pOp->p2 ){
+ int pgno;
+ rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
+ if( rc==SQLITE_OK ){
+ rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
+ }
+ }else{
+ rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
+ }
+ }
+ break;
+}
+
+/*
+** Opcode: RenameCursor P1 P2 *
+**
+** Rename cursor number P1 as cursor number P2. If P2 was previously
+** opened is is closed before the renaming occurs.
+*/
+case OP_RenameCursor: {
+ int from = pOp->p1;
+ int to = pOp->p2;
+ VERIFY( if( from<0 || to<0 ) goto bad_instruction; )
+ if( to<p->nCursor && p->aCsr[to].pCursor ){
+ cleanupCursor(&p->aCsr[to]);
+ }
+ expandCursorArraySize(p, to);
+ if( from<p->nCursor ){
+ memcpy(&p->aCsr[to], &p->aCsr[from], sizeof(p->aCsr[0]));
+ memset(&p->aCsr[from], 0, sizeof(p->aCsr[0]));
+ }
+ break;
+}
+
+/* Opcode: Close P1 * *
+**
+** Close a cursor previously opened as P1. If P1 is not
+** currently open, this instruction is a no-op.
+*/
+case OP_Close: {
+ int i = pOp->p1;
+ if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor ){
+ cleanupCursor(&p->aCsr[i]);
+ }
+ break;
+}
+
+/* Opcode: MoveTo P1 P2 *
+**
+** Pop the top of the stack and use its value as a key. Reposition
+** cursor P1 so that it points to an entry with a matching key. If
+** the table contains no record with a matching key, then the cursor
+** is left pointing at the first record that is greater than the key.
+** If there are no records greater than the key and P2 is not zero,
+** then an immediate jump to P2 is made.
+**
+** See also: Found, NotFound, Distinct, MoveLt
+*/
+/* Opcode: MoveLt P1 P2 *
+**
+** Pop the top of the stack and use its value as a key. Reposition
+** cursor P1 so that it points to the entry with the largest key that is
+** less than the key popped from the stack.
+** If there are no records less than than the key and P2
+** is not zero then an immediate jump to P2 is made.
+**
+** See also: MoveTo
+*/
+case OP_MoveLt:
+case OP_MoveTo: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ Cursor *pC;
+
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( i>=0 && i<p->nCursor && (pC = &p->aCsr[i])->pCursor!=0 ){
+ int res, oc;
+ if( aStack[tos].flags & STK_Int ){
+ int iKey = intToKey(aStack[tos].i);
+ sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
+ pC->lastRecno = aStack[tos].i;
+ pC->recnoIsValid = res==0;
+ }else{
+ Stringify(p, tos);
+ sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res);
+ pC->recnoIsValid = 0;
+ }
+ pC->nullRow = 0;
+ sqlite_search_count++;
+ oc = pOp->opcode;
+ if( oc==OP_MoveTo && res<0 ){
+ sqliteBtreeNext(pC->pCursor, &res);
+ pC->recnoIsValid = 0;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }else if( oc==OP_MoveLt ){
+ if( res>=0 ){
+ sqliteBtreePrevious(pC->pCursor, &res);
+ pC->recnoIsValid = 0;
+ }else{
+ /* res might be negative because the table is empty. Check to
+ ** see if this is the case.
+ */
+ int keysize;
+ res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
+ }
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: Distinct P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key does
+** not exist in the table of cursor P1, then jump to P2. If the record
+** does already exist, then fall thru. The cursor is left pointing
+** at the record if it exists. The key is not popped from the stack.
+**
+** This operation is similar to NotFound except that this operation
+** does not pop the key from the stack.
+**
+** See also: Found, NotFound, MoveTo, IsUnique, NotExists
+*/
+/* Opcode: Found P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key
+** does exist in table of P1, then jump to P2. If the record
+** does not exist, then fall thru. The cursor is left pointing
+** to the record if it exists. The key is popped from the stack.
+**
+** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
+*/
+/* Opcode: NotFound P1 P2 *
+**
+** Use the top of the stack as a string key. If a record with that key
+** does not exist in table of P1, then jump to P2. If the record
+** does exist, then fall thru. The cursor is left pointing to the
+** record if it exists. The key is popped from the stack.
+**
+** The difference between this operation and Distinct is that
+** Distinct does not pop the key from the stack.
+**
+** See also: Distinct, Found, MoveTo, NotExists, IsUnique
+*/
+case OP_Distinct:
+case OP_NotFound:
+case OP_Found: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ int alreadyExists = 0;
+ Cursor *pC;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
+ int res, rx;
+ Stringify(p, tos);
+ rx = sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res);
+ alreadyExists = rx==SQLITE_OK && res==0;
+ }
+ if( pOp->opcode==OP_Found ){
+ if( alreadyExists ) pc = pOp->p2 - 1;
+ }else{
+ if( !alreadyExists ) pc = pOp->p2 - 1;
+ }
+ if( pOp->opcode!=OP_Distinct ){
+ POPSTACK;
+ }
+ break;
+}
+
+/* Opcode: IsUnique P1 P2 *
+**
+** The top of the stack is an integer record number. Call this
+** record number R. The next on the stack is an index key created
+** using MakeIdxKey. Call it K. This instruction pops R from the
+** stack but it leaves K unchanged.
+**
+** P1 is an index. So all but the last four bytes of K are an
+** index string. The last four bytes of K are a record number.
+**
+** This instruction asks if there is an entry in P1 where the
+** index string matches K but the record number is different
+** from R. If there is no such entry, then there is an immediate
+** jump to P2. If any entry does exist where the index string
+** matches K but the record number is not R, then the record
+** number for that entry is pushed onto the stack and control
+** falls through to the next instruction.
+**
+** See also: Distinct, NotFound, NotExists, Found
+*/
+case OP_IsUnique: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ int nos = tos-1;
+ BtCursor *pCrsr;
+ int R;
+
+ /* Pop the value R off the top of the stack
+ */
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ Integerify(p, tos);
+ R = aStack[tos].i;
+ POPSTACK;
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res, rc;
+ int v; /* The record number on the P1 entry that matches K */
+ char *zKey; /* The value of K */
+ int nKey; /* Number of bytes in K */
+
+ /* Make sure K is a string and make zKey point to K
+ */
+ Stringify(p, nos);
+ zKey = zStack[nos];
+ nKey = aStack[nos].n;
+ assert( nKey >= 4 );
+
+ /* Search for an entry in P1 where all but the last four bytes match K.
+ ** If there is no such entry, jump immediately to P2.
+ */
+ rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ if( res<0 ){
+ rc = sqliteBtreeNext(pCrsr, &res);
+ if( res ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ }
+ rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ if( res>0 ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+
+ /* At this point, pCrsr is pointing to an entry in P1 where all but
+ ** the last for bytes of the key match K. Check to see if the last
+ ** four bytes of the key are different from R. If the last four
+ ** bytes equal R then jump immediately to P2.
+ */
+ sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
+ v = keyToInt(v);
+ if( v==R ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+
+ /* The last four bytes of the key are different from R. Convert the
+ ** last four bytes of the key into an integer and push it onto the
+ ** stack. (These bytes are the record number of an entry that
+ ** violates a UNIQUE constraint.)
+ */
+ p->tos++;
+ aStack[tos].i = v;
+ aStack[tos].flags = STK_Int;
+ }
+ break;
+}
+
+/* Opcode: NotExists P1 P2 *
+**
+** Use the top of the stack as a integer key. If a record with that key
+** does not exist in table of P1, then jump to P2. If the record
+** does exist, then fall thru. The cursor is left pointing to the
+** record if it exists. The integer key is popped from the stack.
+**
+** The difference between this operation and NotFound is that this
+** operation assumes the key is an integer and NotFound assumes it
+** is a string.
+**
+** See also: Distinct, Found, MoveTo, NotFound, IsUnique
+*/
+case OP_NotExists: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ BtCursor *pCrsr;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res, rx, iKey;
+ assert( aStack[tos].flags & STK_Int );
+ iKey = intToKey(aStack[tos].i);
+ rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
+ p->aCsr[i].lastRecno = aStack[tos].i;
+ p->aCsr[i].recnoIsValid = res==0;
+ p->aCsr[i].nullRow = 0;
+ if( rx!=SQLITE_OK || res!=0 ){
+ pc = pOp->p2 - 1;
+ p->aCsr[i].recnoIsValid = 0;
+ }
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: NewRecno P1 * *
+**
+** Get a new integer record number used as the key to a table.
+** The record number is not previously used as a key in the database
+** table that cursor P1 points to. The new record number is pushed
+** onto the stack.
+*/
+case OP_NewRecno: {
+ int i = pOp->p1;
+ int v = 0;
+ Cursor *pC;
+ if( VERIFY( i<0 || i>=p->nCursor || ) (pC = &p->aCsr[i])->pCursor==0 ){
+ v = 0;
+ }else{
+ /* The next rowid or record number (different terms for the same
+ ** thing) is obtained in a two-step algorithm.
+ **
+ ** First we attempt to find the largest existing rowid and add one
+ ** to that. But if the largest existing rowid is already the maximum
+ ** positive integer, we have to fall through to the second
+ ** probabilistic algorithm
+ **
+ ** The second algorithm is to select a rowid at random and see if
+ ** it already exists in the table. If it does not exist, we have
+ ** succeeded. If the random rowid does exist, we select a new one
+ ** and try again, up to 1000 times.
+ **
+ ** For a table with less than 2 billion entries, the probability
+ ** of not finding a unused rowid is about 1.0e-300. This is a
+ ** non-zero probability, but it is still vanishingly small and should
+ ** never cause a problem. You are much, much more likely to have a
+ ** hardware failure than for this algorithm to fail.
+ **
+ ** The analysis in the previous paragraph assumes that you have a good
+ ** source of random numbers. Is a library function like lrand48()
+ ** good enough? Maybe. Maybe not. It's hard to know whether there
+ ** might be subtle bugs is some implementations of lrand48() that
+ ** could cause problems. To avoid uncertainty, SQLite uses its own
+ ** random number generator based on the RC4 algorithm.
+ **
+ ** To promote locality of reference for repetitive inserts, the
+ ** first few attempts at chosing a random rowid pick values just a little
+ ** larger than the previous rowid. This has been shown experimentally
+ ** to double the speed of the COPY operation.
+ */
+ int res, rx, cnt, x;
+ cnt = 0;
+ if( !pC->useRandomRowid ){
+ if( pC->nextRowidValid ){
+ v = pC->nextRowid;
+ }else{
+ rx = sqliteBtreeLast(pC->pCursor, &res);
+ if( res ){
+ v = 1;
+ }else{
+ sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
+ v = keyToInt(v);
+ if( v==0x7fffffff ){
+ pC->useRandomRowid = 1;
+ }else{
+ v++;
+ }
+ }
+ }
+ if( v<0x7fffffff ){
+ pC->nextRowidValid = 1;
+ pC->nextRowid = v+1;
+ }else{
+ pC->nextRowidValid = 0;
+ }
+ }
+ if( pC->useRandomRowid ){
+ v = db->priorNewRowid;
+ cnt = 0;
+ do{
+ if( v==0 || cnt>2 ){
+ v = sqliteRandomInteger();
+ if( cnt<5 ) v &= 0xffffff;
+ }else{
+ v += sqliteRandomByte() + 1;
+ }
+ if( v==0 ) continue;
+ x = intToKey(v);
+ rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
+ cnt++;
+ }while( cnt<1000 && rx==SQLITE_OK && res==0 );
+ db->priorNewRowid = v;
+ if( rx==SQLITE_OK && res==0 ){
+ rc = SQLITE_FULL;
+ goto abort_due_to_error;
+ }
+ }
+ pC->recnoIsValid = 0;
+ }
+ p->tos++;
+ aStack[p->tos].i = v;
+ aStack[p->tos].flags = STK_Int;
+ break;
+}
+
+/* Opcode: PutIntKey P1 P2 *
+**
+** Write an entry into the database file P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value on the top of the
+** stack. The key is the next value down on the stack. The key must
+** be an integer. The stack is popped twice by this instruction.
+**
+** If P2==1 then the row change count is incremented. If P2==0 the
+** row change count is unmodified.
+*/
+/* Opcode: PutStrKey P1 * *
+**
+** Write an entry into the database file P1. A new entry is
+** created if it doesn't already exist or the data for an existing
+** entry is overwritten. The data is the value on the top of the
+** stack. The key is the next value down on the stack. The key must
+** be a string. The stack is popped twice by this instruction.
+*/
+case OP_PutIntKey:
+case OP_PutStrKey: {
+ int tos = p->tos;
+ int nos = p->tos-1;
+ int i = pOp->p1;
+ Cursor *pC;
+ VERIFY( if( nos<0 ) goto not_enough_stack; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
+ char *zKey;
+ int nKey, iKey;
+ if( pOp->opcode==OP_PutStrKey ){
+ Stringify(p, nos);
+ nKey = aStack[nos].n;
+ zKey = zStack[nos];
+ }else{
+ assert( aStack[nos].flags & STK_Int );
+ nKey = sizeof(int);
+ iKey = intToKey(aStack[nos].i);
+ zKey = (char*)&iKey;
+ db->lastRowid = aStack[nos].i;
+ if( pOp->p2 ) db->nChange++;
+ if( pC->nextRowidValid && aStack[nos].i>=pC->nextRowid ){
+ pC->nextRowidValid = 0;
+ }
+ }
+ rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey,
+ zStack[tos], aStack[tos].n);
+ pC->recnoIsValid = 0;
+ }
+ POPSTACK;
+ POPSTACK;
+ break;
+}
+
+/* Opcode: Delete P1 P2 *
+**
+** Delete the record at which the P1 cursor is currently pointing.
+**
+** The cursor will be left pointing at either the next or the previous
+** record in the table. If it is left pointing at the next record, then
+** the next Next instruction will be a no-op. Hence it is OK to delete
+** a record from within an Next loop.
+**
+** The row change counter is incremented if P2==1 and is unmodified
+** if P2==0.
+*/
+case OP_Delete: {
+ int i = pOp->p1;
+ Cursor *pC;
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
+ rc = sqliteBtreeDelete(pC->pCursor);
+ pC->nextRowidValid = 0;
+ }
+ if( pOp->p2 ) db->nChange++;
+ break;
+}
+
+/* Opcode: KeyAsData P1 P2 *
+**
+** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
+** off (if P2==0). In key-as-data mode, the Field opcode pulls
+** data off of the key rather than the data. This is useful for
+** processing compound selects.
+*/
+case OP_KeyAsData: {
+ int i = pOp->p1;
+ if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor!=0 ){
+ p->aCsr[i].keyAsData = pOp->p2;
+ }
+ break;
+}
+
+/* Opcode: Column P1 P2 *
+**
+** Interpret the data that cursor P1 points to as
+** a structure built using the MakeRecord instruction.
+** (See the MakeRecord opcode for additional information about
+** the format of the data.)
+** Push onto the stack the value of the P2-th column contained
+** in the data.
+**
+** If the KeyAsData opcode has previously executed on this cursor,
+** then the field might be extracted from the key rather than the
+** data.
+**
+** If P1 is negative, then the record is stored on the stack rather
+** than in a table. For P1==-1, the top of the stack is used.
+** For P1==-2, the next on the stack is used. And so forth. The
+** value pushed is always just a pointer into the record which is
+** stored further down on the stack. The column value is not copied.
+*/
+case OP_Column: {
+ int amt, offset, end, payloadSize;
+ int i = pOp->p1;
+ int p2 = pOp->p2;
+ int tos = p->tos+1;
+ Cursor *pC;
+ char *zRec;
+ BtCursor *pCrsr;
+ int idxWidth;
+ unsigned char aHdr[10];
+
+ if( i<0 ){
+ VERIFY( if( tos+i<0 ) goto bad_instruction; )
+ VERIFY( if( (aStack[tos+i].flags & STK_Str)==0 ) goto bad_instruction; )
+ zRec = zStack[tos+i];
+ payloadSize = aStack[tos+i].n;
+ }else if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
+ zRec = 0;
+ pCrsr = pC->pCursor;
+ if( pC->nullRow ){
+ payloadSize = 0;
+ }else if( pC->keyAsData ){
+ sqliteBtreeKeySize(pCrsr, &payloadSize);
+ }else{
+ sqliteBtreeDataSize(pCrsr, &payloadSize);
+ }
+ }else{
+ payloadSize = 0;
+ }
+
+ /* Figure out how many bytes in the column data and where the column
+ ** data begins.
+ */
+ if( payloadSize==0 ){
+ aStack[tos].flags = STK_Null;
+ p->tos = tos;
+ break;
+ }else if( payloadSize<256 ){
+ idxWidth = 1;
+ }else if( payloadSize<65536 ){
+ idxWidth = 2;
+ }else{
+ idxWidth = 3;
+ }
+
+ /* Figure out where the requested column is stored and how big it is.
+ */
+ if( payloadSize < idxWidth*(p2+1) ){
+ rc = SQLITE_CORRUPT;
+ goto abort_due_to_error;
+ }
+ if( zRec ){
+ memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
+ }else if( pC->keyAsData ){
+ sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
+ }else{
+ sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
+ }
+ offset = aHdr[0];
+ end = aHdr[idxWidth];
+ if( idxWidth>1 ){
+ offset |= aHdr[1]<<8;
+ end |= aHdr[idxWidth+1]<<8;
+ if( idxWidth>2 ){
+ offset |= aHdr[2]<<16;
+ end |= aHdr[idxWidth+2]<<16;
+ }
+ }
+ amt = end - offset;
+ if( amt<0 || offset<0 || end>payloadSize ){
+ rc = SQLITE_CORRUPT;
+ goto abort_due_to_error;
+ }
+
+ /* amt and offset now hold the offset to the start of data and the
+ ** amount of data. Go get the data and put it on the stack.
+ */
+ if( amt==0 ){
+ aStack[tos].flags = STK_Null;
+ }else if( zRec ){
+ aStack[tos].flags = STK_Str | STK_Ephem;
+ aStack[tos].n = amt;
+ zStack[tos] = &zRec[offset];
+ }else{
+ if( amt<=NBFS ){
+ aStack[tos].flags = STK_Str;
+ zStack[tos] = aStack[tos].z;
+ aStack[tos].n = amt;
+ }else{
+ char *z = sqliteMallocRaw( amt );
+ if( z==0 ) goto no_mem;
+ aStack[tos].flags = STK_Str | STK_Dyn;
+ zStack[tos] = z;
+ aStack[tos].n = amt;
+ }
+ if( pC->keyAsData ){
+ sqliteBtreeKey(pCrsr, offset, amt, zStack[tos]);
+ }else{
+ sqliteBtreeData(pCrsr, offset, amt, zStack[tos]);
+ }
+ }
+ p->tos = tos;
+ break;
+}
+
+/* Opcode: Recno P1 * *
+**
+** Push onto the stack an integer which is the first 4 bytes of the
+** the key to the current entry in a sequential scan of the database
+** file P1. The sequential scan should have been started using the
+** Next opcode.
+*/
+case OP_Recno: {
+ int i = pOp->p1;
+ int tos = ++p->tos;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int v;
+ if( p->aCsr[i].recnoIsValid ){
+ v = p->aCsr[i].lastRecno;
+ }else if( p->aCsr[i].nullRow ){
+ aStack[tos].flags = STK_Null;
+ break;
+ }else{
+ sqliteBtreeKey(pCrsr, 0, sizeof(u32), (char*)&v);
+ v = keyToInt(v);
+ }
+ aStack[tos].i = v;
+ aStack[tos].flags = STK_Int;
+ }
+ break;
+}
+
+/* Opcode: FullKey P1 * *
+**
+** Extract the complete key from the record that cursor P1 is currently
+** pointing to and push the key onto the stack as a string.
+**
+** Compare this opcode to Recno. The Recno opcode extracts the first
+** 4 bytes of the key and pushes those bytes onto the stack as an
+** integer. This instruction pushes the entire key as a string.
+*/
+case OP_FullKey: {
+ int i = pOp->p1;
+ int tos = ++p->tos;
+ BtCursor *pCrsr;
+
+ VERIFY( if( !p->aCsr[i].keyAsData ) goto bad_instruction; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int amt;
+ char *z;
+
+ sqliteBtreeKeySize(pCrsr, &amt);
+ if( amt<=0 ){
+ rc = SQLITE_CORRUPT;
+ goto abort_due_to_error;
+ }
+ if( amt>NBFS ){
+ z = sqliteMallocRaw( amt );
+ if( z==0 ) goto no_mem;
+ aStack[tos].flags = STK_Str | STK_Dyn;
+ }else{
+ z = aStack[tos].z;
+ aStack[tos].flags = STK_Str;
+ }
+ sqliteBtreeKey(pCrsr, 0, amt, z);
+ zStack[tos] = z;
+ aStack[tos].n = amt;
+ }
+ break;
+}
+
+/* Opcode: NullRow P1 * *
+**
+** Move the cursor P1 to a null row. Any OP_Column operations
+** that occur while the cursor is on the null row will always push
+** a NULL onto the stack.
+*/
+case OP_NullRow: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ p->aCsr[i].nullRow = 1;
+ }
+ break;
+}
+
+/* Opcode: Last P1 P2 *
+**
+** The next use of the Recno or Column or Next instruction for P1
+** will refer to the last entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Last: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res;
+ sqliteBtreeLast(pCrsr, &res);
+ p->aCsr[i].nullRow = res;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }
+ break;
+}
+
+/* Opcode: Rewind P1 P2 *
+**
+** The next use of the Recno or Column or Next instruction for P1
+** will refer to the first entry in the database table or index.
+** If the table or index is empty and P2>0, then jump immediately to P2.
+** If P2 is 0 or if the table or index is not empty, fall through
+** to the following instruction.
+*/
+case OP_Rewind: {
+ int i = pOp->p1;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res;
+ sqliteBtreeFirst(pCrsr, &res);
+ p->aCsr[i].atFirst = res==0;
+ p->aCsr[i].nullRow = res;
+ if( res && pOp->p2>0 ){
+ pc = pOp->p2 - 1;
+ }
+ }
+ break;
+}
+
+/* Opcode: Next P1 P2 *
+**
+** Advance cursor P1 so that it points to the next key/data pair in its
+** table or index. If there are no more key/value pairs then fall through
+** to the following instruction. But if the cursor advance was successful,
+** jump immediately to P2.
+**
+** See also: Prev
+*/
+/* Opcode: Prev P1 P2 *
+**
+** Back up cursor P1 so that it points to the previous key/data pair in its
+** table or index. If there is no previous key/value pairs then fall through
+** to the following instruction. But if the cursor backup was successful,
+** jump immediately to P2.
+*/
+case OP_Prev:
+case OP_Next: {
+ Cursor *pC;
+ BtCursor *pCrsr;
+
+ CHECK_FOR_INTERRUPT;
+ if( VERIFY( pOp->p1>=0 && pOp->p1<p->nCursor && )
+ (pCrsr = (pC = &p->aCsr[pOp->p1])->pCursor)!=0 ){
+ int res;
+ if( pC->nullRow ){
+ res = 1;
+ }else{
+ rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
+ sqliteBtreePrevious(pCrsr, &res);
+ pC->nullRow = res;
+ }
+ if( res==0 ){
+ pc = pOp->p2 - 1;
+ sqlite_search_count++;
+ }
+ pC->recnoIsValid = 0;
+ }
+ break;
+}
+
+/* Opcode: IdxPut P1 P2 P3
+**
+** The top of the stack hold an SQL index key made using the
+** MakeIdxKey instruction. This opcode writes that key into the
+** index P1. Data for the entry is nil.
+**
+** If P2==1, then the key must be unique. If the key is not unique,
+** the program aborts with a SQLITE_CONSTRAINT error and the database
+** is rolled back. If P3 is not null, then it because part of the
+** error message returned with the SQLITE_CONSTRAINT.
+*/
+case OP_IdxPut: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ BtCursor *pCrsr;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int nKey = aStack[tos].n;
+ const char *zKey = zStack[tos];
+ if( pOp->p2 ){
+ int res, n;
+ assert( aStack[tos].n >= 4 );
+ rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
+ if( rc!=SQLITE_OK ) goto abort_due_to_error;
+ while( res!=0 ){
+ int c;
+ sqliteBtreeKeySize(pCrsr, &n);
+ if( n==nKey
+ && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
+ && c==0
+ ){
+ rc = SQLITE_CONSTRAINT;
+ if( pOp->p3 && pOp->p3[0] ){
+ sqliteSetString(&p->zErrMsg, pOp->p3, 0);
+ }
+ goto abort_due_to_error;
+ }
+ if( res<0 ){
+ sqliteBtreeNext(pCrsr, &res);
+ res = +1;
+ }else{
+ break;
+ }
+ }
+ }
+ rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: IdxDelete P1 * *
+**
+** The top of the stack is an index key built using the MakeIdxKey opcode.
+** This opcode removes that entry from the index.
+*/
+case OP_IdxDelete: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ BtCursor *pCrsr;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int rx, res;
+ rx = sqliteBtreeMoveto(pCrsr, zStack[tos], aStack[tos].n, &res);
+ if( rx==SQLITE_OK && res==0 ){
+ rc = sqliteBtreeDelete(pCrsr);
+ }
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: IdxRecno P1 * *
+**
+** Push onto the stack an integer which is the last 4 bytes of the
+** the key to the current entry in index P1. These 4 bytes should
+** be the record number of the table entry to which this index entry
+** points.
+**
+** See also: Recno, MakeIdxKey.
+*/
+case OP_IdxRecno: {
+ int i = pOp->p1;
+ int tos = ++p->tos;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int v;
+ int sz;
+ sqliteBtreeKeySize(pCrsr, &sz);
+ sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
+ v = keyToInt(v);
+ aStack[tos].i = v;
+ aStack[tos].flags = STK_Int;
+ }
+ break;
+}
+
+/* Opcode: IdxGT P1 P2 *
+**
+** Compare the top of the stack against the key on the index entry that
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
+** index entry. If the index entry is greater than the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+*/
+/* Opcode: IdxGE P1 P2 *
+**
+** Compare the top of the stack against the key on the index entry that
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
+** index entry. If the index entry is greater than or equal to
+** the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+*/
+/* Opcode: IdxLT P1 P2 *
+**
+** Compare the top of the stack against the key on the index entry that
+** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
+** index entry. If the index entry is less than the top of the stack
+** then jump to P2. Otherwise fall through to the next instruction.
+** In either case, the stack is popped once.
+*/
+case OP_IdxLT:
+case OP_IdxGT:
+case OP_IdxGE: {
+ int i= pOp->p1;
+ int tos = p->tos;
+ BtCursor *pCrsr;
+
+ if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
+ int res, rc;
+
+ Stringify(p, tos);
+ rc = sqliteBtreeKeyCompare(pCrsr, zStack[tos], aStack[tos].n, 4, &res);
+ if( rc!=SQLITE_OK ){
+ break;
+ }
+ if( pOp->opcode==OP_IdxLT ){
+ res = -res;
+ }else if( pOp->opcode==OP_IdxGE ){
+ res++;
+ }
+ if( res>0 ){
+ pc = pOp->p2 - 1 ;
+ }
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: Destroy P1 P2 *
+**
+** Delete an entire database table or index whose root page in the database
+** file is given by P1.
+**
+** The table being destroyed is in the main database file if P2==0. If
+** P2==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** See also: Clear
+*/
+case OP_Destroy: {
+ sqliteBtreeDropTable(pOp->p2 ? db->pBeTemp : pBt, pOp->p1);
+ break;
+}
+
+/* Opcode: Clear P1 P2 *
+**
+** Delete all contents of the database table or index whose root page
+** in the database file is given by P1. But, unlike Destroy, do not
+** remove the table or index from the database file.
+**
+** The table being clear is in the main database file if P2==0. If
+** P2==1 then the table to be clear is in the auxiliary database file
+** that is used to store tables create using CREATE TEMPORARY TABLE.
+**
+** See also: Destroy
+*/
+case OP_Clear: {
+ sqliteBtreeClearTable(pOp->p2 ? db->pBeTemp : pBt, pOp->p1);
+ break;
+}
+
+/* Opcode: CreateTable * P2 P3
+**
+** Allocate a new table in the main database file if P2==0 or in the
+** auxiliary database file if P2==1. Push the page number
+** for the root page of the new table onto the stack.
+**
+** The root page number is also written to a memory location that P3
+** points to. This is the mechanism is used to write the root page
+** number into the parser's internal data structures that describe the
+** new table.
+**
+** The difference between a table and an index is this: A table must
+** have a 4-byte integer key and can have arbitrary data. An index
+** has an arbitrary key but no data.
+**
+** See also: CreateIndex
+*/
+/* Opcode: CreateIndex * P2 P3
+**
+** Allocate a new index in the main database file if P2==0 or in the
+** auxiliary database file if P2==1. Push the page number of the
+** root page of the new index onto the stack.
+**
+** See documentation on OP_CreateTable for additional information.
+*/
+case OP_CreateIndex:
+case OP_CreateTable: {
+ int i = ++p->tos;
+ int pgno;
+ assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
+ if( pOp->opcode==OP_CreateTable ){
+ rc = sqliteBtreeCreateTable(pOp->p2 ? db->pBeTemp : pBt, &pgno);
+ }else{
+ rc = sqliteBtreeCreateIndex(pOp->p2 ? db->pBeTemp : pBt, &pgno);
+ }
+ if( rc==SQLITE_OK ){
+ aStack[i].i = pgno;
+ aStack[i].flags = STK_Int;
+ *(u32*)pOp->p3 = pgno;
+ pOp->p3 = 0;
+ }
+ break;
+}
+
+/* Opcode: IntegrityCk P1 P2 *
+**
+** Do an analysis of the currently open database. Push onto the
+** stack the text of an error message describing any problems.
+** If there are no errors, push a "ok" onto the stack.
+**
+** P1 is the index of a set that contains the root page numbers
+** for all tables and indices in the main database file.
+**
+** If P2 is not zero, the check is done on the auxiliary database
+** file, not the main database file.
+**
+** This opcode is used for testing purposes only.
+*/
+case OP_IntegrityCk: {
+ int nRoot;
+ int *aRoot;
+ int tos = ++p->tos;
+ int iSet = pOp->p1;
+ Set *pSet;
+ int j;
+ HashElem *i;
+ char *z;
+
+ VERIFY( if( iSet<0 || iSet>=p->nSet ) goto bad_instruction; )
+ pSet = &p->aSet[iSet];
+ nRoot = sqliteHashCount(&pSet->hash);
+ aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
+ if( aRoot==0 ) goto no_mem;
+ for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
+ toInt((char*)sqliteHashKey(i), &aRoot[j]);
+ }
+ aRoot[j] = 0;
+ z = sqliteBtreeIntegrityCheck(pOp->p2 ? db->pBeTemp : pBt, aRoot, nRoot);
+ if( z==0 || z[0]==0 ){
+ if( z ) sqliteFree(z);
+ zStack[tos] = "ok";
+ aStack[tos].n = 3;
+ aStack[tos].flags = STK_Str | STK_Static;
+ }else{
+ zStack[tos] = z;
+ aStack[tos].n = strlen(z) + 1;
+ aStack[tos].flags = STK_Str | STK_Dyn;
+ }
+ sqliteFree(aRoot);
+ break;
+}
+
+/* Opcode: ListWrite * * *
+**
+** Write the integer on the top of the stack
+** into the temporary storage list.
+*/
+case OP_ListWrite: {
+ Keylist *pKeylist;
+ VERIFY( if( p->tos<0 ) goto not_enough_stack; )
+ pKeylist = p->pList;
+ if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
+ pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
+ if( pKeylist==0 ) goto no_mem;
+ pKeylist->nKey = 1000;
+ pKeylist->nRead = 0;
+ pKeylist->nUsed = 0;
+ pKeylist->pNext = p->pList;
+ p->pList = pKeylist;
+ }
+ Integerify(p, p->tos);
+ pKeylist->aKey[pKeylist->nUsed++] = aStack[p->tos].i;
+ POPSTACK;
+ break;
+}
+
+/* Opcode: ListRewind * * *
+**
+** Rewind the temporary buffer back to the beginning.
+*/
+case OP_ListRewind: {
+ /* This is now a no-op */
+ break;
+}
+
+/* Opcode: ListRead * P2 *
+**
+** Attempt to read an integer from the temporary storage buffer
+** and push it onto the stack. If the storage buffer is empty,
+** push nothing but instead jump to P2.
+*/
+case OP_ListRead: {
+ Keylist *pKeylist;
+ CHECK_FOR_INTERRUPT;
+ pKeylist = p->pList;
+ if( pKeylist!=0 ){
+ VERIFY(
+ if( pKeylist->nRead<0
+ || pKeylist->nRead>=pKeylist->nUsed
+ || pKeylist->nRead>=pKeylist->nKey ) goto bad_instruction;
+ )
+ p->tos++;
+ aStack[p->tos].i = pKeylist->aKey[pKeylist->nRead++];
+ aStack[p->tos].flags = STK_Int;
+ zStack[p->tos] = 0;
+ if( pKeylist->nRead>=pKeylist->nUsed ){
+ p->pList = pKeylist->pNext;
+ sqliteFree(pKeylist);
+ }
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: ListReset * * *
+**
+** Reset the temporary storage buffer so that it holds nothing.
+*/
+case OP_ListReset: {
+ if( p->pList ){
+ KeylistFree(p->pList);
+ p->pList = 0;
+ }
+ break;
+}
+
+/* Opcode: ListPush * * *
+**
+** Save the current Vdbe list such that it can be restored by a ListPop
+** opcode. The list is empty after this is executed.
+*/
+case OP_ListPush: {
+ p->keylistStackDepth++;
+ assert(p->keylistStackDepth > 0);
+ p->keylistStack = sqliteRealloc(p->keylistStack,
+ sizeof(Keylist *) * p->keylistStackDepth);
+ if( p->keylistStack==0 ) goto no_mem;
+ p->keylistStack[p->keylistStackDepth - 1] = p->pList;
+ p->pList = 0;
+ break;
+}
+
+/* Opcode: ListPop * * *
+**
+** Restore the Vdbe list to the state it was in when ListPush was last
+** executed.
+*/
+case OP_ListPop: {
+ assert(p->keylistStackDepth > 0);
+ p->keylistStackDepth--;
+ KeylistFree(p->pList);
+ p->pList = p->keylistStack[p->keylistStackDepth];
+ p->keylistStack[p->keylistStackDepth] = 0;
+ if( p->keylistStackDepth == 0 ){
+ sqliteFree(p->keylistStack);
+ p->keylistStack = 0;
+ }
+ break;
+}
+
+/* Opcode: SortPut * * *
+**
+** The TOS is the key and the NOS is the data. Pop both from the stack
+** and put them on the sorter. The key and data should have been
+** made using SortMakeKey and SortMakeRec, respectively.
+*/
+case OP_SortPut: {
+ int tos = p->tos;
+ int nos = tos - 1;
+ Sorter *pSorter;
+ VERIFY( if( tos<1 ) goto not_enough_stack; )
+ if( Dynamicify(p, tos) || Dynamicify(p, nos) ) goto no_mem;
+ pSorter = sqliteMallocRaw( sizeof(Sorter) );
+ if( pSorter==0 ) goto no_mem;
+ pSorter->pNext = p->pSort;
+ p->pSort = pSorter;
+ assert( aStack[tos].flags & STK_Dyn );
+ pSorter->nKey = aStack[tos].n;
+ pSorter->zKey = zStack[tos];
+ pSorter->nData = aStack[nos].n;
+ if( aStack[nos].flags & STK_Dyn ){
+ pSorter->pData = zStack[nos];
+ }else{
+ pSorter->pData = sqliteStrDup(zStack[nos]);
+ }
+ aStack[tos].flags = 0;
+ aStack[nos].flags = 0;
+ zStack[tos] = 0;
+ zStack[nos] = 0;
+ p->tos -= 2;
+ break;
+}
+
+/* Opcode: SortMakeRec P1 * *
+**
+** The top P1 elements are the arguments to a callback. Form these
+** elements into a single data entry that can be stored on a sorter
+** using SortPut and later fed to a callback using SortCallback.
+*/
+case OP_SortMakeRec: {
+ char *z;
+ char **azArg;
+ int nByte;
+ int nField;
+ int i, j;
+
+ nField = pOp->p1;
+ VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
+ nByte = 0;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null)==0 ){
+ Stringify(p, i);
+ nByte += aStack[i].n;
+ }
+ }
+ nByte += sizeof(char*)*(nField+1);
+ azArg = sqliteMallocRaw( nByte );
+ if( azArg==0 ) goto no_mem;
+ z = (char*)&azArg[nField+1];
+ for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){
+ if( aStack[i].flags & STK_Null ){
+ azArg[j] = 0;
+ }else{
+ azArg[j] = z;
+ strcpy(z, zStack[i]);
+ z += aStack[i].n;
+ }
+ }
+ PopStack(p, nField);
+ p->tos++;
+ aStack[p->tos].n = nByte;
+ zStack[p->tos] = (char*)azArg;
+ aStack[p->tos].flags = STK_Str|STK_Dyn;
+ break;
+}
+
+/* Opcode: SortMakeKey * * P3
+**
+** Convert the top few entries of the stack into a sort key. The
+** number of stack entries consumed is the number of characters in
+** the string P3. One character from P3 is prepended to each entry.
+** The first character of P3 is prepended to the element lowest in
+** the stack and the last character of P3 is prepended to the top of
+** the stack. All stack entries are separated by a \000 character
+** in the result. The whole key is terminated by two \000 characters
+** in a row.
+**
+** "N" is substituted in place of the P3 character for NULL values.
+**
+** See also the MakeKey and MakeIdxKey opcodes.
+*/
+case OP_SortMakeKey: {
+ char *zNewKey;
+ int nByte;
+ int nField;
+ int i, j, k;
+
+ nField = strlen(pOp->p3);
+ VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
+ nByte = 1;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null)!=0 ){
+ nByte += 2;
+ }else{
+ Stringify(p, i);
+ nByte += aStack[i].n+2;
+ }
+ }
+ zNewKey = sqliteMallocRaw( nByte );
+ if( zNewKey==0 ) goto no_mem;
+ j = 0;
+ k = 0;
+ for(i=p->tos-nField+1; i<=p->tos; i++){
+ if( (aStack[i].flags & STK_Null)!=0 ){
+ zNewKey[j++] = 'N';
+ zNewKey[j++] = 0;
+ k++;
+ }else{
+ zNewKey[j++] = pOp->p3[k++];
+ memcpy(&zNewKey[j], zStack[i], aStack[i].n-1);
+ j += aStack[i].n-1;
+ zNewKey[j++] = 0;
+ }
+ }
+ zNewKey[j] = 0;
+ assert( j<nByte );
+ PopStack(p, nField);
+ p->tos++;
+ aStack[p->tos].n = nByte;
+ aStack[p->tos].flags = STK_Str|STK_Dyn;
+ zStack[p->tos] = zNewKey;
+ break;
+}
+
+/* Opcode: Sort * * *
+**
+** Sort all elements on the sorter. The algorithm is a
+** mergesort.
+*/
+case OP_Sort: {
+ int i;
+ Sorter *pElem;
+ Sorter *apSorter[NSORT];
+ for(i=0; i<NSORT; i++){
+ apSorter[i] = 0;
+ }
+ while( p->pSort ){
+ pElem = p->pSort;
+ p->pSort = pElem->pNext;
+ pElem->pNext = 0;
+ for(i=0; i<NSORT-1; i++){
+ if( apSorter[i]==0 ){
+ apSorter[i] = pElem;
+ break;
+ }else{
+ pElem = Merge(apSorter[i], pElem);
+ apSorter[i] = 0;
+ }
+ }
+ if( i>=NSORT-1 ){
+ apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
+ }
+ }
+ pElem = 0;
+ for(i=0; i<NSORT; i++){
+ pElem = Merge(apSorter[i], pElem);
+ }
+ p->pSort = pElem;
+ break;
+}
+
+/* Opcode: SortNext * P2 *
+**
+** Push the data for the topmost element in the sorter onto the
+** stack, then remove the element from the sorter. If the sorter
+** is empty, push nothing on the stack and instead jump immediately
+** to instruction P2.
+*/
+case OP_SortNext: {
+ Sorter *pSorter = p->pSort;
+ CHECK_FOR_INTERRUPT;
+ if( pSorter!=0 ){
+ p->pSort = pSorter->pNext;
+ p->tos++;
+ zStack[p->tos] = pSorter->pData;
+ aStack[p->tos].n = pSorter->nData;
+ aStack[p->tos].flags = STK_Str|STK_Dyn;
+ sqliteFree(pSorter->zKey);
+ sqliteFree(pSorter);
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: SortCallback P1 * *
+**
+** The top of the stack contains a callback record built using
+** the SortMakeRec operation with the same P1 value as this
+** instruction. Pop this record from the stack and invoke the
+** callback on it.
+*/
+case OP_SortCallback: {
+ int i = p->tos;
+ VERIFY( if( i<0 ) goto not_enough_stack; )
+ if( p->xCallback==0 ){
+ p->pc = pc+1;
+ p->azResColumn = (char**)zStack[i];
+ p->nResColumn = pOp->p1;
+ p->popStack = 1;
+ return SQLITE_ROW;
+ }else{
+ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
+ if( p->xCallback(p->pCbArg, pOp->p1, (char**)zStack[i], p->azColName)!=0 ){
+ rc = SQLITE_ABORT;
+ }
+ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
+ p->nCallback++;
+ }
+ POPSTACK;
+ if( sqlite_malloc_failed ) goto no_mem;
+ break;
+}
+
+/* Opcode: SortReset * * *
+**
+** Remove any elements that remain on the sorter.
+*/
+case OP_SortReset: {
+ SorterReset(p);
+ break;
+}
+
+/* Opcode: FileOpen * * P3
+**
+** Open the file named by P3 for reading using the FileRead opcode.
+** If P3 is "stdin" then open standard input for reading.
+*/
+case OP_FileOpen: {
+ VERIFY( if( pOp->p3==0 ) goto bad_instruction; )
+ if( p->pFile ){
+ if( p->pFile!=stdin ) fclose(p->pFile);
+ p->pFile = 0;
+ }
+ if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
+ p->pFile = stdin;
+ }else{
+ p->pFile = fopen(pOp->p3, "r");
+ }
+ if( p->pFile==0 ){
+ sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, 0);
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: FileRead P1 P2 P3
+**
+** Read a single line of input from the open file (the file opened using
+** FileOpen). If we reach end-of-file, jump immediately to P2. If
+** we are able to get another line, split the line apart using P3 as
+** a delimiter. There should be P1 fields. If the input line contains
+** more than P1 fields, ignore the excess. If the input line contains
+** fewer than P1 fields, assume the remaining fields contain NULLs.
+**
+** Input ends if a line consists of just "\.". A field containing only
+** "\N" is a null field. The backslash \ character can be used be used
+** to escape newlines or the delimiter.
+*/
+case OP_FileRead: {
+ int n, eol, nField, i, c, nDelim;
+ char *zDelim, *z;
+ CHECK_FOR_INTERRUPT;
+ if( p->pFile==0 ) goto fileread_jump;
+ nField = pOp->p1;
+ if( nField<=0 ) goto fileread_jump;
+ if( nField!=p->nField || p->azField==0 ){
+ char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
+ if( azField==0 ){ goto no_mem; }
+ p->azField = azField;
+ p->nField = nField;
+ }
+ n = 0;
+ eol = 0;
+ while( eol==0 ){
+ if( p->zLine==0 || n+200>p->nLineAlloc ){
+ char *zLine;
+ p->nLineAlloc = p->nLineAlloc*2 + 300;
+ zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
+ if( zLine==0 ){
+ p->nLineAlloc = 0;
+ sqliteFree(p->zLine);
+ p->zLine = 0;
+ goto no_mem;
+ }
+ p->zLine = zLine;
+ }
+ if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
+ eol = 1;
+ p->zLine[n] = 0;
+ }else{
+ int c;
+ while( (c = p->zLine[n])!=0 ){
+ if( c=='\\' ){
+ if( p->zLine[n+1]==0 ) break;
+ n += 2;
+ }else if( c=='\n' ){
+ p->zLine[n] = 0;
+ eol = 1;
+ break;
+ }else{
+ n++;
+ }
+ }
+ }
+ }
+ if( n==0 ) goto fileread_jump;
+ z = p->zLine;
+ if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
+ goto fileread_jump;
+ }
+ zDelim = pOp->p3;
+ if( zDelim==0 ) zDelim = "\t";
+ c = zDelim[0];
+ nDelim = strlen(zDelim);
+ p->azField[0] = z;
+ for(i=1; *z!=0 && i<=nField; i++){
+ int from, to;
+ from = to = 0;
+ if( z[0]=='\\' && z[1]=='N'
+ && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
+ if( i<=nField ) p->azField[i-1] = 0;
+ z += 2 + nDelim;
+ if( i<nField ) p->azField[i] = z;
+ continue;
+ }
+ while( z[from] ){
+ if( z[from]=='\\' && z[from+1]!=0 ){
+ z[to++] = z[from+1];
+ from += 2;
+ continue;
+ }
+ if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
+ z[to++] = z[from++];
+ }
+ if( z[from] ){
+ z[to] = 0;
+ z += from + nDelim;
+ if( i<nField ) p->azField[i] = z;
+ }else{
+ z[to] = 0;
+ z = "";
+ }
+ }
+ while( i<nField ){
+ p->azField[i++] = 0;
+ }
+ break;
+
+ /* If we reach end-of-file, or if anything goes wrong, jump here.
+ ** This code will cause a jump to P2 */
+fileread_jump:
+ pc = pOp->p2 - 1;
+ break;
+}
+
+/* Opcode: FileColumn P1 * *
+**
+** Push onto the stack the P1-th column of the most recently read line
+** from the input file.
+*/
+case OP_FileColumn: {
+ int i = pOp->p1;
+ char *z;
+ if( VERIFY( i>=0 && i<p->nField && ) p->azField ){
+ z = p->azField[i];
+ }else{
+ z = 0;
+ }
+ p->tos++;
+ if( z ){
+ aStack[p->tos].n = strlen(z) + 1;
+ zStack[p->tos] = z;
+ aStack[p->tos].flags = STK_Str;
+ }else{
+ aStack[p->tos].n = 0;
+ zStack[p->tos] = 0;
+ aStack[p->tos].flags = STK_Null;
+ }
+ break;
+}
+
+/* Opcode: MemStore P1 P2 *
+**
+** Write the top of the stack into memory location P1.
+** P1 should be a small integer since space is allocated
+** for all memory locations between 0 and P1 inclusive.
+**
+** After the data is stored in the memory location, the
+** stack is popped once if P2 is 1. If P2 is zero, then
+** the original data remains on the stack.
+*/
+case OP_MemStore: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ char *zOld;
+ Mem *pMem;
+ int flags;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( i>=p->nMem ){
+ int nOld = p->nMem;
+ Mem *aMem;
+ p->nMem = i + 5;
+ aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
+ if( aMem==0 ) goto no_mem;
+ if( aMem!=p->aMem ){
+ int j;
+ for(j=0; j<nOld; j++){
+ if( aMem[j].z==p->aMem[j].s.z ){
+ aMem[j].z = aMem[j].s.z;
+ }
+ }
+ }
+ p->aMem = aMem;
+ if( nOld<p->nMem ){
+ memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
+ }
+ }
+ pMem = &p->aMem[i];
+ flags = pMem->s.flags;
+ if( flags & STK_Dyn ){
+ zOld = pMem->z;
+ }else{
+ zOld = 0;
+ }
+ pMem->s = aStack[tos];
+ flags = pMem->s.flags;
+ if( flags & (STK_Static|STK_Dyn|STK_Ephem) ){
+ if( (flags & STK_Static)!=0 || (pOp->p2 && (flags & STK_Dyn)!=0) ){
+ pMem->z = zStack[tos];
+ }else if( flags & STK_Str ){
+ pMem->z = sqliteMallocRaw( pMem->s.n );
+ if( pMem->z==0 ) goto no_mem;
+ memcpy(pMem->z, zStack[tos], pMem->s.n);
+ pMem->s.flags |= STK_Dyn;
+ pMem->s.flags &= ~(STK_Static|STK_Ephem);
+ }
+ }else{
+ pMem->z = pMem->s.z;
+ }
+ if( zOld ) sqliteFree(zOld);
+ if( pOp->p2 ){
+ zStack[tos] = 0;
+ aStack[tos].flags = 0;
+ POPSTACK;
+ }
+ break;
+}
+
+/* Opcode: MemLoad P1 * *
+**
+** Push a copy of the value in memory location P1 onto the stack.
+**
+** If the value is a string, then the value pushed is a pointer to
+** the string that is stored in the memory location. If the memory
+** location is subsequently changed (using OP_MemStore) then the
+** value pushed onto the stack will change too.
+*/
+case OP_MemLoad: {
+ int tos = ++p->tos;
+ int i = pOp->p1;
+ VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; )
+ memcpy(&aStack[tos], &p->aMem[i].s, sizeof(aStack[tos])-NBFS);;
+ if( aStack[tos].flags & STK_Str ){
+ zStack[tos] = p->aMem[i].z;
+ aStack[tos].flags |= STK_Ephem;
+ aStack[tos].flags &= ~(STK_Dyn|STK_Static);
+ }
+ break;
+}
+
+/* Opcode: MemIncr P1 P2 *
+**
+** Increment the integer valued memory cell P1 by 1. If P2 is not zero
+** and the result after the increment is greater than zero, then jump
+** to P2.
+**
+** This instruction throws an error if the memory cell is not initially
+** an integer.
+*/
+case OP_MemIncr: {
+ int i = pOp->p1;
+ Mem *pMem;
+ VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; )
+ pMem = &p->aMem[i];
+ VERIFY( if( pMem->s.flags != STK_Int ) goto bad_instruction; )
+ pMem->s.i++;
+ if( pOp->p2>0 && pMem->s.i>0 ){
+ pc = pOp->p2 - 1;
+ }
+ break;
+}
+
+/* Opcode: AggReset * P2 *
+**
+** Reset the aggregator so that it no longer contains any data.
+** Future aggregator elements will contain P2 values each.
+*/
+case OP_AggReset: {
+ AggReset(&p->agg);
+ p->agg.nMem = pOp->p2;
+ p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
+ if( p->agg.apFunc==0 ) goto no_mem;
+ break;
+}
+
+/* Opcode: AggInit * P2 P3
+**
+** Initialize the function parameters for an aggregate function.
+** The aggregate will operate out of aggregate column P2.
+** P3 is a pointer to the FuncDef structure for the function.
+*/
+case OP_AggInit: {
+ int i = pOp->p2;
+ VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; )
+ p->agg.apFunc[i] = (FuncDef*)pOp->p3;
+ break;
+}
+
+/* Opcode: AggFunc * P2 P3
+**
+** Execute the step function for an aggregate. The
+** function has P2 arguments. P3 is a pointer to the FuncDef
+** structure that specifies the function.
+**
+** The top of the stack must be an integer which is the index of
+** the aggregate column that corresponds to this aggregate function.
+** Ideally, this index would be another parameter, but there are
+** no free parameters left. The integer is popped from the stack.
+*/
+case OP_AggFunc: {
+ int n = pOp->p2;
+ int i;
+ Mem *pMem;
+ sqlite_func ctx;
+
+ VERIFY( if( n<0 ) goto bad_instruction; )
+ VERIFY( if( p->tos+1<n ) goto not_enough_stack; )
+ VERIFY( if( aStack[p->tos].flags!=STK_Int ) goto bad_instruction; )
+ for(i=p->tos-n; i<p->tos; i++){
+ if( aStack[i].flags & STK_Null ){
+ zStack[i] = 0;
+ }else{
+ Stringify(p, i);
+ }
+ }
+ i = aStack[p->tos].i;
+ VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; )
+ ctx.pFunc = (FuncDef*)pOp->p3;
+ pMem = &p->agg.pCurrent->aMem[i];
+ ctx.z = pMem->s.z;
+ ctx.pAgg = pMem->z;
+ ctx.cnt = ++pMem->s.i;
+ ctx.isError = 0;
+ ctx.isStep = 1;
+ (ctx.pFunc->xStep)(&ctx, n, (const char**)&zStack[p->tos-n]);
+ pMem->z = ctx.pAgg;
+ pMem->s.flags = STK_AggCtx;
+ PopStack(p, n+1);
+ if( ctx.isError ){
+ rc = SQLITE_ERROR;
+ }
+ break;
+}
+
+/* Opcode: AggFocus * P2 *
+**
+** Pop the top of the stack and use that as an aggregator key. If
+** an aggregator with that same key already exists, then make the
+** aggregator the current aggregator and jump to P2. If no aggregator
+** with the given key exists, create one and make it current but
+** do not jump.
+**
+** The order of aggregator opcodes is important. The order is:
+** AggReset AggFocus AggNext. In other words, you must execute
+** AggReset first, then zero or more AggFocus operations, then
+** zero or more AggNext operations. You must not execute an AggFocus
+** in between an AggNext and an AggReset.
+*/
+case OP_AggFocus: {
+ int tos = p->tos;
+ AggElem *pElem;
+ char *zKey;
+ int nKey;
+
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ Stringify(p, tos);
+ zKey = zStack[tos];
+ nKey = aStack[tos].n;
+ pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
+ if( pElem ){
+ p->agg.pCurrent = pElem;
+ pc = pOp->p2 - 1;
+ }else{
+ AggInsert(&p->agg, zKey, nKey);
+ if( sqlite_malloc_failed ) goto no_mem;
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: AggSet * P2 *
+**
+** Move the top of the stack into the P2-th field of the current
+** aggregate. String values are duplicated into new memory.
+*/
+case OP_AggSet: {
+ AggElem *pFocus = AggInFocus(p->agg);
+ int i = pOp->p2;
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ if( pFocus==0 ) goto no_mem;
+ if( VERIFY( i>=0 && ) i<p->agg.nMem ){
+ Mem *pMem = &pFocus->aMem[i];
+ char *zOld;
+ if( pMem->s.flags & STK_Dyn ){
+ zOld = pMem->z;
+ }else{
+ zOld = 0;
+ }
+ Deephemeralize(p, tos);
+ pMem->s = aStack[tos];
+ if( pMem->s.flags & STK_Dyn ){
+ pMem->z = zStack[tos];
+ zStack[tos] = 0;
+ aStack[tos].flags = 0;
+ }else if( pMem->s.flags & (STK_Static|STK_AggCtx) ){
+ pMem->z = zStack[tos];
+ }else if( pMem->s.flags & STK_Str ){
+ pMem->z = pMem->s.z;
+ }
+ if( zOld ) sqliteFree(zOld);
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: AggGet * P2 *
+**
+** Push a new entry onto the stack which is a copy of the P2-th field
+** of the current aggregate. Strings are not duplicated so
+** string values will be ephemeral.
+*/
+case OP_AggGet: {
+ AggElem *pFocus = AggInFocus(p->agg);
+ int i = pOp->p2;
+ int tos = ++p->tos;
+ if( pFocus==0 ) goto no_mem;
+ if( VERIFY( i>=0 && ) i<p->agg.nMem ){
+ Mem *pMem = &pFocus->aMem[i];
+ aStack[tos] = pMem->s;
+ zStack[tos] = pMem->z;
+ aStack[tos].flags &= ~STK_Dyn;
+ aStack[tos].flags |= STK_Ephem;
+ }
+ break;
+}
+
+/* Opcode: AggNext * P2 *
+**
+** Make the next aggregate value the current aggregate. The prior
+** aggregate is deleted. If all aggregate values have been consumed,
+** jump to P2.
+**
+** The order of aggregator opcodes is important. The order is:
+** AggReset AggFocus AggNext. In other words, you must execute
+** AggReset first, then zero or more AggFocus operations, then
+** zero or more AggNext operations. You must not execute an AggFocus
+** in between an AggNext and an AggReset.
+*/
+case OP_AggNext: {
+ CHECK_FOR_INTERRUPT;
+ if( p->agg.pSearch==0 ){
+ p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
+ }else{
+ p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
+ }
+ if( p->agg.pSearch==0 ){
+ pc = pOp->p2 - 1;
+ } else {
+ int i;
+ sqlite_func ctx;
+ Mem *aMem;
+ p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
+ aMem = p->agg.pCurrent->aMem;
+ for(i=0; i<p->agg.nMem; i++){
+ int freeCtx;
+ if( p->agg.apFunc[i]==0 ) continue;
+ if( p->agg.apFunc[i]->xFinalize==0 ) continue;
+ ctx.s.flags = STK_Null;
+ ctx.z = 0;
+ ctx.pAgg = (void*)aMem[i].z;
+ freeCtx = aMem[i].z && aMem[i].z!=aMem[i].s.z;
+ ctx.cnt = aMem[i].s.i;
+ ctx.isStep = 0;
+ ctx.pFunc = p->agg.apFunc[i];
+ (*p->agg.apFunc[i]->xFinalize)(&ctx);
+ if( freeCtx ){
+ sqliteFree( aMem[i].z );
+ }
+ aMem[i].s = ctx.s;
+ aMem[i].z = ctx.z;
+ if( (aMem[i].s.flags & STK_Str) &&
+ (aMem[i].s.flags & (STK_Dyn|STK_Static|STK_Ephem))==0 ){
+ aMem[i].z = aMem[i].s.z;
+ }
+ }
+ }
+ break;
+}
+
+/* Opcode: SetInsert P1 * P3
+**
+** If Set P1 does not exist then create it. Then insert value
+** P3 into that set. If P3 is NULL, then insert the top of the
+** stack into the set.
+*/
+case OP_SetInsert: {
+ int i = pOp->p1;
+ if( p->nSet<=i ){
+ int k;
+ Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
+ if( aSet==0 ) goto no_mem;
+ p->aSet = aSet;
+ for(k=p->nSet; k<=i; k++){
+ sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
+ }
+ p->nSet = i+1;
+ }
+ if( pOp->p3 ){
+ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
+ }else{
+ int tos = p->tos;
+ if( tos<0 ) goto not_enough_stack;
+ Stringify(p, tos);
+ sqliteHashInsert(&p->aSet[i].hash, zStack[tos], aStack[tos].n, p);
+ POPSTACK;
+ }
+ if( sqlite_malloc_failed ) goto no_mem;
+ break;
+}
+
+/* Opcode: SetFound P1 P2 *
+**
+** Pop the stack once and compare the value popped off with the
+** contents of set P1. If the element popped exists in set P1,
+** then jump to P2. Otherwise fall through.
+*/
+case OP_SetFound: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ Stringify(p, tos);
+ if( i>=0 && i<p->nSet &&
+ sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)){
+ pc = pOp->p2 - 1;
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: SetNotFound P1 P2 *
+**
+** Pop the stack once and compare the value popped off with the
+** contents of set P1. If the element popped does not exists in
+** set P1, then jump to P2. Otherwise fall through.
+*/
+case OP_SetNotFound: {
+ int i = pOp->p1;
+ int tos = p->tos;
+ VERIFY( if( tos<0 ) goto not_enough_stack; )
+ Stringify(p, tos);
+ if( i<0 || i>=p->nSet ||
+ sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)==0 ){
+ pc = pOp->p2 - 1;
+ }
+ POPSTACK;
+ break;
+}
+
+/* Opcode: SetFirst P1 P2 *
+**
+** Read the first element from set P1 and push it onto the stack. If the
+** set is empty, push nothing and jump immediately to P2. This opcode is
+** used in combination with OP_SetNext to loop over all elements of a set.
+*/
+/* Opcode: SetNext P1 P2 *
+**
+** Read the next element from set P1 and push it onto the stack. If there
+** are no more elements in the set, do not do the push and fall through.
+** Otherwise, jump to P2 after pushing the next set element.
+*/
+case OP_SetFirst:
+case OP_SetNext: {
+ Set *pSet;
+ int tos;
+ CHECK_FOR_INTERRUPT;
+ if( pOp->p1<0 || pOp->p1>=p->nSet ){
+ if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
+ break;
+ }
+ pSet = &p->aSet[pOp->p1];
+ if( pOp->opcode==OP_SetFirst ){
+ pSet->prev = sqliteHashFirst(&pSet->hash);
+ if( pSet->prev==0 ){
+ pc = pOp->p2 - 1;
+ break;
+ }
+ }else{
+ VERIFY( if( pSet->prev==0 ) goto bad_instruction; )
+ pSet->prev = sqliteHashNext(pSet->prev);
+ if( pSet->prev==0 ){
+ break;
+ }else{
+ pc = pOp->p2 - 1;
+ }
+ }
+ tos = ++p->tos;
+ zStack[tos] = sqliteHashKey(pSet->prev);
+ aStack[tos].n = sqliteHashKeysize(pSet->prev);
+ aStack[tos].flags = STK_Str | STK_Ephem;
+ break;
+}
+
+/* An other opcode is illegal...
+*/
+default: {
+ sprintf(zBuf,"%d",pOp->opcode);
+ sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, 0);
+ rc = SQLITE_INTERNAL;
+ break;
+}
+
+/*****************************************************************************
+** The cases of the switch statement above this line should all be indented
+** by 6 spaces. But the left-most 6 spaces have been removed to improve the
+** readability. From this point on down, the normal indentation rules are
+** restored.
+*****************************************************************************/
+ }
+
+#ifdef VDBE_PROFILE
+ {
+ long long elapse = hwtime() - start;
+ pOp->cycles += elapse;
+ pOp->cnt++;
+#if 0
+ fprintf(stdout, "%10lld ", elapse);
+ vdbePrintOp(stdout, origPc, &p->aOp[origPc]);
+#endif
+ }
+#endif
+
+ /* The following code adds nothing to the actual functionality
+ ** of the program. It is only here for testing and debugging.
+ ** On the other hand, it does burn CPU cycles every time through
+ ** the evaluator loop. So we can leave it out when NDEBUG is defined.
+ */
+#ifndef NDEBUG
+ if( pc<-1 || pc>=p->nOp ){
+ sqliteSetString(&p->zErrMsg, "jump destination out of range", 0);
+ rc = SQLITE_INTERNAL;
+ }
+ if( p->trace && p->tos>=0 ){
+ int i;
+ fprintf(p->trace, "Stack:");
+ for(i=p->tos; i>=0 && i>p->tos-5; i--){
+ if( aStack[i].flags & STK_Null ){
+ fprintf(p->trace, " NULL");
+ }else if( (aStack[i].flags & (STK_Int|STK_Str))==(STK_Int|STK_Str) ){
+ fprintf(p->trace, " si:%d", aStack[i].i);
+ }else if( aStack[i].flags & STK_Int ){
+ fprintf(p->trace, " i:%d", aStack[i].i);
+ }else if( aStack[i].flags & STK_Real ){
+ fprintf(p->trace, " r:%g", aStack[i].r);
+ }else if( aStack[i].flags & STK_Str ){
+ int j, k;
+ char zBuf[100];
+ zBuf[0] = ' ';
+ if( aStack[i].flags & STK_Dyn ){
+ zBuf[1] = 'z';
+ assert( (aStack[i].flags & (STK_Static|STK_Ephem))==0 );
+ }else if( aStack[i].flags & STK_Static ){
+ zBuf[1] = 't';
+ assert( (aStack[i].flags & (STK_Dyn|STK_Ephem))==0 );
+ }else if( aStack[i].flags & STK_Ephem ){
+ zBuf[1] = 'e';
+ assert( (aStack[i].flags & (STK_Static|STK_Dyn))==0 );
+ }else{
+ zBuf[1] = 's';
+ }
+ zBuf[2] = '[';
+ k = 3;
+ for(j=0; j<20 && j<aStack[i].n; j++){
+ int c = zStack[i][j];
+ if( c==0 && j==aStack[i].n-1 ) break;
+ if( isprint(c) && !isspace(c) ){
+ zBuf[k++] = c;
+ }else{
+ zBuf[k++] = '.';
+ }
+ }
+ zBuf[k++] = ']';
+ zBuf[k++] = 0;
+ fprintf(p->trace, "%s", zBuf);
+ }else{
+ fprintf(p->trace, " ???");
+ }
+ }
+ if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
+ fprintf(p->trace,"\n");
+ }
+#endif
+ } /* The end of the for(;;) loop the loops through opcodes */
+
+ /* If we reach this point, it means that execution is finished.
+ */
+vdbe_halt:
+ if( rc ){
+ p->rc = rc;
+ rc = SQLITE_ERROR;
+ }else{
+ rc = SQLITE_DONE;
+ }
+ p->magic = VDBE_MAGIC_HALT;
+ return rc;
+
+ /* Jump to here if a malloc() fails. It's hard to get a malloc()
+ ** to fail on a modern VM computer, so this code is untested.
+ */
+no_mem:
+ sqliteSetString(&p->zErrMsg, "out of memory", 0);
+ rc = SQLITE_NOMEM;
+ goto vdbe_halt;
+
+ /* Jump to here for an SQLITE_MISUSE error.
+ */
+abort_due_to_misuse:
+ rc = SQLITE_MISUSE;
+ /* Fall thru into abort_due_to_error */
+
+ /* Jump to here for any other kind of fatal error. The "rc" variable
+ ** should hold the error number.
+ */
+abort_due_to_error:
+ if( p->zErrMsg==0 ){
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0);
+ }
+ goto vdbe_halt;
+
+ /* Jump to here if the sqlite_interrupt() API sets the interrupt
+ ** flag.
+ */
+abort_due_to_interrupt:
+ assert( db->flags & SQLITE_Interrupt );
+ db->flags &= ~SQLITE_Interrupt;
+ if( db->magic!=SQLITE_MAGIC_BUSY ){
+ rc = SQLITE_MISUSE;
+ }else{
+ rc = SQLITE_INTERRUPT;
+ }
+ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), 0);
+ goto vdbe_halt;
+
+ /* Jump to here if a operator is encountered that requires more stack
+ ** operands than are currently available on the stack.
+ */
+not_enough_stack:
+ sprintf(zBuf,"%d",pc);
+ sqliteSetString(&p->zErrMsg, "too few operands on stack at ", zBuf, 0);
+ rc = SQLITE_INTERNAL;
+ goto vdbe_halt;
+
+ /* Jump here if an illegal or illformed instruction is executed.
+ */
+VERIFY(
+bad_instruction:
+ sprintf(zBuf,"%d",pc);
+ sqliteSetString(&p->zErrMsg, "illegal operation at ", zBuf, 0);
+ rc = SQLITE_INTERNAL;
+ goto vdbe_halt;
+)
+}
+
+
+/*
+** Clean up the VDBE after execution. Return an integer which is the
+** result code.
+*/
+int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){
+ sqlite *db = p->db;
+ Btree *pBt = p->pBt;
+ int rc;
+
+ if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
+ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), 0);
+ return SQLITE_MISUSE;
+ }
+ if( p->zErrMsg ){
+ if( pzErrMsg && *pzErrMsg==0 ){
+ *pzErrMsg = p->zErrMsg;
+ }else{
+ sqliteFree(p->zErrMsg);
+ }
+ p->zErrMsg = 0;
+ }
+ Cleanup(p);
+ if( p->rc!=SQLITE_OK ){
+ switch( p->errorAction ){
+ case OE_Abort: {
+ if( !p->undoTransOnError ){
+ sqliteBtreeRollbackCkpt(pBt);
+ if( db->pBeTemp ) sqliteBtreeRollbackCkpt(db->pBeTemp);
+ break;
+ }
+ /* Fall through to ROLLBACK */
+ }
+ case OE_Rollback: {
+ sqliteBtreeRollback(pBt);
+ if( db->pBeTemp ) sqliteBtreeRollback(db->pBeTemp);
+ db->flags &= ~SQLITE_InTrans;
+ db->onError = OE_Default;
+ break;
+ }
+ default: {
+ if( p->undoTransOnError ){
+ sqliteBtreeCommit(pBt);
+ if( db->pBeTemp ) sqliteBtreeCommit(db->pBeTemp);
+ db->flags &= ~SQLITE_InTrans;
+ db->onError = OE_Default;
+ }
+ break;
+ }
+ }
+ sqliteRollbackInternalChanges(db);
+ }
+ sqliteBtreeCommitCkpt(pBt);
+ if( db->pBeTemp ) sqliteBtreeCommitCkpt(db->pBeTemp);
+ assert( p->tos<p->pc || sqlite_malloc_failed==1 );
+#ifdef VDBE_PROFILE
+ {
+ FILE *out = fopen("vdbe_profile.out", "a");
+ if( out ){
+ int i;
+ fprintf(out, "---- ");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%02x", p->aOp[i].opcode);
+ }
+ fprintf(out, "\n");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%6d %10lld %8lld ",
+ p->aOp[i].cnt,
+ p->aOp[i].cycles,
+ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
+ );
+ vdbePrintOp(out, i, &p->aOp[i]);
+ }
+ fclose(out);
+ }
+ }
+#endif
+ rc = p->rc;
+ sqliteVdbeDelete(p);
+ if( db->want_to_close && db->pVdbe==0 ){
+ sqlite_close(db);
+ }
+ return rc;
+}
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Header file for the Virtual DataBase Engine (VDBE)
+**
+** This header defines the interface to the virtual database engine
+** or VDBE. The VDBE implements an abstract machine that runs a
+** simple program to access and modify the underlying database.
+**
+** $Id$
+*/
+#ifndef _SQLITE_VDBE_H_
+#define _SQLITE_VDBE_H_
+#include <stdio.h>
+
+/*
+** A single VDBE is an opaque structure named "Vdbe". Only routines
+** in the source file sqliteVdbe.c are allowed to see the insides
+** of this structure.
+*/
+typedef struct Vdbe Vdbe;
+
+/*
+** A single instruction of the virtual machine has an opcode
+** and as many as three operands. The instruction is recorded
+** as an instance of the following structure:
+*/
+struct VdbeOp {
+ int opcode; /* What operation to perform */
+ int p1; /* First operand */
+ int p2; /* Second parameter (often the jump destination) */
+ char *p3; /* Third parameter */
+ int p3type; /* P3_STATIC, P3_DYNAMIC or P3_POINTER */
+#ifdef VDBE_PROFILE
+ int cnt; /* Number of times this instruction was executed */
+ long long cycles; /* Total time spend executing this instruction */
+#endif
+};
+typedef struct VdbeOp VdbeOp;
+
+/*
+** Allowed values of VdbeOp.p3type
+*/
+#define P3_NOTUSED 0 /* The P3 parameter is not used */
+#define P3_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
+#define P3_STATIC (-2) /* Pointer to a static string */
+#define P3_POINTER (-3) /* P3 is a pointer to some structure or object */
+
+/*
+** The following macro converts a relative address in the p2 field
+** of a VdbeOp structure into a negative number so that
+** sqliteVdbeAddOpList() knows that the address is relative. Calling
+** the macro again restores the address.
+*/
+#define ADDR(X) (-1-(X))
+
+/*
+** The makefile scans the vdbe.c source file and creates the "opcodes.h"
+** header file that defines a number for each opcode used by the VDBE.
+*/
+#include "opcodes.h"
+
+/*
+** Prototypes for the VDBE interface. See comments on the implementation
+** for a description of what each of these routines does.
+*/
+Vdbe *sqliteVdbeCreate(sqlite*);
+void sqliteVdbeCreateCallback(Vdbe*, int*);
+int sqliteVdbeAddOp(Vdbe*,int,int,int);
+int sqliteVdbeAddOpList(Vdbe*, int nOp, VdbeOp const *aOp);
+void sqliteVdbeChangeP1(Vdbe*, int addr, int P1);
+void sqliteVdbeChangeP2(Vdbe*, int addr, int P2);
+void sqliteVdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
+void sqliteVdbeDequoteP3(Vdbe*, int addr);
+int sqliteVdbeFindOp(Vdbe*, int, int);
+int sqliteVdbeMakeLabel(Vdbe*);
+void sqliteVdbeDelete(Vdbe*);
+void sqliteVdbeMakeReady(Vdbe*,sqlite_callback,void*,int);
+int sqliteVdbeExec(Vdbe*);
+int sqliteVdbeList(Vdbe*);
+int sqliteVdbeFinalize(Vdbe*,char**);
+void sqliteVdbeResolveLabel(Vdbe*, int);
+int sqliteVdbeCurrentAddr(Vdbe*);
+void sqliteVdbeTrace(Vdbe*,FILE*);
+void sqliteVdbeCompressSpace(Vdbe*,int);
+
+#endif
--- /dev/null
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This module contains C code that generates VDBE code used to process
+** the WHERE clause of SQL statements. Also found here are subroutines
+** to generate VDBE code to evaluate expressions.
+**
+** $Id$
+*/
+#include "sqliteInt.h"
+
+/*
+** The query generator uses an array of instances of this structure to
+** help it analyze the subexpressions of the WHERE clause. Each WHERE
+** clause subexpression is separated from the others by an AND operator.
+*/
+typedef struct ExprInfo ExprInfo;
+struct ExprInfo {
+ Expr *p; /* Pointer to the subexpression */
+ u8 indexable; /* True if this subexprssion is usable by an index */
+ u8 oracle8join; /* -1 if left side contains "(+)". +1 if right side
+ ** contains "(+)". 0 if neither contains "(+)" */
+ short int idxLeft; /* p->pLeft is a column in this table number. -1 if
+ ** p->pLeft is not the column of any table */
+ short int idxRight; /* p->pRight is a column in this table number. -1 if
+ ** p->pRight is not the column of any table */
+ unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */
+ unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */
+ unsigned prereqAll; /* Bitmask of tables referenced by p */
+};
+
+/*
+** Determine the number of elements in an array.
+*/
+#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
+
+/*
+** This routine is used to divide the WHERE expression into subexpressions
+** separated by the AND operator.
+**
+** aSlot[] is an array of subexpressions structures.
+** There are nSlot spaces left in this array. This routine attempts to
+** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
+** The return value is the number of slots filled.
+*/
+static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
+ int cnt = 0;
+ if( pExpr==0 || nSlot<1 ) return 0;
+ if( nSlot==1 || pExpr->op!=TK_AND ){
+ aSlot[0].p = pExpr;
+ return 1;
+ }
+ if( pExpr->pLeft->op!=TK_AND ){
+ aSlot[0].p = pExpr->pLeft;
+ cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
+ }else{
+ cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
+ cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
+ }
+ return cnt;
+}
+
+/*
+** This routine walks (recursively) an expression tree and generates
+** a bitmask indicating which tables are used in that expression
+** tree. Bit 0 of the mask is set if table base+0 is used. Bit 1
+** is set if table base+1 is used. And so forth.
+**
+** In order for this routine to work, the calling function must have
+** previously invoked sqliteExprResolveIds() on the expression. See
+** the header comment on that routine for additional information.
+**
+** "base" is the cursor number (the value of the iTable field) that
+** corresponds to the first entry in the list of tables that appear
+** in the FROM clause of a SELECT. For UPDATE and DELETE statements
+** there is just a single table with "base" as the cursor number.
+*/
+static int exprTableUsage(int base, Expr *p){
+ unsigned int mask = 0;
+ if( p==0 ) return 0;
+ if( p->op==TK_COLUMN ){
+ return 1<< (p->iTable - base);
+ }
+ if( p->pRight ){
+ mask = exprTableUsage(base, p->pRight);
+ }
+ if( p->pLeft ){
+ mask |= exprTableUsage(base, p->pLeft);
+ }
+ if( p->pList ){
+ int i;
+ for(i=0; i<p->pList->nExpr; i++){
+ mask |= exprTableUsage(base, p->pList->a[i].pExpr);
+ }
+ }
+ return mask;
+}
+
+/*
+** Return TRUE if the given operator is one of the operators that is
+** allowed for an indexable WHERE clause. The allowed operators are
+** "=", "<", ">", "<=", ">=", and "IN".
+*/
+static int allowedOp(int op){
+ switch( op ){
+ case TK_LT:
+ case TK_LE:
+ case TK_GT:
+ case TK_GE:
+ case TK_EQ:
+ case TK_IN:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+/*
+** The input to this routine is an ExprInfo structure with only the
+** "p" field filled in. The job of this routine is to analyze the
+** subexpression and populate all the other fields of the ExprInfo
+** structure.
+**
+** "base" is the cursor number (the value of the iTable field) that
+** corresponds to the first entry in the table list.
+*/
+static void exprAnalyze(int base, ExprInfo *pInfo){
+ Expr *pExpr = pInfo->p;
+ pInfo->prereqLeft = exprTableUsage(base, pExpr->pLeft);
+ pInfo->prereqRight = exprTableUsage(base, pExpr->pRight);
+ pInfo->prereqAll = exprTableUsage(base, pExpr);
+ pInfo->indexable = 0;
+ pInfo->idxLeft = -1;
+ pInfo->idxRight = -1;
+ if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
+ if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
+ pInfo->idxRight = pExpr->pRight->iTable - base;
+ pInfo->indexable = 1;
+ }
+ if( pExpr->pLeft->op==TK_COLUMN ){
+ pInfo->idxLeft = pExpr->pLeft->iTable - base;
+ pInfo->indexable = 1;
+ }
+ }
+}
+
+/*
+** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
+** left-most table in the FROM clause of that same SELECT statement and
+** the table has a cursor number of "base".
+**
+** This routine attempts to find an index for pTab that generates the
+** correct record sequence for the given ORDER BY clause. The return value
+** is a pointer to an index that does the job. NULL is returned if the
+** table has no index that will generate the correct sort order.
+**
+** If there are two or more indices that generate the correct sort order
+** and pPreferredIdx is one of those indices, then return pPreferredIdx.
+**
+** nEqCol is the number of columns of pPreferredIdx that are used as
+** equality constraints. Any index returned must have exactly this same
+** set of columns. The ORDER BY clause only matches index columns beyond the
+** the first nEqCol columns.
+**
+** All terms of the ORDER BY clause must be either ASC or DESC. The
+** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is
+** set to 0 if the ORDER BY clause is all ASC.
+*/
+static Index *findSortingIndex(
+ Table *pTab, /* The table to be sorted */
+ int base, /* Cursor number for pTab */
+ ExprList *pOrderBy, /* The ORDER BY clause */
+ Index *pPreferredIdx, /* Use this index, if possible and not NULL */
+ int nEqCol, /* Number of index columns used with == constraints */
+ int *pbRev /* Set to 1 if ORDER BY is DESC */
+){
+ int i, j;
+ Index *pMatch;
+ Index *pIdx;
+ int sortOrder;
+
+ assert( pOrderBy!=0 );
+ assert( pOrderBy->nExpr>0 );
+ sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ Expr *p;
+ if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
+ /* Indices can only be used if all ORDER BY terms are either
+ ** DESC or ASC. Indices cannot be used on a mixture. */
+ return 0;
+ }
+ if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
+ /* Do not sort by index if there is a COLLATE clause */
+ return 0;
+ }
+ p = pOrderBy->a[i].pExpr;
+ if( p->op!=TK_COLUMN || p->iTable!=base ){
+ /* Can not use an index sort on anything that is not a column in the
+ ** left-most table of the FROM clause */
+ return 0;
+ }
+ }
+
+ /* If we get this far, it means the ORDER BY clause consists only of
+ ** ascending columns in the left-most table of the FROM clause. Now
+ ** check for a matching index.
+ */
+ pMatch = 0;
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int nExpr = pOrderBy->nExpr;
+ if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
+ for(i=j=0; i<nEqCol; i++){
+ if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break;
+ if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; }
+ }
+ if( i<nEqCol ) continue;
+ for(i=0; i+j<nExpr; i++){
+ if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break;
+ }
+ if( i+j>=nExpr ){
+ pMatch = pIdx;
+ if( pIdx==pPreferredIdx ) break;
+ }
+ }
+ if( pMatch && pbRev ){
+ *pbRev = sortOrder==SQLITE_SO_DESC;
+ }
+ return pMatch;
+}
+
+/*
+** Generate the beginning of the loop used for WHERE clause processing.
+** The return value is a pointer to an (opaque) structure that contains
+** information needed to terminate the loop. Later, the calling routine
+** should invoke sqliteWhereEnd() with the return value of this function
+** in order to complete the WHERE clause processing.
+**
+** If an error occurs, this routine returns NULL.
+**
+** The basic idea is to do a nested loop, one loop for each table in
+** the FROM clause of a select. (INSERT and UPDATE statements are the
+** same as a SELECT with only a single table in the FROM clause.) For
+** example, if the SQL is this:
+**
+** SELECT * FROM t1, t2, t3 WHERE ...;
+**
+** Then the code generated is conceptually like the following:
+**
+** foreach row1 in t1 do \ Code generated
+** foreach row2 in t2 do |-- by sqliteWhereBegin()
+** foreach row3 in t3 do /
+** ...
+** end \ Code generated
+** end |-- by sqliteWhereEnd()
+** end /
+**
+** There are Btree cursors associated with each table. t1 uses cursor
+** "base". t2 uses cursor "base+1". And so forth. This routine generates
+** the code to open those cursors. sqliteWhereEnd() generates the code
+** to close them.
+**
+** If the WHERE clause is empty, the foreach loops must each scan their
+** entire tables. Thus a three-way join is an O(N^3) operation. But if
+** the tables have indices and there are terms in the WHERE clause that
+** refer to those indices, a complete table scan can be avoided and the
+** code will run much faster. Most of the work of this routine is checking
+** to see if there are indices that can be used to speed up the loop.
+**
+** Terms of the WHERE clause are also used to limit which rows actually
+** make it to the "..." in the middle of the loop. After each "foreach",
+** terms of the WHERE clause that use only terms in that loop and outer
+** loops are evaluated and if false a jump is made around all subsequent
+** inner loops (or around the "..." if the test occurs within the inner-
+** most loop)
+**
+** OUTER JOINS
+**
+** An outer join of tables t1 and t2 is conceptally coded as follows:
+**
+** foreach row1 in t1 do
+** flag = 0
+** foreach row2 in t2 do
+** start:
+** ...
+** flag = 1
+** end
+** if flag==0 then
+** move the row2 cursor to a null row
+** goto start
+** fi
+** end
+**
+** ORDER BY CLAUSE PROCESSING
+**
+** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
+** if there is one. If there is no ORDER BY clause or if this routine
+** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
+**
+** If an index can be used so that the natural output order of the table
+** scan is correct for the ORDER BY clause, then that index is used and
+** *ppOrderBy is set to NULL. This is an optimization that prevents an
+** unnecessary sort of the result set if an index appropriate for the
+** ORDER BY clause already exists.
+**
+** If the where clause loops cannot be arranged to provide the correct
+** output order, then the *ppOrderBy is unchanged.
+*/
+WhereInfo *sqliteWhereBegin(
+ Parse *pParse, /* The parser context */
+ int base, /* VDBE cursor index for left-most table in pTabList */
+ SrcList *pTabList, /* A list of all tables to be scanned */
+ Expr *pWhere, /* The WHERE clause */
+ int pushKey, /* If TRUE, leave the table key on the stack */
+ ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
+){
+ int i; /* Loop counter */
+ WhereInfo *pWInfo; /* Will become the return value of this function */
+ Vdbe *v = pParse->pVdbe; /* The virtual database engine */
+ int brk, cont; /* Addresses used during code generation */
+ int nExpr; /* Number of subexpressions in the WHERE clause */
+ int loopMask; /* One bit set for each outer loop */
+ int haveKey; /* True if KEY is on the stack */
+ int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */
+ int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */
+ int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */
+ ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */
+
+ /* pushKey is only allowed if there is a single table (as in an INSERT or
+ ** UPDATE statement)
+ */
+ assert( pushKey==0 || pTabList->nSrc==1 );
+
+ /* Split the WHERE clause into separate subexpressions where each
+ ** subexpression is separated by an AND operator. If the aExpr[]
+ ** array fills up, the last entry might point to an expression which
+ ** contains additional unfactored AND operators.
+ */
+ memset(aExpr, 0, sizeof(aExpr));
+ nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
+ if( nExpr==ARRAYSIZE(aExpr) ){
+ char zBuf[50];
+ sprintf(zBuf, "%d", (int)ARRAYSIZE(aExpr)-1);
+ sqliteSetString(&pParse->zErrMsg, "WHERE clause too complex - no more "
+ "than ", zBuf, " terms allowed", 0);
+ pParse->nErr++;
+ return 0;
+ }
+
+ /* Allocate and initialize the WhereInfo structure that will become the
+ ** return value.
+ */
+ pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
+ if( sqlite_malloc_failed ){
+ sqliteFree(pWInfo);
+ return 0;
+ }
+ pWInfo->pParse = pParse;
+ pWInfo->pTabList = pTabList;
+ pWInfo->base = base;
+ pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
+ pWInfo->iBreak = sqliteVdbeMakeLabel(v);
+
+ /* Special case: a WHERE clause that is constant. Evaluate the
+ ** expression and either jump over all of the code or fall thru.
+ */
+ if( pWhere && sqliteExprIsConstant(pWhere) ){
+ sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
+ pWhere = 0;
+ }
+
+ /* Analyze all of the subexpressions.
+ */
+ for(i=0; i<nExpr; i++){
+ exprAnalyze(base, &aExpr[i]);
+
+ /* If we are executing a trigger body, remove all references to
+ ** new.* and old.* tables from the prerequisite masks.
+ */
+ if( pParse->trigStack ){
+ int x;
+ if( (x = pParse->trigStack->newIdx) >= 0 ){
+ int mask = ~(1 << (x - base));
+ aExpr[i].prereqRight &= mask;
+ aExpr[i].prereqLeft &= mask;
+ aExpr[i].prereqAll &= mask;
+ }
+ if( (x = pParse->trigStack->oldIdx) >= 0 ){
+ int mask = ~(1 << (x - base));
+ aExpr[i].prereqRight &= mask;
+ aExpr[i].prereqLeft &= mask;
+ aExpr[i].prereqAll &= mask;
+ }
+ }
+ }
+
+ /* Figure out what index to use (if any) for each nested loop.
+ ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
+ ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
+ ** loop.
+ **
+ ** If terms exist that use the ROWID of any table, then set the
+ ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
+ ** to the index of the term containing the ROWID. We always prefer
+ ** to use a ROWID which can directly access a table rather than an
+ ** index which requires reading an index first to get the rowid then
+ ** doing a second read of the actual database table.
+ **
+ ** Actually, if there are more than 32 tables in the join, only the
+ ** first 32 tables are candidates for indices. This is (again) due
+ ** to the limit of 32 bits in an integer bitmask.
+ */
+ loopMask = 0;
+ for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
+ int j;
+ int idx = i;
+ Table *pTab = pTabList->a[idx].pTab;
+ Index *pIdx;
+ Index *pBestIdx = 0;
+ int bestScore = 0;
+
+ /* Check to see if there is an expression that uses only the
+ ** ROWID field of this table. For terms of the form ROWID==expr
+ ** set iDirectEq[i] to the index of the term. For terms of the
+ ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
+ ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
+ **
+ ** (Added:) Treat ROWID IN expr like ROWID=expr.
+ */
+ pWInfo->a[i].iCur = -1;
+ iDirectEq[i] = -1;
+ iDirectLt[i] = -1;
+ iDirectGt[i] = -1;
+ for(j=0; j<nExpr; j++){
+ if( aExpr[j].idxLeft==idx && aExpr[j].p->pLeft->iColumn<0
+ && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
+ switch( aExpr[j].p->op ){
+ case TK_IN:
+ case TK_EQ: iDirectEq[i] = j; break;
+ case TK_LE:
+ case TK_LT: iDirectLt[i] = j; break;
+ case TK_GE:
+ case TK_GT: iDirectGt[i] = j; break;
+ }
+ }
+ if( aExpr[j].idxRight==idx && aExpr[j].p->pRight->iColumn<0
+ && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
+ switch( aExpr[j].p->op ){
+ case TK_EQ: iDirectEq[i] = j; break;
+ case TK_LE:
+ case TK_LT: iDirectGt[i] = j; break;
+ case TK_GE:
+ case TK_GT: iDirectLt[i] = j; break;
+ }
+ }
+ }
+ if( iDirectEq[i]>=0 ){
+ loopMask |= 1<<idx;
+ pWInfo->a[i].pIdx = 0;
+ continue;
+ }
+
+ /* Do a search for usable indices. Leave pBestIdx pointing to
+ ** the "best" index. pBestIdx is left set to NULL if no indices
+ ** are usable.
+ **
+ ** The best index is determined as follows. For each of the
+ ** left-most terms that is fixed by an equality operator, add
+ ** 8 to the score. The right-most term of the index may be
+ ** constrained by an inequality. Add 1 if for an "x<..." constraint
+ ** and add 2 for an "x>..." constraint. Chose the index that
+ ** gives the best score.
+ **
+ ** This scoring system is designed so that the score can later be
+ ** used to determine how the index is used. If the score&7 is 0
+ ** then all constraints are equalities. If score&1 is not 0 then
+ ** there is an inequality used as a termination key. (ex: "x<...")
+ ** If score&2 is not 0 then there is an inequality used as the
+ ** start key. (ex: "x>..."). A score or 4 is the special case
+ ** of an IN operator constraint. (ex: "x IN ...").
+ **
+ ** The IN operator (as in "<expr> IN (...)") is treated the same as
+ ** an equality comparison except that it can only be used on the
+ ** left-most column of an index and other terms of the WHERE clause
+ ** cannot be used in conjunction with the IN operator to help satisfy
+ ** other columns of the index.
+ */
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int eqMask = 0; /* Index columns covered by an x=... term */
+ int ltMask = 0; /* Index columns covered by an x<... term */
+ int gtMask = 0; /* Index columns covered by an x>... term */
+ int inMask = 0; /* Index columns covered by an x IN .. term */
+ int nEq, m, score;
+
+ if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */
+ for(j=0; j<nExpr; j++){
+ if( aExpr[j].idxLeft==idx
+ && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
+ int iColumn = aExpr[j].p->pLeft->iColumn;
+ int k;
+ for(k=0; k<pIdx->nColumn; k++){
+ if( pIdx->aiColumn[k]==iColumn ){
+ switch( aExpr[j].p->op ){
+ case TK_IN: {
+ if( k==0 ) inMask |= 1;
+ break;
+ }
+ case TK_EQ: {
+ eqMask |= 1<<k;
+ break;
+ }
+ case TK_LE:
+ case TK_LT: {
+ ltMask |= 1<<k;
+ break;
+ }
+ case TK_GE:
+ case TK_GT: {
+ gtMask |= 1<<k;
+ break;
+ }
+ default: {
+ /* CANT_HAPPEN */
+ assert( 0 );
+ break;
+ }
+ }
+ break;
+ }
+ }
+ }
+ if( aExpr[j].idxRight==idx
+ && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
+ int iColumn = aExpr[j].p->pRight->iColumn;
+ int k;
+ for(k=0; k<pIdx->nColumn; k++){
+ if( pIdx->aiColumn[k]==iColumn ){
+ switch( aExpr[j].p->op ){
+ case TK_EQ: {
+ eqMask |= 1<<k;
+ break;
+ }
+ case TK_LE:
+ case TK_LT: {
+ gtMask |= 1<<k;
+ break;
+ }
+ case TK_GE:
+ case TK_GT: {
+ ltMask |= 1<<k;
+ break;
+ }
+ default: {
+ /* CANT_HAPPEN */
+ assert( 0 );
+ break;
+ }
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ /* The following loop ends with nEq set to the number of columns
+ ** on the left of the index with == constraints.
+ */
+ for(nEq=0; nEq<pIdx->nColumn; nEq++){
+ m = (1<<(nEq+1))-1;
+ if( (m & eqMask)!=m ) break;
+ }
+ score = nEq*8; /* Base score is 8 times number of == constraints */
+ m = 1<<nEq;
+ if( m & ltMask ) score++; /* Increase score for a < constraint */
+ if( m & gtMask ) score+=2; /* Increase score for a > constraint */
+ if( score==0 && inMask ) score = 4; /* Default score for IN constraint */
+ if( score>bestScore ){
+ pBestIdx = pIdx;
+ bestScore = score;
+ }
+ }
+ pWInfo->a[i].pIdx = pBestIdx;
+ pWInfo->a[i].score = bestScore;
+ pWInfo->a[i].bRev = 0;
+ loopMask |= 1<<idx;
+ if( pBestIdx ){
+ pWInfo->a[i].iCur = pParse->nTab++;
+ pWInfo->peakNTab = pParse->nTab;
+ }
+ }
+
+ /* Check to see if the ORDER BY clause is or can be satisfied by the
+ ** use of an index on the first table.
+ */
+ if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
+ Index *pSortIdx;
+ Index *pIdx;
+ Table *pTab;
+ int bRev = 0;
+
+ pTab = pTabList->a[0].pTab;
+ pIdx = pWInfo->a[0].pIdx;
+ if( pIdx && pWInfo->a[0].score==4 ){
+ /* If there is already an IN index on the left-most table,
+ ** it will not give the correct sort order.
+ ** So, pretend that no suitable index is found.
+ */
+ pSortIdx = 0;
+ }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
+ /* If the left-most column is accessed using its ROWID, then do
+ ** not try to sort by index.
+ */
+ pSortIdx = 0;
+ }else{
+ int nEqCol = (pWInfo->a[0].score+4)/8;
+ pSortIdx = findSortingIndex(pTab, base, *ppOrderBy, pIdx, nEqCol, &bRev);
+ }
+ if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
+ if( pIdx==0 ){
+ pWInfo->a[0].pIdx = pSortIdx;
+ pWInfo->a[0].iCur = pParse->nTab++;
+ pWInfo->peakNTab = pParse->nTab;
+ }
+ pWInfo->a[0].bRev = bRev;
+ *ppOrderBy = 0;
+ }
+ }
+
+ /* Open all tables in the pTabList and all indices used by those tables.
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ int openOp;
+ Table *pTab;
+
+ pTab = pTabList->a[i].pTab;
+ if( pTab->isTransient || pTab->pSelect ) continue;
+ openOp = pTab->isTemp ? OP_OpenAux : OP_Open;
+ sqliteVdbeAddOp(v, openOp, base+i, pTab->tnum);
+ sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
+ if( i==0 && !pParse->schemaVerified &&
+ (pParse->db->flags & SQLITE_InTrans)==0 ){
+ sqliteVdbeAddOp(v, OP_VerifyCookie, pParse->db->schema_cookie, 0);
+ pParse->schemaVerified = 1;
+ }
+ if( pWInfo->a[i].pIdx!=0 ){
+ sqliteVdbeAddOp(v, openOp, pWInfo->a[i].iCur, pWInfo->a[i].pIdx->tnum);
+ sqliteVdbeChangeP3(v, -1, pWInfo->a[i].pIdx->zName, P3_STATIC);
+ }
+ }
+
+ /* Generate the code to do the search
+ */
+ loopMask = 0;
+ for(i=0; i<pTabList->nSrc; i++){
+ int j, k;
+ int idx = i;
+ Index *pIdx;
+ WhereLevel *pLevel = &pWInfo->a[i];
+
+ /* If this is the right table of a LEFT OUTER JOIN, allocate and
+ ** initialize a memory cell that records if this table matches any
+ ** row of the left table of the join.
+ */
+ if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
+ if( !pParse->nMem ) pParse->nMem++;
+ pLevel->iLeftJoin = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_String, 0, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
+ }
+
+ pIdx = pLevel->pIdx;
+ pLevel->inOp = OP_Noop;
+ if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
+ /* Case 1: We can directly reference a single row using an
+ ** equality comparison against the ROWID field. Or
+ ** we reference multiple rows using a "rowid IN (...)"
+ ** construct.
+ */
+ k = iDirectEq[i];
+ assert( k<nExpr );
+ assert( aExpr[k].p!=0 );
+ assert( aExpr[k].idxLeft==idx || aExpr[k].idxRight==idx );
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
+ if( aExpr[k].idxLeft==idx ){
+ Expr *pX = aExpr[k].p;
+ if( pX->op!=TK_IN ){
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
+ }else if( pX->pList ){
+ sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
+ pLevel->inOp = OP_SetNext;
+ pLevel->inP1 = pX->iTable;
+ pLevel->inP2 = sqliteVdbeCurrentAddr(v);
+ }else{
+ assert( pX->pSelect );
+ sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
+ sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
+ pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
+ pLevel->inOp = OP_Next;
+ pLevel->inP1 = pX->iTable;
+ }
+ }else{
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
+ }
+ aExpr[k].p = 0;
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
+ haveKey = 0;
+ sqliteVdbeAddOp(v, OP_NotExists, base+idx, brk);
+ pLevel->op = OP_Noop;
+ }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
+ /* Case 2: There is an index and all terms of the WHERE clause that
+ ** refer to the index use the "==" or "IN" operators.
+ */
+ int start;
+ int testOp;
+ int nColumn = (pLevel->score+4)/8;
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
+ for(j=0; j<nColumn; j++){
+ for(k=0; k<nExpr; k++){
+ Expr *pX = aExpr[k].p;
+ if( pX==0 ) continue;
+ if( aExpr[k].idxLeft==idx
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
+ && pX->pLeft->iColumn==pIdx->aiColumn[j]
+ ){
+ if( pX->op==TK_EQ ){
+ sqliteExprCode(pParse, pX->pRight);
+ aExpr[k].p = 0;
+ break;
+ }
+ if( pX->op==TK_IN && nColumn==1 ){
+ if( pX->pList ){
+ sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
+ pLevel->inOp = OP_SetNext;
+ pLevel->inP1 = pX->iTable;
+ pLevel->inP2 = sqliteVdbeCurrentAddr(v);
+ }else{
+ assert( pX->pSelect );
+ sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
+ sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
+ pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
+ pLevel->inOp = OP_Next;
+ pLevel->inP1 = pX->iTable;
+ }
+ aExpr[k].p = 0;
+ break;
+ }
+ }
+ if( aExpr[k].idxRight==idx
+ && aExpr[k].p->op==TK_EQ
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
+ && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
+ aExpr[k].p = 0;
+ break;
+ }
+ }
+ }
+ pLevel->iMem = pParse->nMem++;
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
+ sqliteAddIdxKeyType(v, pIdx);
+ if( nColumn==pIdx->nColumn || pLevel->bRev ){
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
+ testOp = OP_IdxGT;
+ }else{
+ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
+ testOp = OP_IdxGE;
+ }
+ if( pLevel->bRev ){
+ /* Scan in reverse order */
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
+ sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
+ start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
+ sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
+ pLevel->op = OP_Prev;
+ }else{
+ /* Scan in the forward order */
+ sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
+ start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
+ sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
+ pLevel->op = OP_Next;
+ }
+ if( i==pTabList->nSrc-1 && pushKey ){
+ haveKey = 1;
+ }else{
+ sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
+ haveKey = 0;
+ }
+ pLevel->p1 = pLevel->iCur;
+ pLevel->p2 = start;
+ }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
+ /* Case 3: We have an inequality comparison against the ROWID field.
+ */
+ int testOp = OP_Noop;
+ int start;
+
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
+ if( iDirectGt[i]>=0 ){
+ k = iDirectGt[i];
+ assert( k<nExpr );
+ assert( aExpr[k].p!=0 );
+ assert( aExpr[k].idxLeft==idx || aExpr[k].idxRight==idx );
+ if( aExpr[k].idxLeft==idx ){
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
+ }else{
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
+ }
+ sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
+ if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
+ sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
+ }
+ sqliteVdbeAddOp(v, OP_MoveTo, base+idx, brk);
+ aExpr[k].p = 0;
+ }else{
+ sqliteVdbeAddOp(v, OP_Rewind, base+idx, brk);
+ }
+ if( iDirectLt[i]>=0 ){
+ k = iDirectLt[i];
+ assert( k<nExpr );
+ assert( aExpr[k].p!=0 );
+ assert( aExpr[k].idxLeft==idx || aExpr[k].idxRight==idx );
+ if( aExpr[k].idxLeft==idx ){
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
+ }else{
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
+ }
+ sqliteVdbeAddOp(v, OP_MustBeInt, 1, sqliteVdbeCurrentAddr(v)+1);
+ pLevel->iMem = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
+ if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
+ testOp = OP_Ge;
+ }else{
+ testOp = OP_Gt;
+ }
+ aExpr[k].p = 0;
+ }
+ start = sqliteVdbeCurrentAddr(v);
+ pLevel->op = OP_Next;
+ pLevel->p1 = base+idx;
+ pLevel->p2 = start;
+ if( testOp!=OP_Noop ){
+ sqliteVdbeAddOp(v, OP_Recno, base+idx, 0);
+ sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqliteVdbeAddOp(v, testOp, 0, brk);
+ }
+ haveKey = 0;
+ }else if( pIdx==0 ){
+ /* Case 4: There is no usable index. We must do a complete
+ ** scan of the entire database table.
+ */
+ int start;
+
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
+ sqliteVdbeAddOp(v, OP_Rewind, base+idx, brk);
+ start = sqliteVdbeCurrentAddr(v);
+ pLevel->op = OP_Next;
+ pLevel->p1 = base+idx;
+ pLevel->p2 = start;
+ haveKey = 0;
+ }else{
+ /* Case 5: The WHERE clause term that refers to the right-most
+ ** column of the index is an inequality. For example, if
+ ** the index is on (x,y,z) and the WHERE clause is of the
+ ** form "x=5 AND y<10" then this case is used. Only the
+ ** right-most column can be an inequality - the rest must
+ ** use the "==" operator.
+ **
+ ** This case is also used when there are no WHERE clause
+ ** constraints but an index is selected anyway, in order
+ ** to force the output order to conform to an ORDER BY.
+ */
+ int score = pLevel->score;
+ int nEqColumn = score/8;
+ int start;
+ int leFlag, geFlag;
+ int testOp;
+
+ /* Evaluate the equality constraints
+ */
+ for(j=0; j<nEqColumn; j++){
+ for(k=0; k<nExpr; k++){
+ if( aExpr[k].p==0 ) continue;
+ if( aExpr[k].idxLeft==idx
+ && aExpr[k].p->op==TK_EQ
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
+ && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, aExpr[k].p->pRight);
+ aExpr[k].p = 0;
+ break;
+ }
+ if( aExpr[k].idxRight==idx
+ && aExpr[k].p->op==TK_EQ
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
+ && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, aExpr[k].p->pLeft);
+ aExpr[k].p = 0;
+ break;
+ }
+ }
+ }
+
+ /* Duplicate the equality term values because they will all be
+ ** used twice: once to make the termination key and once to make the
+ ** start key.
+ */
+ for(j=0; j<nEqColumn; j++){
+ sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
+ }
+
+ /* Labels for the beginning and end of the loop
+ */
+ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
+ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
+
+ /* Generate the termination key. This is the key value that
+ ** will end the search. There is no termination key if there
+ ** are no equality terms and no "X<..." term.
+ **
+ ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
+ ** key computed here really ends up being the start key.
+ */
+ if( (score & 1)!=0 ){
+ for(k=0; k<nExpr; k++){
+ Expr *pExpr = aExpr[k].p;
+ if( pExpr==0 ) continue;
+ if( aExpr[k].idxLeft==idx
+ && (pExpr->op==TK_LT || pExpr->op==TK_LE)
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
+ && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, pExpr->pRight);
+ leFlag = pExpr->op==TK_LE;
+ aExpr[k].p = 0;
+ break;
+ }
+ if( aExpr[k].idxRight==idx
+ && (pExpr->op==TK_GT || pExpr->op==TK_GE)
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
+ && pExpr->pRight->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, pExpr->pLeft);
+ leFlag = pExpr->op==TK_GE;
+ aExpr[k].p = 0;
+ break;
+ }
+ }
+ testOp = OP_IdxGE;
+ }else{
+ testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
+ leFlag = 1;
+ }
+ if( testOp!=OP_Noop ){
+ pLevel->iMem = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_MakeKey, nEqColumn + (score & 1), 0);
+ sqliteAddIdxKeyType(v, pIdx);
+ if( leFlag ){
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
+ }
+ if( pLevel->bRev ){
+ sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
+ }else{
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
+ }
+ }else if( pLevel->bRev ){
+ sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
+ }
+
+ /* Generate the start key. This is the key that defines the lower
+ ** bound on the search. There is no start key if there are no
+ ** equality terms and if there is no "X>..." term. In
+ ** that case, generate a "Rewind" instruction in place of the
+ ** start key search.
+ **
+ ** 2002-Dec-04: In the case of a reverse-order search, the so-called
+ ** "start" key really ends up being used as the termination key.
+ */
+ if( (score & 2)!=0 ){
+ for(k=0; k<nExpr; k++){
+ Expr *pExpr = aExpr[k].p;
+ if( pExpr==0 ) continue;
+ if( aExpr[k].idxLeft==idx
+ && (pExpr->op==TK_GT || pExpr->op==TK_GE)
+ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
+ && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, pExpr->pRight);
+ geFlag = pExpr->op==TK_GE;
+ aExpr[k].p = 0;
+ break;
+ }
+ if( aExpr[k].idxRight==idx
+ && (pExpr->op==TK_LT || pExpr->op==TK_LE)
+ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
+ && pExpr->pRight->iColumn==pIdx->aiColumn[j]
+ ){
+ sqliteExprCode(pParse, pExpr->pLeft);
+ geFlag = pExpr->op==TK_LE;
+ aExpr[k].p = 0;
+ break;
+ }
+ }
+ }else{
+ geFlag = 1;
+ }
+ if( nEqColumn>0 || (score&2)!=0 ){
+ sqliteVdbeAddOp(v, OP_MakeKey, nEqColumn + ((score&2)!=0), 0);
+ sqliteAddIdxKeyType(v, pIdx);
+ if( !geFlag ){
+ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
+ }
+ if( pLevel->bRev ){
+ pLevel->iMem = pParse->nMem++;
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
+ testOp = OP_IdxLT;
+ }else{
+ sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
+ }
+ }else if( pLevel->bRev ){
+ testOp = OP_Noop;
+ }else{
+ sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
+ }
+
+ /* Generate the the top of the loop. If there is a termination
+ ** key we have to test for that key and abort at the top of the
+ ** loop.
+ */
+ start = sqliteVdbeCurrentAddr(v);
+ if( testOp!=OP_Noop ){
+ sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
+ sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
+ }
+ sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
+ if( i==pTabList->nSrc-1 && pushKey ){
+ haveKey = 1;
+ }else{
+ sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
+ haveKey = 0;
+ }
+
+ /* Record the instruction used to terminate the loop.
+ */
+ pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
+ pLevel->p1 = pLevel->iCur;
+ pLevel->p2 = start;
+ }
+ loopMask |= 1<<idx;
+
+ /* Insert code to test every subexpression that can be completely
+ ** computed using the current set of tables.
+ */
+ for(j=0; j<nExpr; j++){
+ if( aExpr[j].p==0 ) continue;
+ if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
+ if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
+ continue;
+ }
+ if( haveKey ){
+ haveKey = 0;
+ sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
+ }
+ sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
+ aExpr[j].p = 0;
+ }
+ brk = cont;
+
+ /* For a LEFT OUTER JOIN, generate code that will record the fact that
+ ** at least one row of the right table has matched the left table.
+ */
+ if( pLevel->iLeftJoin ){
+ pLevel->top = sqliteVdbeCurrentAddr(v);
+ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
+ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
+ for(j=0; j<nExpr; j++){
+ if( aExpr[j].p==0 ) continue;
+ if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
+ if( haveKey ){
+ /* Cannot happen. "haveKey" can only be true if pushKey is true
+ ** an pushKey can only be true for DELETE and UPDATE and there are
+ ** no outer joins with DELETE and UPDATE.
+ */
+ haveKey = 0;
+ sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
+ }
+ sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
+ aExpr[j].p = 0;
+ }
+ }
+ }
+ pWInfo->iContinue = cont;
+ if( pushKey && !haveKey ){
+ sqliteVdbeAddOp(v, OP_Recno, base, 0);
+ }
+ return pWInfo;
+}
+
+/*
+** Generate the end of the WHERE loop. See comments on
+** sqliteWhereBegin() for additional information.
+*/
+void sqliteWhereEnd(WhereInfo *pWInfo){
+ Vdbe *v = pWInfo->pParse->pVdbe;
+ int i;
+ int base = pWInfo->base;
+ WhereLevel *pLevel;
+ SrcList *pTabList = pWInfo->pTabList;
+
+ for(i=pTabList->nSrc-1; i>=0; i--){
+ pLevel = &pWInfo->a[i];
+ sqliteVdbeResolveLabel(v, pLevel->cont);
+ if( pLevel->op!=OP_Noop ){
+ sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
+ }
+ sqliteVdbeResolveLabel(v, pLevel->brk);
+ if( pLevel->inOp!=OP_Noop ){
+ sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
+ }
+ if( pLevel->iLeftJoin ){
+ int addr;
+ addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
+ sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
+ sqliteVdbeAddOp(v, OP_NullRow, base+i, 0);
+ if( pLevel->iCur>=0 ){
+ sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
+ }
+ sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
+ }
+ }
+ sqliteVdbeResolveLabel(v, pWInfo->iBreak);
+ for(i=0; i<pTabList->nSrc; i++){
+ if( pTabList->a[i].pTab->isTransient ) continue;
+ pLevel = &pWInfo->a[i];
+ sqliteVdbeAddOp(v, OP_Close, base+i, 0);
+ if( pLevel->pIdx!=0 ){
+ sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
+ }
+ }
+#if 0 /* Never reuse a cursor */
+ if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
+ pWInfo->pParse->nTab = pWInfo->savedNTab;
+ }
+#endif
+ sqliteFree(pWInfo);
+ return;
+}