explicit ACMRandom(int seed) : random_(seed) {}
void Reset(int seed) { random_.Reseed(seed); }
- uint16_t Rand16(void) {
+ uint16_t Rand16() {
const uint32_t value =
random_.Generate(testing::internal::Random::kMaxRange);
return (value >> 15) & 0xffff;
}
- int32_t Rand20Signed(void) {
+ int32_t Rand20Signed() {
// Use 20 bits: values between 524287 and -524288.
const uint32_t value = random_.Generate(1048576);
return static_cast<int32_t>(value) - 524288;
}
- int16_t Rand16Signed(void) {
+ int16_t Rand16Signed() {
// Use 16 bits: values between 32767 and -32768.
return static_cast<int16_t>(random_.Generate(65536));
}
- int16_t Rand13Signed(void) {
+ int16_t Rand13Signed() {
// Use 13 bits: values between 4095 and -4096.
const uint32_t value = random_.Generate(8192);
return static_cast<int16_t>(value) - 4096;
}
- int16_t Rand9Signed(void) {
+ int16_t Rand9Signed() {
// Use 9 bits: values between 255 (0x0FF) and -256 (0x100).
const uint32_t value = random_.Generate(512);
return static_cast<int16_t>(value) - 256;
}
- uint8_t Rand8(void) {
+ uint8_t Rand8() {
const uint32_t value =
random_.Generate(testing::internal::Random::kMaxRange);
// There's a bit more entropy in the upper bits of this implementation.
return (value >> 23) & 0xff;
}
- uint8_t Rand8Extremes(void) {
+ uint8_t Rand8Extremes() {
// Returns a random value near 0 or near 255, to better exercise
// saturation behavior.
const uint8_t r = Rand8();
int operator()(int n) { return PseudoUniform(n); }
- static int DeterministicSeed(void) { return 0xbaba; }
+ static int DeterministicSeed() { return 0xbaba; }
private:
testing::internal::Random random_;
MD5Update(&md5_, data, static_cast<uint32_t>(size));
}
- const char *Get(void) {
+ const char *Get() {
static const char hex[16] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f',