#include "vpx_dsp/vpx_filter.h"
#include "vpx_dsp/x86/convolve.h"
#include "vpx_dsp/x86/convolve_ssse3.h"
+#include "vpx_dsp/x86/convolve_sse2.h"
#include "vpx_dsp/x86/mem_sse2.h"
#include "vpx_dsp/x86/transpose_sse2.h"
#include "vpx_mem/vpx_mem.h"
}
}
+void vpx_filter_block1d16_h4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride,
+ uint8_t *dst_ptr, ptrdiff_t dst_stride,
+ uint32_t height, const int16_t *kernel) {
+ // We will cast the kernel from 16-bit words to 8-bit words, and then extract
+ // the middle four elements of the kernel into two registers in the form
+ // ... k[3] k[2] k[3] k[2]
+ // ... k[5] k[4] k[5] k[4]
+ // Then we shuffle the source into
+ // ... s[1] s[0] s[0] s[-1]
+ // ... s[3] s[2] s[2] s[1]
+ // Calling multiply and add gives us half of the sum. Calling add gives us
+ // first half of the output. Repeat again to get the second half of the
+ // output. Finally we shuffle again to combine the two outputs.
+
+ __m128i kernel_reg; // Kernel
+ __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
+ const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
+ int h;
+
+ __m128i src_reg, src_reg_shift_0, src_reg_shift_2;
+ __m128i dst_first, dst_second;
+ __m128i tmp_0, tmp_1;
+ __m128i idx_shift_0 =
+ _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8);
+ __m128i idx_shift_2 =
+ _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10);
+
+ // Start one pixel before as we need tap/2 - 1 = 1 sample from the past
+ src_ptr -= 1;
+
+ // Load Kernel
+ kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
+ kernel_reg = _mm_srai_epi16(kernel_reg, 1);
+ kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
+ kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
+ kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
+
+ for (h = height; h > 0; --h) {
+ // Load the source
+ src_reg = _mm_loadu_si128((const __m128i *)src_ptr);
+ src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0);
+ src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2);
+
+ // Partial result for first half
+ tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23);
+ tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45);
+ dst_first = _mm_adds_epi16(tmp_0, tmp_1);
+
+ // Do again to get the second half of dst
+ // Load the source
+ src_reg = _mm_loadu_si128((const __m128i *)(src_ptr + 8));
+ src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0);
+ src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2);
+
+ // Partial result for first half
+ tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23);
+ tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45);
+ dst_second = _mm_adds_epi16(tmp_0, tmp_1);
+
+ // Round each result
+ dst_first = round_epi16_sse2(&dst_first, ®_32, 6);
+ dst_second = round_epi16_sse2(&dst_second, ®_32, 6);
+
+ // Finally combine to get the final dst
+ dst_first = _mm_packus_epi16(dst_first, dst_second);
+ _mm_store_si128((__m128i *)dst_ptr, dst_first);
+
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ }
+}
+
+void vpx_filter_block1d16_v4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride,
+ uint8_t *dst_ptr, ptrdiff_t dst_stride,
+ uint32_t height, const int16_t *kernel) {
+ // We will load two rows of pixels as 8-bit words, rearrange them into the
+ // form
+ // ... s[0,1] s[-1,1] s[0,0] s[-1,0]
+ // ... s[0,9] s[-1,9] s[0,8] s[-1,8]
+ // so that we can call multiply and add with the kernel to get 16-bit words of
+ // the form
+ // ... s[0,1]k[3]+s[-1,1]k[2] s[0,0]k[3]+s[-1,0]k[2]
+ // Finally, we can add multiple rows together to get the desired output.
+
+ // Register for source s[-1:3, :]
+ __m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3;
+ // Interleaved rows of the source. lo is first half, hi second
+ __m128i src_reg_m10_lo, src_reg_m10_hi, src_reg_01_lo, src_reg_01_hi;
+ __m128i src_reg_12_lo, src_reg_12_hi, src_reg_23_lo, src_reg_23_hi;
+
+ __m128i kernel_reg; // Kernel
+ __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
+
+ // Result after multiply and add
+ __m128i res_reg_m10_lo, res_reg_01_lo, res_reg_12_lo, res_reg_23_lo;
+ __m128i res_reg_m10_hi, res_reg_01_hi, res_reg_12_hi, res_reg_23_hi;
+ __m128i res_reg_m1012, res_reg_0123;
+ __m128i res_reg_m1012_lo, res_reg_0123_lo, res_reg_m1012_hi, res_reg_0123_hi;
+
+ const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
+
+ // We will compute the result two rows at a time
+ const ptrdiff_t src_stride_unrolled = src_stride << 1;
+ const ptrdiff_t dst_stride_unrolled = dst_stride << 1;
+ int h;
+
+ // We only need to go num_taps/2 - 1 row above the souce, so we move
+ // 3 - (num_taps/2 - 1) = 4 - num_taps/2 = 2 back down
+ src_ptr += src_stride_unrolled;
+
+ // Load Kernel
+ kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
+ kernel_reg = _mm_srai_epi16(kernel_reg, 1);
+ kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
+ kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
+ kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
+
+ // First shuffle the data
+ src_reg_m1 = _mm_loadu_si128((const __m128i *)src_ptr);
+ src_reg_0 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride));
+ src_reg_m10_lo = _mm_unpacklo_epi8(src_reg_m1, src_reg_0);
+ src_reg_m10_hi = _mm_unpackhi_epi8(src_reg_m1, src_reg_0);
+
+ // More shuffling
+ src_reg_1 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 2));
+ src_reg_01_lo = _mm_unpacklo_epi8(src_reg_0, src_reg_1);
+ src_reg_01_hi = _mm_unpackhi_epi8(src_reg_0, src_reg_1);
+
+ for (h = height; h > 1; h -= 2) {
+ src_reg_2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 3));
+
+ src_reg_12_lo = _mm_unpacklo_epi8(src_reg_1, src_reg_2);
+ src_reg_12_hi = _mm_unpackhi_epi8(src_reg_1, src_reg_2);
+
+ src_reg_3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 4));
+
+ src_reg_23_lo = _mm_unpacklo_epi8(src_reg_2, src_reg_3);
+ src_reg_23_hi = _mm_unpackhi_epi8(src_reg_2, src_reg_3);
+
+ // Partial output from first half
+ res_reg_m10_lo = _mm_maddubs_epi16(src_reg_m10_lo, kernel_reg_23);
+ res_reg_01_lo = _mm_maddubs_epi16(src_reg_01_lo, kernel_reg_23);
+
+ res_reg_12_lo = _mm_maddubs_epi16(src_reg_12_lo, kernel_reg_45);
+ res_reg_23_lo = _mm_maddubs_epi16(src_reg_23_lo, kernel_reg_45);
+
+ // Add to get first half of the results
+ res_reg_m1012_lo = _mm_adds_epi16(res_reg_m10_lo, res_reg_12_lo);
+ res_reg_0123_lo = _mm_adds_epi16(res_reg_01_lo, res_reg_23_lo);
+
+ // Partial output for second half
+ res_reg_m10_hi = _mm_maddubs_epi16(src_reg_m10_hi, kernel_reg_23);
+ res_reg_01_hi = _mm_maddubs_epi16(src_reg_01_hi, kernel_reg_23);
+
+ res_reg_12_hi = _mm_maddubs_epi16(src_reg_12_hi, kernel_reg_45);
+ res_reg_23_hi = _mm_maddubs_epi16(src_reg_23_hi, kernel_reg_45);
+
+ // Second half of the results
+ res_reg_m1012_hi = _mm_adds_epi16(res_reg_m10_hi, res_reg_12_hi);
+ res_reg_0123_hi = _mm_adds_epi16(res_reg_01_hi, res_reg_23_hi);
+
+ // Round the words
+ res_reg_m1012_lo = round_epi16_sse2(&res_reg_m1012_lo, ®_32, 6);
+ res_reg_0123_lo = round_epi16_sse2(&res_reg_0123_lo, ®_32, 6);
+ res_reg_m1012_hi = round_epi16_sse2(&res_reg_m1012_hi, ®_32, 6);
+ res_reg_0123_hi = round_epi16_sse2(&res_reg_0123_hi, ®_32, 6);
+
+ // Combine to get the result
+ res_reg_m1012 = _mm_packus_epi16(res_reg_m1012_lo, res_reg_m1012_hi);
+ res_reg_0123 = _mm_packus_epi16(res_reg_0123_lo, res_reg_0123_hi);
+
+ _mm_store_si128((__m128i *)dst_ptr, res_reg_m1012);
+ _mm_store_si128((__m128i *)(dst_ptr + dst_stride), res_reg_0123);
+
+ // Update the source by two rows
+ src_ptr += src_stride_unrolled;
+ dst_ptr += dst_stride_unrolled;
+
+ src_reg_m10_lo = src_reg_12_lo;
+ src_reg_m10_hi = src_reg_12_hi;
+ src_reg_01_lo = src_reg_23_lo;
+ src_reg_01_hi = src_reg_23_hi;
+ src_reg_1 = src_reg_3;
+ }
+}
+
+void vpx_filter_block1d8_h4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride,
+ uint8_t *dst_ptr, ptrdiff_t dst_stride,
+ uint32_t height, const int16_t *kernel) {
+ // We will cast the kernel from 16-bit words to 8-bit words, and then extract
+ // the middle four elements of the kernel into two registers in the form
+ // ... k[3] k[2] k[3] k[2]
+ // ... k[5] k[4] k[5] k[4]
+ // Then we shuffle the source into
+ // ... s[1] s[0] s[0] s[-1]
+ // ... s[3] s[2] s[2] s[1]
+ // Calling multiply and add gives us half of the sum. Calling add gives us
+ // first half of the output. Repeat again to get the second half of the
+ // output. Finally we shuffle again to combine the two outputs.
+
+ __m128i kernel_reg; // Kernel
+ __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
+ const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
+ int h;
+
+ __m128i src_reg, src_reg_shift_0, src_reg_shift_2;
+ __m128i dst_first;
+ __m128i tmp_0, tmp_1;
+ __m128i idx_shift_0 =
+ _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8);
+ __m128i idx_shift_2 =
+ _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10);
+
+ // Start one pixel before as we need tap/2 - 1 = 1 sample from the past
+ src_ptr -= 1;
+
+ // Load Kernel
+ kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
+ kernel_reg = _mm_srai_epi16(kernel_reg, 1);
+ kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
+ kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
+ kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
+
+ for (h = height; h > 0; --h) {
+ // Load the source
+ src_reg = _mm_loadu_si128((const __m128i *)src_ptr);
+ src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0);
+ src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2);
+
+ // Get the result
+ tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23);
+ tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45);
+ dst_first = _mm_adds_epi16(tmp_0, tmp_1);
+
+ // Round round result
+ dst_first = round_epi16_sse2(&dst_first, ®_32, 6);
+
+ // Pack to 8-bits
+ dst_first = _mm_packus_epi16(dst_first, _mm_setzero_si128());
+ _mm_storel_epi64((__m128i *)dst_ptr, dst_first);
+
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ }
+}
+
+void vpx_filter_block1d8_v4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride,
+ uint8_t *dst_ptr, ptrdiff_t dst_stride,
+ uint32_t height, const int16_t *kernel) {
+ // We will load two rows of pixels as 8-bit words, rearrange them into the
+ // form
+ // ... s[0,1] s[-1,1] s[0,0] s[-1,0]
+ // so that we can call multiply and add with the kernel to get 16-bit words of
+ // the form
+ // ... s[0,1]k[3]+s[-1,1]k[2] s[0,0]k[3]+s[-1,0]k[2]
+ // Finally, we can add multiple rows together to get the desired output.
+
+ // Register for source s[-1:3, :]
+ __m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3;
+ // Interleaved rows of the source. lo is first half, hi second
+ __m128i src_reg_m10, src_reg_01;
+ __m128i src_reg_12, src_reg_23;
+
+ __m128i kernel_reg; // Kernel
+ __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used
+
+ // Result after multiply and add
+ __m128i res_reg_m10, res_reg_01, res_reg_12, res_reg_23;
+ __m128i res_reg_m1012, res_reg_0123;
+
+ const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
+
+ // We will compute the result two rows at a time
+ const ptrdiff_t src_stride_unrolled = src_stride << 1;
+ const ptrdiff_t dst_stride_unrolled = dst_stride << 1;
+ int h;
+
+ // We only need to go num_taps/2 - 1 row above the souce, so we move
+ // 3 - (num_taps/2 - 1) = 4 - num_taps/2 = 2 back down
+ src_ptr += src_stride_unrolled;
+
+ // Load Kernel
+ kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
+ kernel_reg = _mm_srai_epi16(kernel_reg, 1);
+ kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
+ kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u));
+ kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u));
+
+ // First shuffle the data
+ src_reg_m1 = _mm_loadl_epi64((const __m128i *)src_ptr);
+ src_reg_0 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride));
+ src_reg_m10 = _mm_unpacklo_epi8(src_reg_m1, src_reg_0);
+
+ // More shuffling
+ src_reg_1 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 2));
+ src_reg_01 = _mm_unpacklo_epi8(src_reg_0, src_reg_1);
+
+ for (h = height; h > 1; h -= 2) {
+ src_reg_2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 3));
+
+ src_reg_12 = _mm_unpacklo_epi8(src_reg_1, src_reg_2);
+
+ src_reg_3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 4));
+
+ src_reg_23 = _mm_unpacklo_epi8(src_reg_2, src_reg_3);
+
+ // Partial output
+ res_reg_m10 = _mm_maddubs_epi16(src_reg_m10, kernel_reg_23);
+ res_reg_01 = _mm_maddubs_epi16(src_reg_01, kernel_reg_23);
+
+ res_reg_12 = _mm_maddubs_epi16(src_reg_12, kernel_reg_45);
+ res_reg_23 = _mm_maddubs_epi16(src_reg_23, kernel_reg_45);
+
+ // Add to get entire output
+ res_reg_m1012 = _mm_adds_epi16(res_reg_m10, res_reg_12);
+ res_reg_0123 = _mm_adds_epi16(res_reg_01, res_reg_23);
+
+ // Round the words
+ res_reg_m1012 = round_epi16_sse2(&res_reg_m1012, ®_32, 6);
+ res_reg_0123 = round_epi16_sse2(&res_reg_0123, ®_32, 6);
+
+ // Pack from 16-bit to 8-bit
+ res_reg_m1012 = _mm_packus_epi16(res_reg_m1012, _mm_setzero_si128());
+ res_reg_0123 = _mm_packus_epi16(res_reg_0123, _mm_setzero_si128());
+
+ _mm_storel_epi64((__m128i *)dst_ptr, res_reg_m1012);
+ _mm_storel_epi64((__m128i *)(dst_ptr + dst_stride), res_reg_0123);
+
+ // Update the source by two rows
+ src_ptr += src_stride_unrolled;
+ dst_ptr += dst_stride_unrolled;
+
+ src_reg_m10 = src_reg_12;
+ src_reg_01 = src_reg_23;
+ src_reg_1 = src_reg_3;
+ }
+}
+
+void vpx_filter_block1d4_h4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride,
+ uint8_t *dst_ptr, ptrdiff_t dst_stride,
+ uint32_t height, const int16_t *kernel) {
+ // We will cast the kernel from 16-bit words to 8-bit words, and then extract
+ // the middle four elements of the kernel into a single register in the form
+ // k[5:2] k[5:2] k[5:2] k[5:2]
+ // Then we shuffle the source into
+ // s[5:2] s[4:1] s[3:0] s[2:-1]
+ // Calling multiply and add gives us half of the sum next to each other.
+ // Calling horizontal add then gives us the output.
+
+ __m128i kernel_reg; // Kernel
+ const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
+ int h;
+
+ __m128i src_reg, src_reg_shuf;
+ __m128i dst_first;
+ __m128i shuf_idx =
+ _mm_setr_epi8(0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6);
+
+ // Start one pixel before as we need tap/2 - 1 = 1 sample from the past
+ src_ptr -= 1;
+
+ // Load Kernel
+ kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
+ kernel_reg = _mm_srai_epi16(kernel_reg, 1);
+ kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
+ kernel_reg = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi32(0x05040302u));
+
+ for (h = height; h > 0; --h) {
+ // Load the source
+ src_reg = _mm_loadu_si128((const __m128i *)src_ptr);
+ src_reg_shuf = _mm_shuffle_epi8(src_reg, shuf_idx);
+
+ // Get the result
+ dst_first = _mm_maddubs_epi16(src_reg_shuf, kernel_reg);
+ dst_first = _mm_hadds_epi16(dst_first, _mm_setzero_si128());
+
+ // Round result
+ dst_first = round_epi16_sse2(&dst_first, ®_32, 6);
+
+ // Pack to 8-bits
+ dst_first = _mm_packus_epi16(dst_first, _mm_setzero_si128());
+ *((uint32_t *)(dst_ptr)) = _mm_cvtsi128_si32(dst_first);
+
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ }
+}
+
+void vpx_filter_block1d4_v4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride,
+ uint8_t *dst_ptr, ptrdiff_t dst_stride,
+ uint32_t height, const int16_t *kernel) {
+ // We will load two rows of pixels as 8-bit words, rearrange them into the
+ // form
+ // ... s[2,0] s[1,0] s[0,0] s[-1,0]
+ // so that we can call multiply and add with the kernel partial output. Then
+ // we can call horizontal add to get the output.
+ // Finally, we can add multiple rows together to get the desired output.
+ // This is done two rows at a time
+
+ // Register for source s[-1:3, :]
+ __m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3;
+ // Interleaved rows of the source.
+ __m128i src_reg_m10, src_reg_01;
+ __m128i src_reg_12, src_reg_23;
+ __m128i src_reg_m1001, src_reg_1223;
+ __m128i src_reg_m1012_1023_lo, src_reg_m1012_1023_hi;
+
+ __m128i kernel_reg; // Kernel
+
+ // Result after multiply and add
+ __m128i reg_0, reg_1;
+
+ const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding
+
+ // We will compute the result two rows at a time
+ const ptrdiff_t src_stride_unrolled = src_stride << 1;
+ const ptrdiff_t dst_stride_unrolled = dst_stride << 1;
+ int h;
+
+ // We only need to go num_taps/2 - 1 row above the souce, so we move
+ // 3 - (num_taps/2 - 1) = 4 - num_taps/2 = 2 back down
+ src_ptr += src_stride_unrolled;
+
+ // Load Kernel
+ kernel_reg = _mm_loadu_si128((const __m128i *)kernel);
+ kernel_reg = _mm_srai_epi16(kernel_reg, 1);
+ kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg);
+ kernel_reg = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi32(0x05040302u));
+
+ // First shuffle the data
+ src_reg_m1 = _mm_loadl_epi64((const __m128i *)src_ptr);
+ src_reg_0 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride));
+ src_reg_m10 = _mm_unpacklo_epi32(src_reg_m1, src_reg_0);
+
+ // More shuffling
+ src_reg_1 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 2));
+ src_reg_01 = _mm_unpacklo_epi32(src_reg_0, src_reg_1);
+
+ // Put three rows next to each other
+ src_reg_m1001 = _mm_unpacklo_epi8(src_reg_m10, src_reg_01);
+
+ for (h = height; h > 1; h -= 2) {
+ src_reg_2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 3));
+ src_reg_12 = _mm_unpacklo_epi32(src_reg_1, src_reg_2);
+
+ src_reg_3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 4));
+ src_reg_23 = _mm_unpacklo_epi32(src_reg_2, src_reg_3);
+
+ // Put three rows next to each other
+ src_reg_1223 = _mm_unpacklo_epi8(src_reg_12, src_reg_23);
+
+ // Put all four rows next to each other
+ src_reg_m1012_1023_lo = _mm_unpacklo_epi16(src_reg_m1001, src_reg_1223);
+ src_reg_m1012_1023_hi = _mm_unpackhi_epi16(src_reg_m1001, src_reg_1223);
+
+ // Get the results
+ reg_0 = _mm_maddubs_epi16(src_reg_m1012_1023_lo, kernel_reg);
+ reg_1 = _mm_maddubs_epi16(src_reg_m1012_1023_hi, kernel_reg);
+ reg_0 = _mm_hadds_epi16(reg_0, _mm_setzero_si128());
+ reg_1 = _mm_hadds_epi16(reg_1, _mm_setzero_si128());
+
+ // Round the words
+ reg_0 = round_epi16_sse2(®_0, ®_32, 6);
+ reg_1 = round_epi16_sse2(®_1, ®_32, 6);
+
+ // Pack from 16-bit to 8-bit and put them in the right order
+ reg_0 = _mm_packus_epi16(reg_0, reg_0);
+ reg_1 = _mm_packus_epi16(reg_1, reg_1);
+
+ // Save the result
+ *((uint32_t *)(dst_ptr)) = _mm_cvtsi128_si32(reg_0);
+ *((uint32_t *)(dst_ptr + dst_stride)) = _mm_cvtsi128_si32(reg_1);
+
+ // Update the source by two rows
+ src_ptr += src_stride_unrolled;
+ dst_ptr += dst_stride_unrolled;
+
+ src_reg_m1001 = src_reg_1223;
+ src_reg_1 = src_reg_3;
+ }
+}
+
filter8_1dfunction vpx_filter_block1d16_v8_ssse3;
filter8_1dfunction vpx_filter_block1d16_h8_ssse3;
filter8_1dfunction vpx_filter_block1d8_v8_ssse3;
filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3;
filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3;
-#if HAVE_SSE2
-filter8_1dfunction vpx_filter_block1d16_v4_sse2;
-filter8_1dfunction vpx_filter_block1d16_h4_sse2;
-filter8_1dfunction vpx_filter_block1d8_v4_sse2;
-filter8_1dfunction vpx_filter_block1d8_h4_sse2;
-filter8_1dfunction vpx_filter_block1d4_v4_sse2;
-filter8_1dfunction vpx_filter_block1d4_h4_sse2;
-#define vpx_filter_block1d16_v4_ssse3 vpx_filter_block1d16_v4_sse2
-#define vpx_filter_block1d16_h4_ssse3 vpx_filter_block1d16_h4_sse2
-#define vpx_filter_block1d8_v4_ssse3 vpx_filter_block1d8_v4_sse2
-#define vpx_filter_block1d8_h4_ssse3 vpx_filter_block1d8_h4_sse2
-#define vpx_filter_block1d4_v4_ssse3 vpx_filter_block1d4_v4_sse2
-#define vpx_filter_block1d4_h4_ssse3 vpx_filter_block1d4_h4_sse2
-#else
-#define vpx_filter_block1d16_v4_ssse3 vpx_filter_block1d16_v8_ssse3
-#define vpx_filter_block1d16_h4_ssse3 vpx_filter_block1d16_h8_ssse3
-#define vpx_filter_block1d8_v4_ssse3 vpx_filter_block1d8_v8_ssse3
-#define vpx_filter_block1d8_h4_ssse3 vpx_filter_block1d8_h8_ssse3
-#define vpx_filter_block1d4_v4_ssse3 vpx_filter_block1d4_v8_ssse3
-#define vpx_filter_block1d4_h4_ssse3 vpx_filter_block1d4_h8_ssse3
-#endif
#define vpx_filter_block1d16_v4_avg_ssse3 vpx_filter_block1d16_v8_avg_ssse3
#define vpx_filter_block1d16_h4_avg_ssse3 vpx_filter_block1d16_h8_avg_ssse3
#define vpx_filter_block1d8_v4_avg_ssse3 vpx_filter_block1d8_v8_avg_ssse3